File size: 170,393 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 |
import math
import warnings
import threading
from collections import namedtuple
import numpy as np
from numpy import (isscalar, r_, log, around, unique, asarray, zeros,
arange, sort, amin, amax, sqrt, array,
pi, exp, ravel, count_nonzero)
from scipy import optimize, special, interpolate, stats
from scipy._lib._bunch import _make_tuple_bunch
from scipy._lib._util import _rename_parameter, _contains_nan, _get_nan
from scipy._lib._array_api import (
array_namespace,
xp_size,
xp_moveaxis_to_end,
xp_vector_norm,
)
from ._ansari_swilk_statistics import gscale, swilk
from . import _stats_py, _wilcoxon
from ._fit import FitResult
from ._stats_py import (find_repeats, _get_pvalue, SignificanceResult, # noqa:F401
_SimpleNormal, _SimpleChi2)
from .contingency import chi2_contingency
from . import distributions
from ._distn_infrastructure import rv_generic
from ._axis_nan_policy import _axis_nan_policy_factory, _broadcast_arrays
__all__ = ['mvsdist',
'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot',
'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot',
'shapiro', 'anderson', 'ansari', 'bartlett', 'levene',
'fligner', 'mood', 'wilcoxon', 'median_test',
'circmean', 'circvar', 'circstd', 'anderson_ksamp',
'yeojohnson_llf', 'yeojohnson', 'yeojohnson_normmax',
'yeojohnson_normplot', 'directional_stats',
'false_discovery_control'
]
Mean = namedtuple('Mean', ('statistic', 'minmax'))
Variance = namedtuple('Variance', ('statistic', 'minmax'))
Std_dev = namedtuple('Std_dev', ('statistic', 'minmax'))
def bayes_mvs(data, alpha=0.90):
r"""
Bayesian confidence intervals for the mean, var, and std.
Parameters
----------
data : array_like
Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`.
Requires 2 or more data points.
alpha : float, optional
Probability that the returned confidence interval contains
the true parameter.
Returns
-------
mean_cntr, var_cntr, std_cntr : tuple
The three results are for the mean, variance and standard deviation,
respectively. Each result is a tuple of the form::
(center, (lower, upper))
with ``center`` the mean of the conditional pdf of the value given the
data, and ``(lower, upper)`` a confidence interval, centered on the
median, containing the estimate to a probability ``alpha``.
See Also
--------
mvsdist
Notes
-----
Each tuple of mean, variance, and standard deviation estimates represent
the (center, (lower, upper)) with center the mean of the conditional pdf
of the value given the data and (lower, upper) is a confidence interval
centered on the median, containing the estimate to a probability
``alpha``.
Converts data to 1-D and assumes all data has the same mean and variance.
Uses Jeffrey's prior for variance and std.
Equivalent to ``tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))``
References
----------
T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
2006.
Examples
--------
First a basic example to demonstrate the outputs:
>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.bayes_mvs(data)
>>> mean
Mean(statistic=9.0, minmax=(7.103650222612533, 10.896349777387467))
>>> var
Variance(statistic=10.0, minmax=(3.176724206, 24.45910382))
>>> std
Std_dev(statistic=2.9724954732045084,
minmax=(1.7823367265645143, 4.945614605014631))
Now we generate some normally distributed random data, and get estimates of
mean and standard deviation with 95% confidence intervals for those
estimates:
>>> n_samples = 100000
>>> data = stats.norm.rvs(size=n_samples)
>>> res_mean, res_var, res_std = stats.bayes_mvs(data, alpha=0.95)
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.hist(data, bins=100, density=True, label='Histogram of data')
>>> ax.vlines(res_mean.statistic, 0, 0.5, colors='r', label='Estimated mean')
>>> ax.axvspan(res_mean.minmax[0],res_mean.minmax[1], facecolor='r',
... alpha=0.2, label=r'Estimated mean (95% limits)')
>>> ax.vlines(res_std.statistic, 0, 0.5, colors='g', label='Estimated scale')
>>> ax.axvspan(res_std.minmax[0],res_std.minmax[1], facecolor='g', alpha=0.2,
... label=r'Estimated scale (95% limits)')
>>> ax.legend(fontsize=10)
>>> ax.set_xlim([-4, 4])
>>> ax.set_ylim([0, 0.5])
>>> plt.show()
"""
m, v, s = mvsdist(data)
if alpha >= 1 or alpha <= 0:
raise ValueError(f"0 < alpha < 1 is required, but {alpha=} was given.")
