File size: 23,524 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
"""
Test cdflib functions versus mpmath, if available.
The following functions still need tests:
- ncfdtri
- ncfdtridfn
- ncfdtridfd
- ncfdtrinc
- nbdtrik
- nbdtrin
- pdtrik
- nctdtrit
- nctdtridf
- nctdtrinc
"""
import itertools
import numpy as np
from numpy.testing import assert_equal, assert_allclose
import pytest
import scipy.special as sp
from scipy.special._testutils import (
MissingModule, check_version, FuncData)
from scipy.special._mptestutils import (
Arg, IntArg, get_args, mpf2float, assert_mpmath_equal)
try:
import mpmath
except ImportError:
mpmath = MissingModule('mpmath')
class ProbArg:
"""Generate a set of probabilities on [0, 1]."""
def __init__(self):
# Include the endpoints for compatibility with Arg et. al.
self.a = 0
self.b = 1
def values(self, n):
"""Return an array containing approximately n numbers."""
m = max(1, n//3)
v1 = np.logspace(-30, np.log10(0.3), m)
v2 = np.linspace(0.3, 0.7, m + 1, endpoint=False)[1:]
v3 = 1 - np.logspace(np.log10(0.3), -15, m)
v = np.r_[v1, v2, v3]
return np.unique(v)
class EndpointFilter:
def __init__(self, a, b, rtol, atol):
self.a = a
self.b = b
self.rtol = rtol
self.atol = atol
def __call__(self, x):
mask1 = np.abs(x - self.a) < self.rtol*np.abs(self.a) + self.atol
mask2 = np.abs(x - self.b) < self.rtol*np.abs(self.b) + self.atol
return np.where(mask1 | mask2, False, True)
class _CDFData:
def __init__(self, spfunc, mpfunc, index, argspec, spfunc_first=True,
dps=20, n=5000, rtol=None, atol=None,
endpt_rtol=None, endpt_atol=None):
self.spfunc = spfunc
self.mpfunc = mpfunc
self.index = index
self.argspec = argspec
self.spfunc_first = spfunc_first
self.dps = dps
self.n = n
self.rtol = rtol
self.atol = atol
if not isinstance(argspec, list):
self.endpt_rtol = None
self.endpt_atol = None
elif endpt_rtol is not None or endpt_atol is not None:
if isinstance(endpt_rtol, list):
self.endpt_rtol = endpt_rtol
else:
self.endpt_rtol = [endpt_rtol]*len(self.argspec)
if isinstance(endpt_atol, list):
self.endpt_atol = endpt_atol
else:
self.endpt_atol = [endpt_atol]*len(self.argspec)
else:
self.endpt_rtol = None
self.endpt_atol = None
def idmap(self, *args):
if self.spfunc_first:
res = self.spfunc(*args)
if np.isnan(res):
return np.nan
args = list(args)
args[self.index] = res
with mpmath.workdps(self.dps):
res = self.mpfunc(*tuple(args))
# Imaginary parts are spurious
res = mpf2float(res.real)
else:
with mpmath.workdps(self.dps):
res = self.mpfunc(*args)
res = mpf2float(res.real)
args = list(args)
args[self.index] = res
res = self.spfunc(*tuple(args))
return res
def get_param_filter(self):
if self.endpt_rtol is None and self.endpt_atol is None:
return None
filters = []
for rtol, atol, spec in zip(self.endpt_rtol, self.endpt_atol, self.argspec):
if rtol is None and atol is None:
filters.append(None)
continue
elif rtol is None:
rtol = 0.0
elif atol is None:
atol = 0.0
filters.append(EndpointFilter(spec.a, spec.b, rtol, atol))
return filters
def check(self):
# Generate values for the arguments
args = get_args(self.argspec, self.n)
param_filter = self.get_param_filter()
param_columns = tuple(range(args.shape[1]))
result_columns = args.shape[1]
args = np.hstack((args, args[:, self.index].reshape(args.shape[0], 1)))
FuncData(self.idmap, args,
param_columns=param_columns, result_columns=result_columns,
rtol=self.rtol, atol=self.atol, vectorized=False,
param_filter=param_filter).check()
def _assert_inverts(*a, **kw):
d = _CDFData(*a, **kw)
d.check()
def _binomial_cdf(k, n, p):
k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
