File size: 5,238 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import (overload, Any, SupportsFloat, Literal, Protocol, SupportsIndex)

import numpy as np
from numpy.typing import ArrayLike, NDArray

# Anything that can be parsed by `np.float64.__init__` and is thus
# compatible with `ndarray.__setitem__` (for a float64 array)
_FloatValue = None | str | bytes | SupportsFloat | SupportsIndex

class _MetricCallback1(Protocol):
    def __call__(
        self, __XA: NDArray[Any], __XB: NDArray[Any]
    ) -> _FloatValue: ...

class _MetricCallback2(Protocol):
    def __call__(
        self, __XA: NDArray[Any], __XB: NDArray[Any], **kwargs: Any
    ) -> _FloatValue: ...

# TODO: Use a single protocol with a parameter specification variable
# once available (PEP 612)
_MetricCallback = _MetricCallback1 | _MetricCallback2

_MetricKind = Literal[
    'braycurtis',
    'canberra',
    'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch',
    'cityblock', 'cblock', 'cb', 'c',
    'correlation', 'co',
    'cosine', 'cos',
    'dice',
    'euclidean', 'euclid', 'eu', 'e',
    'hamming', 'hamm', 'ha', 'h',
    'minkowski', 'mi', 'm', 'pnorm',
    'jaccard', 'jacc', 'ja', 'j',
    'jensenshannon', 'js',
    'kulczynski1',
    'mahalanobis', 'mahal', 'mah',
    'rogerstanimoto',
    'russellrao',
    'seuclidean', 'se', 's',
    'sokalmichener',
    'sokalsneath',
    'sqeuclidean', 'sqe', 'sqeuclid',
    'yule',
]

# Function annotations

def braycurtis(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def canberra(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

# TODO: Add `metric`-specific overloads
# Returns a float64 or float128 array, depending on the input dtype
@overload
def cdist(
    XA: ArrayLike,
    XB: ArrayLike,
    metric: _MetricKind = ...,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    p: float = ...,
    w: ArrayLike | None = ...,
    V: ArrayLike | None = ...,
    VI: ArrayLike | None = ...,
) -> NDArray[np.floating[Any]]: ...
@overload
def cdist(
    XA: ArrayLike,
    XB: ArrayLike,
    metric: _MetricCallback,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    **kwargs: Any,
) -> NDArray[np.floating[Any]]: ...

# TODO: Wait for dtype support; the return type is
# dependent on the input arrays dtype
def chebyshev(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> Any: ...

# TODO: Wait for dtype support; the return type is
# dependent on the input arrays dtype
def cityblock(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> Any: ...

def correlation(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ..., centered: bool = ...
) -> np.float64: ...

def cosine(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def dice(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def directed_hausdorff(
    u: ArrayLike, v: ArrayLike, seed: int | None = ...
) -> tuple[float, int, int]: ...

def euclidean(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def hamming(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def is_valid_dm(
    D: ArrayLike,
    tol: float = ...,
    throw: bool = ...,
    name: str | None = ...,
    warning: bool = ...,
) -> bool: ...

def is_valid_y(
    y: ArrayLike,
    warning: bool = ...,
    throw: bool = ...,
    name: str | None = ...,
) -> bool: ...

def jaccard(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def jensenshannon(
    p: ArrayLike, q: ArrayLike, base: float | None = ...
) -> np.float64: ...

def kulczynski1(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def mahalanobis(
    u: ArrayLike, v: ArrayLike, VI: ArrayLike
) -> np.float64: ...

def minkowski(
    u: ArrayLike, v: ArrayLike, p: float = ..., w: ArrayLike | None = ...
) -> float: ...

def num_obs_dm(d: ArrayLike) -> int: ...

def num_obs_y(Y: ArrayLike) -> int: ...

# TODO: Add `metric`-specific overloads
@overload
def pdist(
    X: ArrayLike,
    metric: _MetricKind = ...,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    p: float = ...,
    w: ArrayLike | None = ...,
    V: ArrayLike | None = ...,
    VI: ArrayLike | None = ...,
) -> NDArray[np.floating[Any]]: ...
@overload
def pdist(
    X: ArrayLike,
    metric: _MetricCallback,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    **kwargs: Any,
) -> NDArray[np.floating[Any]]: ...

def seuclidean(
    u: ArrayLike, v: ArrayLike, V: ArrayLike
) -> float: ...

def sokalmichener(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def sokalsneath(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def sqeuclidean(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def squareform(
    X: ArrayLike,
    force: Literal["no", "tomatrix", "tovector"] = ...,
    checks: bool = ...,
) -> NDArray[Any]: ...

def rogerstanimoto(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def russellrao(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def yule(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...