File size: 13,712 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import math
import numpy as np
from scipy._lib._util import _asarray_validated
from scipy._lib._array_api import (
array_namespace,
xp_size,
xp_broadcast_promote,
xp_real,
xp_copy,
xp_float_to_complex,
)
from scipy._lib import array_api_extra as xpx
__all__ = ["logsumexp", "softmax", "log_softmax"]
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
"""Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed.
.. versionadded:: 0.11.0
b : array-like, optional
Scaling factor for exp(`a`) must be of the same shape as `a` or
broadcastable to `a`. These values may be negative in order to
implement subtraction.
.. versionadded:: 0.12.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
return_sign : bool, optional
If this is set to True, the result will be a pair containing sign
information; if False, results that are negative will be returned
as NaN. Default is False (no sign information).
.. versionadded:: 0.16.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned. If ``return_sign`` is True, ``res`` contains the log of
the absolute value of the argument.
sgn : ndarray
If ``return_sign`` is True, this will be an array of floating-point
numbers matching res containing +1, 0, -1 (for real-valued inputs)
or a complex phase (for complex inputs). This gives the sign of the
argument of the logarithm in ``res``.
If ``return_sign`` is False, only one result is returned.
See Also
--------
numpy.logaddexp, numpy.logaddexp2
Notes
-----
NumPy has a logaddexp function which is very similar to `logsumexp`, but
only handles two arguments. `logaddexp.reduce` is similar to this
function, but may be less stable.
The logarithm is a multivalued function: for each :math:`x` there is an
infinite number of :math:`z` such that :math:`exp(z) = x`. The convention
is to return the :math:`z` whose imaginary part lies in :math:`(-pi, pi]`.
Examples
--------
>>> import numpy as np
>>> from scipy.special import logsumexp
>>> a = np.arange(10)
>>> logsumexp(a)
9.4586297444267107
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
With weights
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647
Returning a sign flag
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)
Notice that `logsumexp` does not directly support masked arrays. To use it
on a masked array, convert the mask into zero weights:
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
... mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b), np.log(5)
1.6094379124341005, 1.6094379124341005
"""
xp = array_namespace(a, b)
a, b = xp_broadcast_promote(a, b, ensure_writeable=True, force_floating=True, xp=xp)
a = xpx.atleast_nd(a, ndim=1, xp=xp)
b = xpx.atleast_nd(b, ndim=1, xp=xp) if b is not None else b
axis = tuple(range(a.ndim)) if axis is None else axis
if xp_size(a) != 0:
with np.errstate(divide='ignore', invalid='ignore'): # log of zero is OK
out, sgn = _logsumexp(a, b, axis=axis, return_sign=return_sign, xp=xp)
else:
shape = np.asarray(a.shape) # NumPy is convenient for shape manipulation
shape[axis] = 1
out = xp.full(tuple(shape), -xp.inf, dtype=a.dtype)
sgn = xp.sign(out)
if xp.isdtype(out.dtype, 'complex floating'):
if return_sign:
real = xp.real(sgn)
imag = xp_float_to_complex(_wrap_radians(xp.imag(sgn), xp))
sgn = real + imag*1j
else:
real = xp.real(out)
imag = xp_float_to_complex(_wrap_radians(xp.imag(out), xp))
out = real + imag*1j
# Deal with shape details - reducing dimensions and convert 0-D to scalar for NumPy
out = xp.squeeze(out, axis=axis) if not keepdims else out
sgn = xp.squeeze(sgn, axis=axis) if (sgn is not None and not keepdims) else sgn
out = out[()] if out.ndim == 0 else out
sgn = sgn[()] if (sgn is not None and sgn.ndim == 0) else sgn
return (out, sgn) if return_sign else out
def _wrap_radians(x, xp=None):
xp = array_namespace(x) if xp is None else xp
# Wrap radians to (-pi, pi] interval
out = -((-x + math.pi) % (2 * math.pi) - math.pi)
# preserve relative precision
no_wrap = xp.abs(x) < xp.pi
out[no_wrap] = x[no_wrap]
return out
def _elements_and_indices_with_max_real(a, axis=-1, xp=None):
# This is an array-API compatible `max` function that works something
# like `np.max` for complex input. The important part is that it finds
# the element with maximum real part. When there are multiple complex values
# with this real part, it doesn't matter which we choose.
# We could use `argmax` on real component, but array API doesn't yet have
# `take_along_axis`, and even if it did, we would have problems with axis tuples.
# Feel free to rewrite! It's ugly, but it's not the purpose of the PR, and
# it gets the job done.
xp = array_namespace(a) if xp is None else xp
if xp.isdtype(a.dtype, "complex floating"):
# select all elements with max real part.
real_a = xp.real(a)
max = xp.max(real_a, axis=axis, keepdims=True)
mask = real_a == max
# Of those, choose one arbitrarily. This is a reasonably
# simple, array-API compatible way of doing so that doesn't
# have a problem with `axis` being a tuple or None.
i = xp.reshape(xp.arange(xp_size(a)), a.shape)
i[~mask] = -1
max_i = xp.max(i, axis=axis, keepdims=True)
mask = i == max_i
a = xp_copy(a)
a[~mask] = 0
max = xp.sum(a, axis=axis, dtype=a.dtype, keepdims=True)
else:
max = xp.max(a, axis=axis, keepdims=True)
mask = a == max
return xp.asarray(max), xp.asarray(mask)
def _sign(x, xp):
return x / xp.where(x == 0, xp.asarray(1, dtype=x.dtype), xp.abs(x))
def _logsumexp(a, b, axis, return_sign, xp):