if k <= 0:
return mpmath.mpf(0)
elif k >= n:
return mpmath.mpf(1)
onemp = mpmath.fsub(1, p, exact=True)
return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)
def _f_cdf(dfn, dfd, x):
if x < 0:
return mpmath.mpf(0)
dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
ub = dfn*x/(dfn*x + dfd)
res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
return res
def _student_t_cdf(df, t, dps=None):
if dps is None:
dps = mpmath.mp.dps
with mpmath.workdps(dps):
df, t = mpmath.mpf(df), mpmath.mpf(t)
fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df)
fac *= t*mpmath.gamma(0.5*(df + 1))
fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df)
return 0.5 + fac
def _noncentral_chi_pdf(t, df, nc):
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
return res
def _noncentral_chi_cdf(x, df, nc, dps=None):
if dps is None:
dps = mpmath.mp.dps
x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
with mpmath.workdps(dps):
res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
return res
def _tukey_lmbda_quantile(p, lmbda):
# For lmbda != 0
return (p**lmbda - (1 - p)**lmbda)/lmbda
@pytest.mark.slow
@check_version(mpmath, '0.19')
class TestCDFlib:
@pytest.mark.xfail(run=False)
def test_bdtrik(self):
_assert_inverts(
sp.bdtrik,
_binomial_cdf,
0, [ProbArg(), IntArg(1, 1000), ProbArg()],
rtol=1e-4)
def test_bdtrin(self):
_assert_inverts(
sp.bdtrin,
_binomial_cdf,
1, [IntArg(1, 1000), ProbArg(), ProbArg()],
rtol=1e-4, endpt_atol=[None, None, 1e-6])
def test_btdtria(self):
_assert_inverts(
sp.btdtria,
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
0, [ProbArg(), Arg(0, 1e2, inclusive_a=False),
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
rtol=1e-6)
def test_btdtrib(self):
# Use small values of a or mpmath doesn't converge
_assert_inverts(
sp.btdtrib,
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
1,
[Arg(0, 1e2, inclusive_a=False), ProbArg(),
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
rtol=1e-7,
endpt_atol=[None, 1e-18, 1e-15])
@pytest.mark.xfail(run=False)
def test_fdtridfd(self):
_assert_inverts(
sp.fdtridfd,
_f_cdf,
1,
[IntArg(1, 100), ProbArg(), Arg(0, 100, inclusive_a=False)],
rtol=1e-7)
def test_gdtria(self):
_assert_inverts(
sp.gdtria,
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
0,
[ProbArg(), Arg(0, 1e3, inclusive_a=False),
Arg(0, 1e4, inclusive_a=False)],
rtol=1e-7,
endpt_atol=[None, 1e-7, 1e-10])
def test_gdtrib(self):
# Use small values of a and x or mpmath doesn't converge
_assert_inverts(
sp.gdtrib,
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
1,
[Arg(0, 1e2, inclusive_a=False), ProbArg(),
Arg(0, 1e3, inclusive_a=False)],
rtol=1e-5)
def test_gdtrix(self):
_assert_inverts(
sp.gdtrix,
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
2,
[Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
ProbArg()],
rtol=1e-7,
endpt_atol=[None, 1e-7, 1e-10])
# Overall nrdtrimn and nrdtrisd are not performing well with infeasible/edge
# combinations of sigma and x, hence restricted the domains to still use the
# testing machinery, also see gh-20069
# nrdtrimn signature: p, sd, x
# nrdtrisd signature: mn, p, x
def test_nrdtrimn(self):
_assert_inverts(
sp.nrdtrimn,
lambda x, y, z: mpmath.ncdf(z, x, y),
0,
[ProbArg(), # CDF value p
Arg(0.1, np.inf, inclusive_a=False, inclusive_b=False), # sigma
Arg(-1e10, 1e10)], # x
rtol=1e-5)
def test_nrdtrisd(self):
_assert_inverts(
sp.nrdtrisd,
lambda x, y, z: mpmath.ncdf(z, x, y),
1,
[Arg(-np.inf, 10, inclusive_a=False, inclusive_b=False), # mn
ProbArg(), # CDF value p
Arg(10, 1e100)], # x
rtol=1e-5)
def test_stdtr(self):
