File size: 34,727 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
/* Implementation of Gauss's hypergeometric function for complex values.
*
* This implementation is based on the Fortran implementation by Shanjie Zhang and
* Jianming Jin included in specfun.f [1]_. Computation of Gauss's hypergeometric
* function involves handling a patchwork of special cases. By default the Zhang and
* Jin implementation has been followed as closely as possible except for situations where
* an improvement was obvious. We've attempted to document the reasons behind decisions
* made by Zhang and Jin and to document the reasons for deviating from their implementation
* when this has been done. References to the NIST Digital Library of Mathematical
* Functions [2]_ have been added where they are appropriate. The review paper by
* Pearson et al [3]_ is an excellent resource for best practices for numerical
* computation of hypergeometric functions. We have followed this review paper
* when making improvements to and correcting defects in Zhang and Jin's
* implementation. When Pearson et al propose several competing alternatives for a
* given case, we've used our best judgment to decide on the method to use.
*
* Author: Albert Steppi
*
* Distributed under the same license as Scipy.
*
* References
* ----------
* .. [1] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996
* .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/,
* Release 1.1.1 of 2021-03-15. F. W. J. Olver, A. B. Olde Daalhuis,
* D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
* B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
* .. [3] Pearson, J.W., Olver, S. & Porter, M.A.
* "Numerical methods for the computation of the confluent and Gauss
* hypergeometric functions."
* Numer Algor 74, 821-866 (2017). https://doi.org/10.1007/s11075-016-0173-0
* .. [4] Raimundas Vidunas, "Degenerate Gauss Hypergeometric Functions",
* Kyushu Journal of Mathematics, 2007, Volume 61, Issue 1, Pages 109-135,
* .. [5] López, J.L., Temme, N.M. New series expansions of the Gauss hypergeometric
* function. Adv Comput Math 39, 349-365 (2013).
* https://doi.org/10.1007/s10444-012-9283-y
* """
*/
#pragma once
#include "config.h"
#include "error.h"
#include "tools.h"
#include "binom.h"
#include "cephes/gamma.h"
#include "cephes/lanczos.h"
#include "cephes/poch.h"
#include "cephes/hyp2f1.h"
#include "digamma.h"
namespace xsf {
namespace detail {
constexpr double hyp2f1_EPS = 1e-15;
/* The original implementation in SciPy from Zhang and Jin used 1500 for the
* maximum number of series iterations in some cases and 500 in others.
* Through the empirical results on the test cases in
* scipy/special/_precompute/hyp2f1_data.py, it was determined that these values
* can lead to early termination of series which would have eventually converged
* at a reasonable level of accuracy. We've bumped the iteration limit to 3000,
* and may adjust it again based on further analysis. */
constexpr std::uint64_t hyp2f1_MAXITER = 3000;
XSF_HOST_DEVICE inline double four_gammas_lanczos(double u, double v, double w, double x) {
/* Compute ratio of gamma functions using lanczos approximation.
*
* Computes gamma(u)*gamma(v)/(gamma(w)*gamma(x))
*
* It is assumed that x = u + v - w, but it is left to the user to
* ensure this.
*
* The lanczos approximation takes the form
*
* gamma(x) = factor(x) * lanczos_sum_expg_scaled(x)
*
* where factor(x) = ((x + lanczos_g - 0.5)/e)**(x - 0.5).
*
* The formula above is only valid for x >= 0.5, but can be extended to
* x < 0.5 with the reflection principle.
*
* Using the lanczos approximation when computing this ratio of gamma functions
* allows factors to be combined analytically to avoid underflow and overflow
* and produce a more accurate result. The condition x = u + v - w makes it
* possible to cancel the factors in the expression
*
* factor(u) * factor(v) / (factor(w) * factor(x))
*
* by taking one factor and absorbing it into the others. Currently, this
* implementation takes the factor corresponding to the argument with largest
* absolute value and absorbs it into the others.
*
* Since this is only called internally by four_gammas. It is assumed that
* |u| >= |v| and |w| >= |x|.
