File size: 6,291 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     psi.c
 *
 *     Psi (digamma) function
 *
 *
 * SYNOPSIS:
 *
 * double x, y, psi();
 *
 * y = psi( x );
 *
 *
 * DESCRIPTION:
 *
 *              d      -
 *   psi(x)  =  -- ln | (x)
 *              dx
 *
 * is the logarithmic derivative of the gamma function.
 * For integer x,
 *                   n-1
 *                    -
 * psi(n) = -EUL  +   >  1/k.
 *                    -
 *                   k=1
 *
 * This formula is used for 0 < n <= 10.  If x is negative, it
 * is transformed to a positive argument by the reflection
 * formula  psi(1-x) = psi(x) + pi cot(pi x).
 * For general positive x, the argument is made greater than 10
 * using the recurrence  psi(x+1) = psi(x) + 1/x.
 * Then the following asymptotic expansion is applied:
 *
 *                           inf.   B
 *                            -      2k
 * psi(x) = log(x) - 1/2x -   >   -------
 *                            -        2k
 *                           k=1   2k x
 *
 * where the B2k are Bernoulli numbers.
 *
 * ACCURACY:
 *    Relative error (except absolute when |psi| < 1):
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,30        30000       1.3e-15     1.4e-16
 *    IEEE      -30,0       40000       1.5e-15     2.2e-16
 *
 * ERROR MESSAGES:
 *     message         condition      value returned
 * psi singularity    x integer <=0      INFINITY
 */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
 */

/*
 * Code for the rational approximation on [1, 2] is:
 *
 * (C) Copyright John Maddock 2006.
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
 */
#pragma once

#include "../config.h"
#include "../error.h"
#include "const.h"
#include "polevl.h"

namespace xsf {
namespace cephes {
    namespace detail {
        constexpr double psi_A[] = {8.33333333333333333333E-2,  -2.10927960927960927961E-2, 7.57575757575757575758E-3,
                                    -4.16666666666666666667E-3, 3.96825396825396825397E-3,  -8.33333333333333333333E-3,
                                    8.33333333333333333333E-2};

        constexpr float psi_Y = 0.99558162689208984f;

        constexpr double psi_root1 = 1569415565.0 / 1073741824.0;
        constexpr double psi_root2 = (381566830.0 / 1073741824.0) / 1073741824.0;
        constexpr double psi_root3 = 0.9016312093258695918615325266959189453125e-19;

        constexpr double psi_P[] = {-0.0020713321167745952, -0.045251321448739056, -0.28919126444774784,
                                    -0.65031853770896507,   -0.32555031186804491,  0.25479851061131551};
        constexpr double psi_Q[] = {-0.55789841321675513e-6,
                                    0.0021284987017821144,
                                    0.054151797245674225,
                                    0.43593529692665969,
                                    1.4606242909763515,
                                    2.0767117023730469,
                                    1.0};

        XSF_HOST_DEVICE double digamma_imp_1_2(double x) {
            /*
             * Rational approximation on [1, 2] taken from Boost.
             *
             * Now for the approximation, we use the form:
             *
             * digamma(x) = (x - root) * (Y + R(x-1))
             *
             * Where root is the location of the positive root of digamma,
             * Y is a constant, and R is optimised for low absolute error
             * compared to Y.
             *
             * Maximum Deviation Found:               1.466e-18
             * At double precision, max error found:  2.452e-17
             */
            double r, g;

            g = x - psi_root1;
            g -= psi_root2;
            g -= psi_root3;
            r = xsf::cephes::polevl(x - 1.0, psi_P, 5) / xsf::cephes::polevl(x - 1.0, psi_Q, 6);

            return g * psi_Y + g * r;
        }

        XSF_HOST_DEVICE double psi_asy(double x) {
            double y, z;

            if (x < 1.0e17) {
                z = 1.0 / (x * x);
                y = z * xsf::cephes::polevl(z, psi_A, 6);
            } else {
                y = 0.0;
            }

            return std::log(x) - (0.5 / x) - y;
        }
    } // namespace detail

    XSF_HOST_DEVICE double psi(double x) {
        double y = 0.0;
        double q, r;
        int i, n;

        if (std::isnan(x)) {
            return x;
        } else if (x == std::numeric_limits<double>::infinity()) {
            return x;
        } else if (x == -std::numeric_limits<double>::infinity()) {
            return std::numeric_limits<double>::quiet_NaN();
        } else if (x == 0) {
            set_error("psi", SF_ERROR_SINGULAR, NULL);
            return std::copysign(std::numeric_limits<double>::infinity(), -x);
        } else if (x < 0.0) {
            /* argument reduction before evaluating tan(pi * x) */
            r = std::modf(x, &q);
            if (r == 0.0) {
                set_error("psi", SF_ERROR_SINGULAR, NULL);
                return std::numeric_limits<double>::quiet_NaN();
            }
            y = -M_PI / std::tan(M_PI * r);
            x = 1.0 - x;
        }

        /* check for positive integer up to 10 */
        if ((x <= 10.0) && (x == std::floor(x))) {
            n = static_cast<int>(x);
            for (i = 1; i < n; i++) {
                y += 1.0 / i;
            }
            y -= detail::SCIPY_EULER;
            return y;
        }

        /* use the recurrence relation to move x into [1, 2] */
        if (x < 1.0) {
            y -= 1.0 / x;
            x += 1.0;
        } else if (x < 10.0) {
            while (x > 2.0) {
                x -= 1.0;
                y += 1.0 / x;
            }
        }
        if ((1.0 <= x) && (x <= 2.0)) {
            y += detail::digamma_imp_1_2(x);
            return y;
        }

        /* x is large, use the asymptotic series */
        y += detail::psi_asy(x);
        return y;
    }
} // namespace cephes
} // namespace xsf