m_res = Mean(m.mean(), m.interval(alpha))
v_res = Variance(v.mean(), v.interval(alpha))
s_res = Std_dev(s.mean(), s.interval(alpha))
return m_res, v_res, s_res
def mvsdist(data):
"""
'Frozen' distributions for mean, variance, and standard deviation of data.
Parameters
----------
data : array_like
Input array. Converted to 1-D using ravel.
Requires 2 or more data-points.
Returns
-------
mdist : "frozen" distribution object
Distribution object representing the mean of the data.
vdist : "frozen" distribution object
Distribution object representing the variance of the data.
sdist : "frozen" distribution object
Distribution object representing the standard deviation of the data.
See Also
--------
bayes_mvs
Notes
-----
The return values from ``bayes_mvs(data)`` is equivalent to
``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``.
In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)``
on the three distribution objects returned from this function will give
the same results that are returned from `bayes_mvs`.
References
----------
T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
2006.
Examples
--------
>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.mvsdist(data)
We now have frozen distribution objects "mean", "var" and "std" that we can
examine:
>>> mean.mean()
9.0
>>> mean.interval(0.95)
(6.6120585482655692, 11.387941451734431)
>>> mean.std()
1.1952286093343936
"""
x = ravel(data)
n = len(x)
if n < 2:
raise ValueError("Need at least 2 data-points.")
xbar = x.mean()
C = x.var()
if n > 1000: # gaussian approximations for large n
mdist = distributions.norm(loc=xbar, scale=math.sqrt(C / n))
sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C / (2. * n)))
vdist = distributions.norm(loc=C, scale=math.sqrt(2.0 / n) * C)
else:
nm1 = n - 1
fac = n * C / 2.
val = nm1 / 2.
mdist = distributions.t(nm1, loc=xbar, scale=math.sqrt(C / nm1))
sdist = distributions.gengamma(val, -2, scale=math.sqrt(fac))
vdist = distributions.invgamma(val, scale=fac)
return mdist, vdist, sdist
@_axis_nan_policy_factory(
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1, default_axis=None
)
def kstat(data, n=2, *, axis=None):
r"""
Return the `n` th k-statistic ( ``1<=n<=4`` so far).
The `n` th k-statistic ``k_n`` is the unique symmetric unbiased estimator of the
`n` th cumulant :math:`\kappa_n` [1]_ [2]_.
Parameters
----------
data : array_like
Input array.
n : int, {1, 2, 3, 4}, optional
Default is equal to 2.
axis : int or None, default: None
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear
in a corresponding element of the output. If ``None``, the input will
be raveled before computing the statistic.
Returns
-------
kstat : float
The `n` th k-statistic.
See Also
--------
kstatvar : Returns an unbiased estimator of the variance of the k-statistic
moment : Returns the n-th central moment about the mean for a sample.
Notes
-----
For a sample size :math:`n`, the first few k-statistics are given by
.. math::
k_1 &= \frac{S_1}{n}, \\
k_2 &= \frac{nS_2 - S_1^2}{n(n-1)}, \\
k_3 &= \frac{2S_1^3 - 3nS_1S_2 + n^2S_3}{n(n-1)(n-2)}, \\
k_4 &= \frac{-6S_1^4 + 12nS_1^2S_2 - 3n(n-1)S_2^2 - 4n(n+1)S_1S_3
+ n^2(n+1)S_4}{n (n-1)(n-2)(n-3)},
where
.. math::
S_r \equiv \sum_{i=1}^n X_i^r,
and :math:`X_i` is the :math:`i` th data point.