*/
/* The below implementation may incorrectly return finite results
* at poles of the gamma function. Handle these cases explicitly. */
if ((u == std::trunc(u) && u <= 0) || (v == std::trunc(v) && v <= 0)) {
/* Return nan if numerator has pole. Diverges to +- infinity
* depending on direction so value is undefined. */
return std::numeric_limits<double>::quiet_NaN();
}
if ((w == std::trunc(w) && w <= 0) || (x == std::trunc(x) && x <= 0)) {
// Return 0 if denominator has pole but not numerator.
return 0.0;
}
double result = 1.0;
double ugh, vgh, wgh, xgh, u_prime, v_prime, w_prime, x_prime;
if (u >= 0.5) {
result *= cephes::lanczos_sum_expg_scaled(u);
ugh = u + cephes::lanczos_g - 0.5;
u_prime = u;
} else {
result /= cephes::lanczos_sum_expg_scaled(1 - u) * std::sin(M_PI * u) * M_1_PI;
ugh = 0.5 - u + cephes::lanczos_g;
u_prime = 1 - u;
}
if (v >= 0.5) {
result *= cephes::lanczos_sum_expg_scaled(v);
vgh = v + cephes::lanczos_g - 0.5;
v_prime = v;
} else {
result /= cephes::lanczos_sum_expg_scaled(1 - v) * std::sin(M_PI * v) * M_1_PI;
vgh = 0.5 - v + cephes::lanczos_g;
v_prime = 1 - v;
}
if (w >= 0.5) {
result /= cephes::lanczos_sum_expg_scaled(w);
wgh = w + cephes::lanczos_g - 0.5;
w_prime = w;
} else {
result *= cephes::lanczos_sum_expg_scaled(1 - w) * std::sin(M_PI * w) * M_1_PI;
wgh = 0.5 - w + cephes::lanczos_g;
w_prime = 1 - w;
}
if (x >= 0.5) {
result /= cephes::lanczos_sum_expg_scaled(x);
xgh = x + cephes::lanczos_g - 0.5;
x_prime = x;
} else {
result *= cephes::lanczos_sum_expg_scaled(1 - x) * std::sin(M_PI * x) * M_1_PI;
xgh = 0.5 - x + cephes::lanczos_g;
x_prime = 1 - x;
}
if (std::abs(u) >= std::abs(w)) {
// u has greatest absolute value. Absorb ugh into the others.
if (std::abs((v_prime - u_prime) * (v - 0.5)) < 100 * ugh and v > 100) {
/* Special case where base is close to 1. Condition taken from
* Boost's beta function implementation. */
result *= std::exp((v - 0.5) * std::log1p((v_prime - u_prime) / ugh));
} else {
result *= std::pow(vgh / ugh, v - 0.5);
}
if (std::abs((u_prime - w_prime) * (w - 0.5)) < 100 * wgh and u > 100) {
result *= std::exp((w - 0.5) * std::log1p((u_prime - w_prime) / wgh));
} else {
result *= std::pow(ugh / wgh, w - 0.5);
}
if (std::abs((u_prime - x_prime) * (x - 0.5)) < 100 * xgh and u > 100) {
result *= std::exp((x - 0.5) * std::log1p((u_prime - x_prime) / xgh));
} else {
result *= std::pow(ugh / xgh, x - 0.5);
}
} else {
// w has greatest absolute value. Absorb wgh into the others.
if (std::abs((u_prime - w_prime) * (u - 0.5)) < 100 * wgh and u > 100) {
result *= std::exp((u - 0.5) * std::log1p((u_prime - w_prime) / wgh));
} else {
result *= pow(ugh / wgh, u - 0.5);
}
if (std::abs((v_prime - w_prime) * (v - 0.5)) < 100 * wgh and v > 100) {
result *= std::exp((v - 0.5) * std::log1p((v_prime - w_prime) / wgh));
} else {
result *= std::pow(vgh / wgh, v - 0.5);
}
if (std::abs((w_prime - x_prime) * (x - 0.5)) < 100 * xgh and x > 100) {
result *= std::exp((x - 0.5) * std::log1p((w_prime - x_prime) / xgh));
} else {
result *= std::pow(wgh / xgh, x - 0.5);
}
}
// This exhausts all cases because we assume |u| >= |v| and |w| >= |x|.
return result;
}
XSF_HOST_DEVICE inline double four_gammas(double u, double v, double w, double x) {
double result;
// Without loss of generality, ensure |u| >= |v| and |w| >= |x|.