# Ideally the left endpoint for Arg() should be 0.
assert_mpmath_equal(
sp.stdtr,
_student_t_cdf,
[IntArg(1, 100), Arg(1e-10, np.inf)], rtol=1e-7)
@pytest.mark.xfail(run=False)
def test_stdtridf(self):
_assert_inverts(
sp.stdtridf,
_student_t_cdf,
0, [ProbArg(), Arg()], rtol=1e-7)
def test_stdtrit(self):
_assert_inverts(
sp.stdtrit,
_student_t_cdf,
1, [IntArg(1, 100), ProbArg()], rtol=1e-7,
endpt_atol=[None, 1e-10])
def test_chdtriv(self):
_assert_inverts(
sp.chdtriv,
lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True),
0, [ProbArg(), IntArg(1, 100)], rtol=1e-4)
@pytest.mark.xfail(run=False)
def test_chndtridf(self):
# Use a larger atol since mpmath is doing numerical integration
_assert_inverts(
sp.chndtridf,
_noncentral_chi_cdf,
1, [Arg(0, 100, inclusive_a=False), ProbArg(),
Arg(0, 100, inclusive_a=False)],
n=1000, rtol=1e-4, atol=1e-15)
@pytest.mark.xfail(run=False)
def test_chndtrinc(self):
# Use a larger atol since mpmath is doing numerical integration
_assert_inverts(
sp.chndtrinc,
_noncentral_chi_cdf,
2, [Arg(0, 100, inclusive_a=False), IntArg(1, 100), ProbArg()],
n=1000, rtol=1e-4, atol=1e-15)
def test_chndtrix(self):
# Use a larger atol since mpmath is doing numerical integration
_assert_inverts(
sp.chndtrix,
_noncentral_chi_cdf,
0, [ProbArg(), IntArg(1, 100), Arg(0, 100, inclusive_a=False)],
n=1000, rtol=1e-4, atol=1e-15,
endpt_atol=[1e-6, None, None])
def test_tklmbda_zero_shape(self):
# When lmbda = 0 the CDF has a simple closed form
one = mpmath.mpf(1)
assert_mpmath_equal(
lambda x: sp.tklmbda(x, 0),
lambda x: one/(mpmath.exp(-x) + one),
[Arg()], rtol=1e-7)
def test_tklmbda_neg_shape(self):
_assert_inverts(
sp.tklmbda,
_tukey_lmbda_quantile,
0, [ProbArg(), Arg(-25, 0, inclusive_b=False)],
spfunc_first=False, rtol=1e-5,
endpt_atol=[1e-9, 1e-5])
@pytest.mark.xfail(run=False)
def test_tklmbda_pos_shape(self):
_assert_inverts(
sp.tklmbda,
_tukey_lmbda_quantile,
0, [ProbArg(), Arg(0, 100, inclusive_a=False)],
spfunc_first=False, rtol=1e-5)
# The values of lmdba are chosen so that 1/lmbda is exact.
@pytest.mark.parametrize('lmbda', [0.5, 1.0, 8.0])
def test_tklmbda_lmbda1(self, lmbda):
bound = 1/lmbda
assert_equal(sp.tklmbda([-bound, bound], lmbda), [0.0, 1.0])
funcs = [
("btdtria", 3),
("btdtrib", 3),
("bdtrik", 3),
("bdtrin", 3),
("chdtriv", 2),
("chndtr", 3),
("chndtrix", 3),
("chndtridf", 3),
("chndtrinc", 3),
("fdtridfd", 3),
("ncfdtr", 4),
("ncfdtri", 4),
("ncfdtridfn", 4),
("ncfdtridfd", 4),
("ncfdtrinc", 4),
("gdtrix", 3),
("gdtrib", 3),
("gdtria", 3),
("nbdtrik", 3),
("nbdtrin", 3),
("nrdtrimn", 3),
("nrdtrisd", 3),
("pdtrik", 2),
("stdtr", 2),
("stdtrit", 2),
("stdtridf", 2),
("nctdtr", 3),
("nctdtrit", 3),
("nctdtridf", 3),
("nctdtrinc", 3),
("tklmbda", 2),
]
@pytest.mark.parametrize('func,numargs', funcs, ids=[x[0] for x in funcs])
def test_nonfinite(func, numargs):
rng = np.random.default_rng(1701299355559735)