References
----------
.. [1] http://mathworld.wolfram.com/k-Statistic.html
.. [2] http://mathworld.wolfram.com/Cumulant.html
Examples
--------
>>> from scipy import stats
>>> from numpy.random import default_rng
>>> rng = default_rng()
As sample size increases, `n`-th moment and `n`-th k-statistic converge to the
same number (although they aren't identical). In the case of the normal
distribution, they converge to zero.
>>> for i in range(2,8):
... x = rng.normal(size=10**i)
... m, k = stats.moment(x, 3), stats.kstat(x, 3)
... print(f"{i=}: {m=:.3g}, {k=:.3g}, {(m-k)=:.3g}")
i=2: m=-0.631, k=-0.651, (m-k)=0.0194 # random
i=3: m=0.0282, k=0.0283, (m-k)=-8.49e-05
i=4: m=-0.0454, k=-0.0454, (m-k)=1.36e-05
i=6: m=7.53e-05, k=7.53e-05, (m-k)=-2.26e-09
i=7: m=0.00166, k=0.00166, (m-k)=-4.99e-09
i=8: m=-2.88e-06 k=-2.88e-06, (m-k)=8.63e-13
"""
xp = array_namespace(data)
data = xp.asarray(data)
if n > 4 or n < 1:
raise ValueError("k-statistics only supported for 1<=n<=4")
n = int(n)
if axis is None:
data = xp.reshape(data, (-1,))
axis = 0
N = data.shape[axis]
S = [None] + [xp.sum(data**k, axis=axis) for k in range(1, n + 1)]
if n == 1:
return S[1] * 1.0/N
elif n == 2:
return (N*S[2] - S[1]**2.0) / (N*(N - 1.0))
elif n == 3:
return (2*S[1]**3 - 3*N*S[1]*S[2] + N*N*S[3]) / (N*(N - 1.0)*(N - 2.0))
elif n == 4:
return ((-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 -
4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) /
(N*(N-1.0)*(N-2.0)*(N-3.0)))
else:
raise ValueError("Should not be here.")
@_axis_nan_policy_factory(
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1, default_axis=None
)
def kstatvar(data, n=2, *, axis=None):
r"""Return an unbiased estimator of the variance of the k-statistic.
See `kstat` and [1]_ for more details about the k-statistic.
Parameters
----------
data : array_like
Input array.
n : int, {1, 2}, optional
Default is equal to 2.
axis : int or None, default: None
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear
in a corresponding element of the output. If ``None``, the input will
be raveled before computing the statistic.
Returns
-------
kstatvar : float
The `n` th k-statistic variance.
See Also
--------
kstat : Returns the n-th k-statistic.
moment : Returns the n-th central moment about the mean for a sample.
Notes
-----
Unbiased estimators of the variances of the first two k-statistics are given by
.. math::
\mathrm{var}(k_1) &= \frac{k_2}{n}, \\
\mathrm{var}(k_2) &= \frac{2k_2^2n + (n-1)k_4}{n(n - 1)}.
References
----------
.. [1] http://mathworld.wolfram.com/k-Statistic.html
""" # noqa: E501
xp = array_namespace(data)
data = xp.asarray(data)
if axis is None:
data = xp.reshape(data, (-1,))
axis = 0
N = data.shape[axis]
if n == 1:
return kstat(data, n=2, axis=axis, _no_deco=True) * 1.0/N
elif n == 2:
k2 = kstat(data, n=2, axis=axis, _no_deco=True)
k4 = kstat(data, n=4, axis=axis, _no_deco=True)
return (2*N*k2**2 + (N-1)*k4) / (N*(N+1))
else:
raise ValueError("Only n=1 or n=2 supported.")
def _calc_uniform_order_statistic_medians(n):
"""Approximations of uniform order statistic medians.