if (std::abs(v) > std::abs(u)) {
std::swap(u, v);
}
if (std::abs(x) > std::abs(w)) {
std::swap(x, w);
}
/* Direct ratio tends to be more accurate for arguments in this range. Range
* chosen empirically based on the relevant benchmarks in
* scipy/special/_precompute/hyp2f1_data.py */
if (std::abs(u) <= 100 && std::abs(v) <= 100 && std::abs(w) <= 100 && std::abs(x) <= 100) {
result = cephes::Gamma(u) * cephes::Gamma(v) * (cephes::rgamma(w) * cephes::rgamma(x));
if (std::isfinite(result) && result != 0.0) {
return result;
}
}
result = four_gammas_lanczos(u, v, w, x);
if (std::isfinite(result) && result != 0.0) {
return result;
}
// If overflow or underflow, try again with logs.
result = std::exp(cephes::lgam(v) - cephes::lgam(x) + cephes::lgam(u) - cephes::lgam(w));
result *= cephes::gammasgn(u) * cephes::gammasgn(w) * cephes::gammasgn(v) * cephes::gammasgn(x);
return result;
}
class HypergeometricSeriesGenerator {
/* Maclaurin series for hyp2f1.
*
* Series is convergent for |z| < 1 but is only practical for numerical
* computation when |z| < 0.9.
*/
public:
XSF_HOST_DEVICE HypergeometricSeriesGenerator(double a, double b, double c, std::complex<double> z)
: a_(a), b_(b), c_(c), z_(z), term_(1.0), k_(0) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
std::complex<double> output = term_;
term_ = term_ * (a_ + k_) * (b_ + k_) / ((k_ + 1) * (c_ + k_)) * z_;
++k_;
return output;
}
private:
double a_, b_, c_;
std::complex<double> z_, term_;
std::uint64_t k_;
};
class Hyp2f1Transform1Generator {
/* 1 -z transformation of standard series.*/
public:
XSF_HOST_DEVICE Hyp2f1Transform1Generator(double a, double b, double c, std::complex<double> z)
: factor1_(four_gammas(c, c - a - b, c - a, c - b)),
factor2_(four_gammas(c, a + b - c, a, b) * std::pow(1.0 - z, c - a - b)),
generator1_(HypergeometricSeriesGenerator(a, b, a + b - c + 1, 1.0 - z)),
generator2_(HypergeometricSeriesGenerator(c - a, c - b, c - a - b + 1, 1.0 - z)) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
return factor1_ * generator1_() + factor2_ * generator2_();
}
private:
std::complex<double> factor1_, factor2_;
HypergeometricSeriesGenerator generator1_, generator2_;
};
class Hyp2f1Transform1LimitSeriesGenerator {
/* 1 - z transform in limit as c - a - b approaches an integer m. */
public:
XSF_HOST_DEVICE Hyp2f1Transform1LimitSeriesGenerator(double a, double b, double m, std::complex<double> z)
: d1_(xsf::digamma(a)), d2_(xsf::digamma(b)), d3_(xsf::digamma(1 + m)),
d4_(xsf::digamma(1.0)), a_(a), b_(b), m_(m), z_(z), log_1_z_(std::log(1.0 - z)),
factor_(cephes::rgamma(m + 1)), k_(0) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
std::complex<double> term_ = (d1_ + d2_ - d3_ - d4_ + log_1_z_) * factor_;
// Use digamma(x + 1) = digamma(x) + 1/x
d1_ += 1 / (a_ + k_); // d1 = digamma(a + k)
d2_ += 1 / (b_ + k_); // d2 = digamma(b + k)
d3_ += 1 / (1.0 + m_ + k_); // d3 = digamma(1 + m + k)
d4_ += 1 / (1.0 + k_); // d4 = digamma(1 + k)
factor_ *= (a_ + k_) * (b_ + k_) / ((k_ + 1.0) * (m_ + k_ + 1)) * (1.0 - z_);
++k_;
return term_;
}
private:
double d1_, d2_, d3_, d4_, a_, b_, m_;
std::complex<double> z_, log_1_z_, factor_;
int k_;
};
class Hyp2f1Transform2Generator {
/* 1/z transformation of standard series.*/