func = getattr(sp, func)
args_choices = [(float(x), np.nan, np.inf, -np.inf) for x in rng.random(numargs)]
for args in itertools.product(*args_choices):
res = func(*args)
if any(np.isnan(x) for x in args):
# Nan inputs should result to nan output
assert_equal(res, np.nan)
else:
# All other inputs should return something (but not
# raise exceptions or cause hangs)
pass
def test_chndtrix_gh2158():
# test that gh-2158 is resolved; previously this blew up
res = sp.chndtrix(0.999999, 2, np.arange(20.)+1e-6)
# Generated in R
# options(digits=16)
# ncp <- seq(0, 19) + 1e-6
# print(qchisq(0.999999, df = 2, ncp = ncp))
res_exp = [27.63103493142305, 35.25728589950540, 39.97396073236288,
43.88033702110538, 47.35206403482798, 50.54112500166103,
53.52720257322766, 56.35830042867810, 59.06600769498512,
61.67243118946381, 64.19376191277179, 66.64228141346548,
69.02756927200180, 71.35726934749408, 73.63759723904816,
75.87368842650227, 78.06984431185720, 80.22971052389806,
82.35640899964173, 84.45263768373256]
assert_allclose(res, res_exp)
def test_nctdtrinc_gh19896():
# test that gh-19896 is resolved.
# Compared to SciPy 1.11 results from Fortran code.
dfarr = [0.001, 0.98, 9.8, 98, 980, 10000, 98, 9.8, 0.98, 0.001]
parr = [0.001, 0.1, 0.3, 0.8, 0.999, 0.001, 0.1, 0.3, 0.8, 0.999]
tarr = [0.0015, 0.15, 1.5, 15, 300, 0.0015, 0.15, 1.5, 15, 300]
desired = [3.090232306168629, 1.406141304556198, 2.014225177124157,
13.727067118283456, 278.9765683871208, 3.090232306168629,
1.4312427877936222, 2.014225177124157, 3.712743137978295,
-3.086951096691082]
actual = sp.nctdtrinc(dfarr, parr, tarr)
assert_allclose(actual, desired, rtol=5e-12, atol=0.0)
def test_stdtr_stdtrit_neg_inf():
# -inf was treated as +inf and values from the normal were returned
assert np.all(np.isnan(sp.stdtr(-np.inf, [-np.inf, -1.0, 0.0, 1.0, np.inf])))
assert np.all(np.isnan(sp.stdtrit(-np.inf, [0.0, 0.25, 0.5, 0.75, 1.0])))
def test_bdtrik_nbdtrik_inf():
y = np.array(
[np.nan,-np.inf,-10.0, -1.0, 0.0, .00001, .5, 0.9999, 1.0, 10.0, np.inf])
y = y[:,None]
p = np.atleast_2d(
[np.nan, -np.inf, -10.0, -1.0, 0.0, .00001, .5, 1.0, np.inf])
assert np.all(np.isnan(sp.bdtrik(y, np.inf, p)))
assert np.all(np.isnan(sp.nbdtrik(y, np.inf, p)))
@pytest.mark.parametrize(
"dfn,dfd,nc,f,expected",
[[100.0, 0.1, 0.1, 100.0, 0.29787396410092676],
[100.0, 100.0, 0.01, 0.1, 4.4344737598690424e-26],
[100.0, 0.01, 0.1, 0.01, 0.002848616633080384],
[10.0, 0.01, 1.0, 0.1, 0.012339557729057956],
[100.0, 100.0, 0.01, 0.01, 1.8926477420964936e-72],
[1.0, 100.0, 100.0, 0.1, 1.7925940526821304e-22],
[1.0, 0.01, 100.0, 10.0, 0.012334711965024968],
[1.0, 0.01, 10.0, 0.01, 0.00021944525290299],
[10.0, 1.0, 0.1, 100.0, 0.9219345555070705],
[0.1, 0.1, 1.0, 1.0, 0.3136335813423239],
[100.0, 100.0, 0.1, 10.0, 1.0],
[1.0, 0.1, 100.0, 10.0, 0.02926064279680897]]
)
def test_ncfdtr(dfn, dfd, nc, f, expected):