# This has been around for about a decade, so let's consider it a feature:
# Even if element of `a` is infinite or NaN, it adds nothing to the sum if
# the corresponding weight is zero.
if b is not None:
a[b == 0] = -xp.inf
# Find element with maximum real part, since this is what affects the magnitude
# of the exponential. Possible enhancement: include log of `b` magnitude in `a`.
a_max, i_max = _elements_and_indices_with_max_real(a, axis=axis, xp=xp)
# for precision, these terms are separated out of the main sum.
a[i_max] = -xp.inf
i_max_dt = xp.astype(i_max, a.dtype)
# This is an inefficient way of getting `m` because it is the sum of a sparse
# array; however, this is the simplest way I can think of to get the right shape.
m = (xp.sum(i_max_dt, axis=axis, keepdims=True, dtype=a.dtype) if b is None
else xp.sum(b * i_max_dt, axis=axis, keepdims=True, dtype=a.dtype))
# Arithmetic between infinities will introduce NaNs.
# `+ a_max` at the end naturally corrects for removing them here.
shift = xp.where(xp.isfinite(a_max), a_max, xp.asarray(0, dtype=a_max.dtype))
# Shift, exponentiate, scale, and sum
exp = b * xp.exp(a - shift) if b is not None else xp.exp(a - shift)
s = xp.sum(exp, axis=axis, keepdims=True, dtype=exp.dtype)
s = xp.where(s == 0, s, s/m)
# Separate sign/magnitude information
sgn = None
if return_sign:
# Use the numpy>=2.0 convention for sign.
# When all array libraries agree, this can become sng = xp.sign(s).
sgn = _sign(s + 1, xp=xp) * _sign(m, xp=xp)
if xp.isdtype(s.dtype, "real floating"):
# The log functions need positive arguments
s = xp.where(s < -1, -s - 2, s)
m = xp.abs(m)
else:
# `a_max` can have a sign component for complex input
j = xp.asarray(1j, dtype=a_max.dtype)
sgn = sgn * xp.exp(xp.imag(a_max) * j)
# Take log and undo shift
out = xp.log1p(s) + xp.log(m) + a_max
out = xp_real(out) if return_sign else out
return out, sgn
def softmax(x, axis=None):
r"""Compute the softmax function.
The softmax function transforms each element of a collection by
computing the exponential of each element divided by the sum of the
exponentials of all the elements. That is, if `x` is a one-dimensional
numpy array::
softmax(x) = np.exp(x)/sum(np.exp(x))
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray
An array the same shape as `x`. The result will sum to 1 along the
specified axis.
Notes
-----
The formula for the softmax function :math:`\sigma(x)` for a vector
:math:`x = \{x_0, x_1, ..., x_{n-1}\}` is
.. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}
The `softmax` function is the gradient of `logsumexp`.
The implementation uses shifting to avoid overflow. See [1]_ for more
details.
.. versionadded:: 1.2.0
References
----------
.. [1] P. Blanchard, D.J. Higham, N.J. Higham, "Accurately computing the
log-sum-exp and softmax functions", IMA Journal of Numerical Analysis,
Vol.41(4), :doi:`10.1093/imanum/draa038`.
Examples
--------
>>> import numpy as np
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)
>>> x = np.array([[1, 0.5, 0.2, 3],
... [1, -1, 7, 3],
... [2, 12, 13, 3]])
...
Compute the softmax transformation over the entire array.
>>> m = softmax(x)
>>> m
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],
[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])
>>> m.sum()
1.0
Compute the softmax transformation along the first axis (i.e., the
columns).
>>> m = softmax(x, axis=0)
>>> m
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],
[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])
>>> m.sum(axis=0)
array([ 1., 1., 1., 1.])
Compute the softmax transformation along the second axis (i.e., the rows).
>>> m = softmax(x, axis=1)
>>> m
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],
[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])
>>> m.sum(axis=1)
array([ 1., 1., 1.])
"""
x = _asarray_validated(x, check_finite=False)
x_max = np.amax(x, axis=axis, keepdims=True)
exp_x_shifted = np.exp(x - x_max)
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
def log_softmax(x, axis=None):
r"""Compute the logarithm of the softmax function.
In principle::
log_softmax(x) = log(softmax(x))
but using a more accurate implementation.
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray or scalar
An array with the same shape as `x`. Exponential of the result will
sum to 1 along the specified axis. If `x` is a scalar, a scalar is
returned.
Notes
-----
`log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that
make `softmax` saturate (see examples below).
.. versionadded:: 1.5.0
Examples
--------
>>> import numpy as np
>>> from scipy.special import log_softmax
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)
>>> x = np.array([1000.0, 1.0])
>>> y = log_softmax(x)
>>> y
array([ 0., -999.])
>>> with np.errstate(divide='ignore'):
... y = np.log(softmax(x))
...
>>> y
array([ 0., -inf])
"""
x = _asarray_validated(x, check_finite=False)
x_max = np.amax(x, axis=axis, keepdims=True)
if x_max.ndim > 0:
x_max[~np.isfinite(x_max)] = 0
elif not np.isfinite(x_max):
x_max = 0
tmp = x - x_max
exp_tmp = np.exp(tmp)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(exp_tmp, axis=axis, keepdims=True)
out = np.log(s)
out = tmp - out
return out
|