public:
XSF_HOST_DEVICE Hyp2f1Transform2Generator(double a, double b, double c, std::complex<double> z)
: factor1_(four_gammas(c, b - a, b, c - a) * std::pow(-z, -a)),
factor2_(four_gammas(c, a - b, a, c - b) * std::pow(-z, -b)),
generator1_(HypergeometricSeriesGenerator(a, a - c + 1, a - b + 1, 1.0 / z)),
generator2_(HypergeometricSeriesGenerator(b, b - c + 1, b - a + 1, 1.0 / z)) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
return factor1_ * generator1_() + factor2_ * generator2_();
}
private:
std::complex<double> factor1_, factor2_;
HypergeometricSeriesGenerator generator1_, generator2_;
};
class Hyp2f1Transform2LimitSeriesGenerator {
/* 1/z transform in limit as a - b approaches a non-negative integer m. (Can swap a and b to
* handle the m a negative integer case. */
public:
XSF_HOST_DEVICE Hyp2f1Transform2LimitSeriesGenerator(double a, double b, double c, double m,
std::complex<double> z)
: d1_(xsf::digamma(1.0)), d2_(xsf::digamma(1 + m)), d3_(xsf::digamma(a)),
d4_(xsf::digamma(c - a)), a_(a), b_(b), c_(c), m_(m), z_(z), log_neg_z_(std::log(-z)),
factor_(xsf::cephes::poch(b, m) * xsf::cephes::poch(1 - c + b, m) *
xsf::cephes::rgamma(m + 1)),
k_(0) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
std::complex<double> term = (d1_ + d2_ - d3_ - d4_ + log_neg_z_) * factor_;
// Use digamma(x + 1) = digamma(x) + 1/x
d1_ += 1 / (1.0 + k_); // d1 = digamma(1 + k)
d2_ += 1 / (1.0 + m_ + k_); // d2 = digamma(1 + m + k)
d3_ += 1 / (a_ + k_); // d3 = digamma(a + k)
d4_ -= 1 / (c_ - a_ - k_ - 1); // d4 = digamma(c - a - k)
factor_ *= (b_ + m_ + k_) * (1 - c_ + b_ + m_ + k_) / ((k_ + 1) * (m_ + k_ + 1)) / z_;
++k_;
return term;
}
private:
double d1_, d2_, d3_, d4_, a_, b_, c_, m_;
std::complex<double> z_, log_neg_z_, factor_;
std::uint64_t k_;
};
class Hyp2f1Transform2LimitSeriesCminusAIntGenerator {
/* 1/z transform in limit as a - b approaches a non-negative integer m, and c - a approaches
* a positive integer n. */
public:
XSF_HOST_DEVICE Hyp2f1Transform2LimitSeriesCminusAIntGenerator(double a, double b, double c, double m,
double n, std::complex<double> z)
: d1_(xsf::digamma(1.0)), d2_(xsf::digamma(1 + m)), d3_(xsf::digamma(a)),
d4_(xsf::digamma(n)), a_(a), b_(b), c_(c), m_(m), n_(n), z_(z), log_neg_z_(std::log(-z)),
factor_(xsf::cephes::poch(b, m) * xsf::cephes::poch(1 - c + b, m) *
xsf::cephes::rgamma(m + 1)),
k_(0) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
std::complex<double> term;
if (k_ < n_) {
term = (d1_ + d2_ - d3_ - d4_ + log_neg_z_) * factor_;
// Use digamma(x + 1) = digamma(x) + 1/x
d1_ += 1 / (1.0 + k_); // d1 = digamma(1 + k)
d2_ += 1 / (1 + m_ + k_); // d2 = digamma(1 + m + k)
d3_ += 1 / (a_ + k_); // d3 = digamma(a + k)
d4_ -= 1 / (n_ - k_ - 1); // d4 = digamma(c - a - k)
factor_ *= (b_ + m_ + k_) * (1 - c_ + b_ + m_ + k_) / ((k_ + 1) * (m_ + k_ + 1)) / z_;
++k_;
return term;
}
if (k_ == n_) {
/* When c - a approaches a positive integer and k_ >= c - a = n then
* poch(1 - c + b + m + k) = poch(1 - c + a + k) = approaches zero and
* digamma(c - a - k) approaches a pole. However we can use the limit
* digamma(-n + epsilon) / gamma(-n + epsilon) -> (-1)**(n + 1) * (n+1)! as epsilon -> 0
* to continue the series.