# Reference values computed with mpmath with the following script
#
# import numpy as np
#
# from mpmath import mp
# from scipy.special import ncfdtr
#
# mp.dps = 100
#
# def mp_ncfdtr(dfn, dfd, nc, f):
# # Uses formula 26.2.20 from Abramowitz and Stegun.
# dfn, dfd, nc, f = map(mp.mpf, (dfn, dfd, nc, f))
# def term(j):
# result = mp.exp(-nc/2)*(nc/2)**j / mp.factorial(j)
# result *= mp.betainc(
# dfn/2 + j, dfd/2, 0, f*dfn/(f*dfn + dfd), regularized=True
# )
# return result
# result = mp.nsum(term, [0, mp.inf])
# return float(result)
#
# dfn = np.logspace(-2, 2, 5)
# dfd = np.logspace(-2, 2, 5)
# nc = np.logspace(-2, 2, 5)
# f = np.logspace(-2, 2, 5)
#
# dfn, dfd, nc, f = np.meshgrid(dfn, dfd, nc, f)
# dfn, dfd, nc, f = map(np.ravel, (dfn, dfd, nc, f))
#
# cases = []
# re = []
# for x0, x1, x2, x3 in zip(*(dfn, dfd, nc, f)):
# observed = ncfdtr(x0, x1, x2, x3)
# expected = mp_ncfdtr(x0, x1, x2, x3)
# cases.append((x0, x1, x2, x3, expected))
# re.append((abs(expected - observed)/abs(expected)))
#
# assert np.max(re) < 1e-13
#
# rng = np.random.default_rng(1234)
# sample_idx = rng.choice(len(re), replace=False, size=12)
# cases = np.array(cases)[sample_idx].tolist()
assert_allclose(sp.ncfdtr(dfn, dfd, nc, f), expected, rtol=1e-13, atol=0)
class TestNctdtr:
# Reference values computed with mpmath with the following script
# Formula from:
# Lenth, Russell V (1989). "Algorithm AS 243: Cumulative Distribution Function
# of the Non-central t Distribution". Journal of the Royal Statistical Society,
# Series C. 38 (1): 185-189
#
# Warning: may take a long time to run
#
# from mpmath import mp
# mp.dps = 400
# def nct_cdf(df, nc, x):
# df, nc, x = map(mp.mpf, (df, nc, x))
# def f(df, nc, x):
# phi = mp.ncdf(-nc)
# y = x * x / (x * x + df)
# constant = mp.exp(-nc * nc / 2.)
# def term(j):
# intermediate = constant * (nc *nc / 2.)**j
# p = intermediate/mp.factorial(j)
# q = nc / (mp.sqrt(2.) * mp.gamma(j + 1.5)) * intermediate
# first_beta_term = mp.betainc(j + 0.5, df/2., x2=y,
# regularized=True)
# second_beta_term = mp.betainc(j + mp.one, df/2., x2=y,
# regularized=True)
# return p * first_beta_term + q * second_beta_term
# sum_term = mp.nsum(term, [0, mp.inf])
# f = phi + 0.5 * sum_term
# return f
# if x >= 0:
# result = f(df, nc, x)
# else:
# result = mp.one - f(df, -nc, x)
# return float(result)
@pytest.mark.parametrize("df, nc, x, expected", [
(0.98, -3.8, 0.0015, 0.9999279987514815),
(0.98, -3.8, 0.15, 0.9999528361700505),
(0.98, -3.8, 1.5, 0.9999908823016942),
(0.98, -3.8, 15, 0.9999990264591945),
(0.98, 0.38, 0.0015, 0.35241533122693),
(0.98, 0.38, 0.15, 0.39749697267146983),
(0.98, 0.38, 1.5, 0.716862963488558),
(0.98, 0.38, 15, 0.9656246449257494),
(0.98, 3.8, 0.0015, 7.26973354942293e-05),
(0.98, 3.8, 0.15, 0.00012416481147589105),
(0.98, 3.8, 1.5, 0.035388035775454095),
(0.98, 3.8, 15, 0.7954826975430583),
(0.98, 38, 0.0015, 3.02106943e-316),