*
* poch(1 - c + b, m + k) = gamma(1 - c + b + m + k)/gamma(1 - c + b)
*
* If a - b is an integer and c - a is an integer, then a and b must both be integers, so assume
* a and b are integers and take the limit as c approaches an integer.
*
* gamma(1 - c + epsilon + a + k)/gamma(1 - c - epsilon + b) =
* (gamma(c + epsilon - b) / gamma(c + epsilon - a - k)) *
* (sin(pi * (c + epsilon - b)) / sin(pi * (c + epsilon - a - k))) (reflection principle)
*
* In the limit as epsilon goes to zero, the ratio of sines will approach
* (-1)**(a - b + k) = (-1)**(m + k)
*
* We may then replace
*
* poch(1 - c - epsilon + b, m + k)*digamma(c + epsilon - a - k)
*
* with
*
* (-1)**(a - b + k)*gamma(c + epsilon - b) * digamma(c + epsilon - a - k) / gamma(c + epsilon - a - k)
*
* and taking the limit epsilon -> 0 gives
*
* (-1)**(a - b + k) * gamma(c - b) * (-1)**(k + a - c + 1)(k + a - c)!
* = (-1)**(c - b - 1)*Gamma(k + a - c + 1)
*/
factor_ = std::pow(-1, m_ + n_) * xsf::binom(c_ - 1, b_ - 1) *
xsf::cephes::poch(c_ - a_ + 1, m_ - 1) / std::pow(z_, static_cast<double>(k_));
}
term = factor_;
factor_ *= (b_ + m_ + k_) * (k_ + a_ - c_ + 1) / ((k_ + 1) * (m_ + k_ + 1)) / z_;
++k_;
return term;
}
private:
double d1_, d2_, d3_, d4_, a_, b_, c_, m_, n_;
std::complex<double> z_, log_neg_z_, factor_;
std::uint64_t k_;
};
class Hyp2f1Transform2LimitFinitePartGenerator {
/* Initial finite sum in limit as a - b approaches a non-negative integer m. The limiting series
* for the 1 - z transform also has an initial finite sum, but it is a standard hypergeometric
* series. */
public:
XSF_HOST_DEVICE Hyp2f1Transform2LimitFinitePartGenerator(double b, double c, double m,
std::complex<double> z)
: b_(b), c_(c), m_(m), z_(z), term_(cephes::Gamma(m) * cephes::rgamma(c - b)), k_(0) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
std::complex<double> output = term_;
term_ = term_ * (b_ + k_) * (c_ - b_ - k_ - 1) / ((k_ + 1) * (m_ - k_ - 1)) / z_;
++k_;
return output;
}
private:
double b_, c_, m_;
std::complex<double> z_, term_;
std::uint64_t k_;
};
class LopezTemmeSeriesGenerator {
/* Lopez-Temme Series for Gaussian hypergeometric function [4].
*
* Converges for all z with real(z) < 1, including in the regions surrounding
* the points exp(+- i*pi/3) that are not covered by any of the standard
* transformations.
*/
public:
XSF_HOST_DEVICE LopezTemmeSeriesGenerator(double a, double b, double c, std::complex<double> z)
: n_(0), a_(a), b_(b), c_(c), phi_previous_(1.0), phi_(1 - 2 * b / c), z_(z), Z_(a * z / (z - 2.0)) {}
XSF_HOST_DEVICE std::complex<double> operator()() {
if (n_ == 0) {
++n_;
return 1.0;
}
if (n_ > 1) { // Update phi and Z for n>=2
double new_phi = ((n_ - 1) * phi_previous_ - (2.0 * b_ - c_) * phi_) / (c_ + (n_ - 1));
phi_previous_ = phi_;
phi_ = new_phi;
Z_ = Z_ * z_ / (z_ - 2.0) * ((a_ + (n_ - 1)) / n_);
}
++n_;
return Z_ * phi_;
}
private:
std::uint64_t n_;
double a_, b_, c_, phi_previous_, phi_;
std::complex<double> z_, Z_;
};
XSF_HOST_DEVICE std::complex<double> hyp2f1_transform1_limiting_case(double a, double b, double c, double m,
std::complex<double> z) {
/* 1 - z transform in limiting case where c - a - b approaches an integer m. */
std::complex<double> result = 0.0;
if (m >= 0) {
if (m != 0) {
auto series_generator = HypergeometricSeriesGenerator(a, b, 1 - m, 1.0 - z);
result += four_gammas(m, c, a + m, b + m) * series_eval_fixed_length(series_generator,
std::complex<double>{0.0, 0.0},
static_cast<std::uint64_t>(m));
}
std::complex<double> prefactor = std::pow(-1.0, m + 1) * xsf::cephes::Gamma(c) /
(xsf::cephes::Gamma(a) * xsf::cephes::Gamma(b)) *
std::pow(1.0 - z, m);
auto series_generator = Hyp2f1Transform1LimitSeriesGenerator(a + m, b + m, m, z);
result += prefactor * series_eval(series_generator, std::complex<double>{0.0, 0.0}, hyp2f1_EPS,
hyp2f1_MAXITER, "hyp2f1");
return result;
} else {
result = four_gammas(-m, c, a, b) * std::pow(1.0 - z, m);
auto series_generator1 = HypergeometricSeriesGenerator(a + m, b + m, 1 + m, 1.0 - z);
result *= series_eval_fixed_length(series_generator1, std::complex<double>{0.0, 0.0},
static_cast<std::uint64_t>(-m));
double prefactor = std::pow(-1.0, m + 1) * xsf::cephes::Gamma(c) *
(xsf::cephes::rgamma(a + m) * xsf::cephes::rgamma(b + m));
auto series_generator2 = Hyp2f1Transform1LimitSeriesGenerator(a, b, -m, z);
result += prefactor * series_eval(series_generator2, std::complex<double>{0.0, 0.0}, hyp2f1_EPS,
hyp2f1_MAXITER, "hyp2f1");
return result;
}
}
XSF_HOST_DEVICE std::complex<double> hyp2f1_transform2_limiting_case(double a, double b, double c, double m,
std::complex<double> z) {
/* 1 / z transform in limiting case where a - b approaches a non-negative integer m. Negative integer case
* can be handled by swapping a and b. */
auto series_generator1 = Hyp2f1Transform2LimitFinitePartGenerator(b, c, m, z);
std::complex<double> result = cephes::Gamma(c) * cephes::rgamma(a) * std::pow(-z, -b);
result *=
series_eval_fixed_length(series_generator1, std::complex<double>{0.0, 0.0}, static_cast<std::uint64_t>(m));
std::complex<double> prefactor = cephes::Gamma(c) * (cephes::rgamma(a) * cephes::rgamma(c - b) * std::pow(-z, -a));
double n = c - a;
if (abs(n - std::round(n)) < hyp2f1_EPS) {
auto series_generator2 = Hyp2f1Transform2LimitSeriesCminusAIntGenerator(a, b, c, m, n, z);
result += prefactor * series_eval(series_generator2, std::complex<double>{0.0, 0.0}, hyp2f1_EPS,
hyp2f1_MAXITER, "hyp2f1");
return result;
}
auto series_generator2 = Hyp2f1Transform2LimitSeriesGenerator(a, b, c, m, z);
result += prefactor *
series_eval(series_generator2, std::complex<double>{0.0, 0.0}, hyp2f1_EPS, hyp2f1_MAXITER, "hyp2f1");
return result;
}
} // namespace detail
XSF_HOST_DEVICE inline std::complex<double> hyp2f1(double a, double b, double c, std::complex<double> z) {
/* Special Cases
* -----------------------------------------------------------------------
* Takes constant value 1 when a = 0 or b = 0, even if c is a non-positive
* integer. This follows mpmath. */
if (a == 0 || b == 0) {
return 1.0;
}
double z_abs = std::abs(z);
// Equals 1 when z i 0, unless c is 0.
if (z_abs == 0) {
if (c != 0) {
return 1.0;
} else {
// Returning real part NAN and imaginary part 0 follows mpmath.
return std::complex<double>{std::numeric_limits<double>::quiet_NaN(), 0};
}
}
bool a_neg_int = a == std::trunc(a) && a < 0;
bool b_neg_int = b == std::trunc(b) && b < 0;
bool c_non_pos_int = c == std::trunc(c) and c <= 0;
/* Diverges when c is a non-positive integer unless a is an integer with
* c <= a <= 0 or b is an integer with c <= b <= 0, (or z equals 0 with
* c != 0) Cases z = 0, a = 0, or b = 0 have already been handled. We follow
* mpmath in handling the degenerate cases where any of a, b, c are
* non-positive integers. See [3] for a treatment of degenerate cases. */
if (c_non_pos_int && !((a_neg_int && c <= a && a < 0) || (b_neg_int && c <= b && b < 0))) {
return std::complex<double>{std::numeric_limits<double>::infinity(), 0};
}
/* Reduces to a polynomial when a or b is a negative integer.