(0.98, 38, 0.15, 6.069970616996603e-309),
(0.98, 38, 1.5, 2.591995360483094e-97),
(0.98, 38, 15, 0.011927265886910935),
(9.8, -3.8, 0.0015, 0.9999280776192786),
(9.8, -3.8, 0.15, 0.9999599410685442),
(9.8, -3.8, 1.5, 0.9999997432394788),
(9.8, -3.8, 15, 0.9999999999999984),
(9.8, 0.38, 0.0015, 0.3525155979107491),
(9.8, 0.38, 0.15, 0.40763120140379194),
(9.8, 0.38, 1.5, 0.8476794017024651),
(9.8, 0.38, 15, 0.9999999297116268),
(9.8, 3.8, 0.0015, 7.277620328149153e-05),
(9.8, 3.8, 0.15, 0.00013024802220900652),
(9.8, 3.8, 1.5, 0.013477432800072933),
(9.8, 3.8, 15, 0.999850151230648),
(9.8, 38, 0.0015, 3.05066095e-316),
(9.8, 38, 0.15, 1.79065514676e-313),
(9.8, 38, 1.5, 2.0935940165900746e-249),
(9.8, 38, 15, 2.252076291604796e-09),
(98, -3.8, 0.0015, 0.9999280875149109),
(98, -3.8, 0.15, 0.9999608250170452),
(98, -3.8, 1.5, 0.9999999304757682),
(98, -3.8, 15, 1.0),
(98, 0.38, 0.0015, 0.35252817848596313),
(98, 0.38, 0.15, 0.40890253001794846),
(98, 0.38, 1.5, 0.8664672830006552),
(98, 0.38, 15, 1.0),
(98, 3.8, 0.0015, 7.278609891281275e-05),
(98, 3.8, 0.15, 0.0001310318674827004),
(98, 3.8, 1.5, 0.010990879189991727),
(98, 3.8, 15, 0.9999999999999989),
(98, 38, 0.0015, 3.05437385e-316),
(98, 38, 0.15, 9.1668336166e-314),
(98, 38, 1.5, 1.8085884236563926e-288),
(98, 38, 15, 2.7740532792035907e-50),
(980, -3.8, 0.0015, 0.9999280885188965),
(980, -3.8, 0.15, 0.9999609144559273),
(980, -3.8, 1.5, 0.9999999410050979),
(980, -3.8, 15, 1.0),
(980, 0.38, 0.0015, 0.3525294548792812),
(980, 0.38, 0.15, 0.4090315324657382),
(980, 0.38, 1.5, 0.8684247068517293),
(980, 0.38, 15, 1.0),
(980, 3.8, 0.0015, 7.278710289828983e-05),
(980, 3.8, 0.15, 0.00013111131667906573),
(980, 3.8, 1.5, 0.010750678886113882),
(980, 3.8, 15, 1.0),
(980, 38, 0.0015, 3.0547506e-316),
(980, 38, 0.15, 8.6191646313e-314),
pytest.param(980, 38, 1.5, 1.1824454111413493e-291,
marks=pytest.mark.xfail(
reason="Bug in underlying Boost math implementation")),
(980, 38, 15, 5.407535300713606e-105)
])
def test_gh19896(self, df, nc, x, expected):
# test that gh-19896 is resolved.
# Originally this was a regression test that used the old Fortran results
# as a reference. The Fortran results were not accurate, so the reference
# values were recomputed with mpmath.
result = sp.nctdtr(df, nc, x)
assert_allclose(result, expected, rtol=1e-13, atol=1e-303)
def test_nctdtr_gh8344(self):
# test that gh-8344 is resolved.
df, nc, x = 3000, 3, 0.1
expected = 0.0018657780826323328
assert_allclose(sp.nctdtr(df, nc, x), expected, rtol=1e-14)
@pytest.mark.parametrize(
"df, nc, x, expected, rtol",
[[3., 5., -2., 1.5645373999149622e-09, 5e-9],
[1000., 10., 1., 1.1493552133826623e-19, 1e-13],
[1e-5, -6., 2., 0.9999999990135003, 1e-13],
[10., 20., 0.15, 6.426530505957303e-88, 1e-13],
[1., 1., np.inf, 1.0, 0.0],
[1., 1., -np.inf, 0.0, 0.0]
]
)
def test_accuracy(self, df, nc, x, expected, rtol):
assert_allclose(sp.nctdtr(df, nc, x), expected, rtol=rtol)
|