* If a and b are both negative integers, we take care to terminate
* the series at a or b of smaller magnitude. This is to ensure proper
* handling of situations like a < c < b <= 0, a, b, c all non-positive
* integers, where terminating at a would lead to a term of the form 0 / 0. */
std::uint64_t max_degree;
if (a_neg_int || b_neg_int) {
if (a_neg_int && b_neg_int) {
max_degree = a > b ? std::abs(a) : std::abs(b);
} else if (a_neg_int) {
max_degree = std::abs(a);
} else {
max_degree = std::abs(b);
}
if (max_degree <= UINT64_MAX) {
auto series_generator = detail::HypergeometricSeriesGenerator(a, b, c, z);
return detail::series_eval_fixed_length(series_generator, std::complex<double>{0.0, 0.0}, max_degree + 1);
} else {
set_error("hyp2f1", SF_ERROR_NO_RESULT, NULL);
return std::complex<double>{std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN()};
}
}
// Kummer's Theorem for z = -1; c = 1 + a - b (DLMF 15.4.26)
if (std::abs(z + 1.0) < detail::hyp2f1_EPS && std::abs(1 + a - b - c) < detail::hyp2f1_EPS && !c_non_pos_int) {
return detail::four_gammas(a - b + 1, 0.5 * a + 1, a + 1, 0.5 * a - b + 1);
}
std::complex<double> result;
bool c_minus_a_neg_int = c - a == std::trunc(c - a) && c - a < 0;
bool c_minus_b_neg_int = c - b == std::trunc(c - b) && c - b < 0;
/* If one of c - a or c - b is a negative integer, reduces to evaluating
* a polynomial through an Euler hypergeometric transformation.
* (DLMF 15.8.1) */
if (c_minus_a_neg_int || c_minus_b_neg_int) {
max_degree = c_minus_b_neg_int ? std::abs(c - b) : std::abs(c - a);
if (max_degree <= UINT64_MAX) {
result = std::pow(1.0 - z, c - a - b);
auto series_generator = detail::HypergeometricSeriesGenerator(c - a, c - b, c, z);
result *=
detail::series_eval_fixed_length(series_generator, std::complex<double>{0.0, 0.0}, max_degree + 2);
return result;
} else {
set_error("hyp2f1", SF_ERROR_NO_RESULT, NULL);
return std::complex<double>{std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN()};
}
}
/* Diverges as real(z) -> 1 when c <= a + b.
* Todo: Actually check for overflow instead of using a fixed tolerance for
* all parameter combinations like in the Fortran original. */
if (std::abs(1 - z.real()) < detail::hyp2f1_EPS && z.imag() == 0 && c - a - b <= 0 && !c_non_pos_int) {
return std::complex<double>{std::numeric_limits<double>::infinity(), 0};
}
// Gauss's Summation Theorem for z = 1; c - a - b > 0 (DLMF 15.4.20).
if (z == 1.0 && c - a - b > 0 && !c_non_pos_int) {
return detail::four_gammas(c, c - a - b, c - a, c - b);
}
/* |z| < 0, z.real() >= 0. Use the Maclaurin Series.
* -----------------------------------------------------------------------
* Apply Euler Hypergeometric Transformation (DLMF 15.8.1) to reduce
* size of a and b if possible. We follow Zhang and Jin's
* implementation [1] although there is very likely a better heuristic
* to determine when this transformation should be applied. As it
* stands, this hurts precision in some cases. */
if (z_abs < 0.9 && z.real() >= 0) {
if (c - a < a && c - b < b) {
result = std::pow(1.0 - z, c - a - b);
auto series_generator = detail::HypergeometricSeriesGenerator(c - a, c - b, c, z);
result *= detail::series_eval(series_generator, std::complex<double>{0.0, 0.0}, detail::hyp2f1_EPS,
detail::hyp2f1_MAXITER, "hyp2f1");
return result;
}
auto series_generator = detail::HypergeometricSeriesGenerator(a, b, c, z);
return detail::series_eval(series_generator, std::complex<double>{0.0, 0.0}, detail::hyp2f1_EPS,
detail::hyp2f1_MAXITER, "hyp2f1");
}
/* Points near exp(iπ/3), exp(-iπ/3) not handled by any of the standard
* transformations. Use series of López and Temme [5]. These regions
* were not correctly handled by Zhang and Jin's implementation.
* -------------------------------------------------------------------------*/
if (0.9 <= z_abs && z_abs < 1.1 && std::abs(1.0 - z) >= 0.9 && z.real() >= 0) {
/* This condition for applying Euler Transformation (DLMF 15.8.1)
* was determined empirically to work better for this case than that
* used in Zhang and Jin's implementation for |z| < 0.9,
* real(z) >= 0. */
if ((c - a <= a && c - b < b) || (c - a < a && c - b <= b)) {
auto series_generator = detail::LopezTemmeSeriesGenerator(c - a, c - b, c, z);
result = std::pow(1.0 - 0.5 * z, a - c); // Lopez-Temme prefactor
result *= detail::series_eval(series_generator, std::complex<double>{0.0, 0.0}, detail::hyp2f1_EPS,
detail::hyp2f1_MAXITER, "hyp2f1");
return std::pow(1.0 - z, c - a - b) * result; // Euler transform prefactor.
}
auto series_generator = detail::LopezTemmeSeriesGenerator(a, b, c, z);
result = detail::series_eval(series_generator, std::complex<double>{0.0, 0.0}, detail::hyp2f1_EPS,
detail::hyp2f1_MAXITER, "hyp2f1");
return std::pow(1.0 - 0.5 * z, -a) * result; // Lopez-Temme prefactor.
}
/* z/(z - 1) transformation (DLMF 15.8.1). Avoids cancellation issues that
* occur with Maclaurin series for real(z) < 0.
* -------------------------------------------------------------------------*/
if (z_abs < 1.1 && z.real() < 0) {
if (0 < b && b < a && a < c) {
std::swap(a, b);
}
auto series_generator = detail::HypergeometricSeriesGenerator(a, c - b, c, z / (z - 1.0));
return std::pow(1.0 - z, -a) * detail::series_eval(series_generator, std::complex<double>{0.0, 0.0},
detail::hyp2f1_EPS, detail::hyp2f1_MAXITER, "hyp2f1");
}
/* 1 - z transformation (DLMF 15.8.4). */
if (0.9 <= z_abs && z_abs < 1.1) {
if (std::abs(c - a - b - std::round(c - a - b)) < detail::hyp2f1_EPS) {
// Removable singularity when c - a - b is an integer. Need to use limiting formula.
double m = std::round(c - a - b);
return detail::hyp2f1_transform1_limiting_case(a, b, c, m, z);
}
auto series_generator = detail::Hyp2f1Transform1Generator(a, b, c, z);
return detail::series_eval(series_generator, std::complex<double>{0.0, 0.0}, detail::hyp2f1_EPS,
detail::hyp2f1_MAXITER, "hyp2f1");
}
/* 1/z transformation (DLMF 15.8.2). */
if (std::abs(a - b - std::round(a - b)) < detail::hyp2f1_EPS) {
if (b > a) {
std::swap(a, b);
}
double m = std::round(a - b);
return detail::hyp2f1_transform2_limiting_case(a, b, c, m, z);
}
auto series_generator = detail::Hyp2f1Transform2Generator(a, b, c, z);
return detail::series_eval(series_generator, std::complex<double>{0.0, 0.0}, detail::hyp2f1_EPS,
detail::hyp2f1_MAXITER, "hyp2f1");
}
XSF_HOST_DEVICE inline std::complex<float> hyp2f1(float a, float b, float c, std::complex<float> x) {
return static_cast<std::complex<float>>(hyp2f1(static_cast<double>(a), static_cast<double>(b),
static_cast<double>(c), static_cast<std::complex<double>>(x)));
}
XSF_HOST_DEVICE inline double hyp2f1(double a, double b, double c, double x) { return cephes::hyp2f1(a, b, c, x); }
XSF_HOST_DEVICE inline float hyp2f1(float a, float b, float c, float x) {
return hyp2f1(static_cast<double>(a), static_cast<double>(b), static_cast<double>(c), static_cast<double>(x));
}
} // namespace xsf
|