Parameters
----------
n : int
Sample size.
Returns
-------
v : 1d float array
Approximations of the order statistic medians.
References
----------
.. [1] James J. Filliben, "The Probability Plot Correlation Coefficient
Test for Normality", Technometrics, Vol. 17, pp. 111-117, 1975.
Examples
--------
Order statistics of the uniform distribution on the unit interval
are marginally distributed according to beta distributions.
The expectations of these order statistic are evenly spaced across
the interval, but the distributions are skewed in a way that
pushes the medians slightly towards the endpoints of the unit interval:
>>> import numpy as np
>>> n = 4
>>> k = np.arange(1, n+1)
>>> from scipy.stats import beta
>>> a = k
>>> b = n-k+1
>>> beta.mean(a, b)
array([0.2, 0.4, 0.6, 0.8])
>>> beta.median(a, b)
array([0.15910358, 0.38572757, 0.61427243, 0.84089642])
The Filliben approximation uses the exact medians of the smallest
and greatest order statistics, and the remaining medians are approximated
by points spread evenly across a sub-interval of the unit interval:
>>> from scipy.stats._morestats import _calc_uniform_order_statistic_medians
>>> _calc_uniform_order_statistic_medians(n)
array([0.15910358, 0.38545246, 0.61454754, 0.84089642])
This plot shows the skewed distributions of the order statistics
of a sample of size four from a uniform distribution on the unit interval:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0.0, 1.0, num=50, endpoint=True)
>>> pdfs = [beta.pdf(x, a[i], b[i]) for i in range(n)]
>>> plt.figure()
>>> plt.plot(x, pdfs[0], x, pdfs[1], x, pdfs[2], x, pdfs[3])
"""
v = np.empty(n, dtype=np.float64)
v[-1] = 0.5**(1.0 / n)
v[0] = 1 - v[-1]
i = np.arange(2, n)
v[1:-1] = (i - 0.3175) / (n + 0.365)
return v
def _parse_dist_kw(dist, enforce_subclass=True):
"""Parse `dist` keyword.
Parameters
----------
dist : str or stats.distributions instance.
Several functions take `dist` as a keyword, hence this utility
function.
enforce_subclass : bool, optional
If True (default), `dist` needs to be a
`_distn_infrastructure.rv_generic` instance.
It can sometimes be useful to set this keyword to False, if a function
wants to accept objects that just look somewhat like such an instance
(for example, they have a ``ppf`` method).
"""
if isinstance(dist, rv_generic):
pass
elif isinstance(dist, str):
try:
dist = getattr(distributions, dist)
except AttributeError as e:
raise ValueError(f"{dist} is not a valid distribution name") from e
elif enforce_subclass:
msg = ("`dist` should be a stats.distributions instance or a string "
"with the name of such a distribution.")
raise ValueError(msg)
return dist
def _add_axis_labels_title(plot, xlabel, ylabel, title):
"""Helper function to add axes labels and a title to stats plots."""
try:
if hasattr(plot, 'set_title'):
# Matplotlib Axes instance or something that looks like it
plot.set_title(title)
plot.set_xlabel(xlabel)
plot.set_ylabel(ylabel)
else:
# matplotlib.pyplot module
plot.title(title)
plot.xlabel(xlabel)
plot.ylabel(ylabel)
except Exception:
# Not an MPL object or something that looks (enough) like it.
# Don't crash on adding labels or title
pass
def probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False):
"""
Calculate quantiles for a probability plot, and optionally show the plot.
Generates a probability plot of sample data against the quantiles of a
specified theoretical distribution (the normal distribution by default).
`probplot` optionally calculates a best-fit line for the data and plots the
results using Matplotlib or a given plot function.
Parameters
----------
x : array_like
Sample/response data from which `probplot` creates the plot.
sparams : tuple, optional
Distribution-specific shape parameters (shape parameters plus location
and scale).
dist : str or stats.distributions instance, optional
Distribution or distribution function name. The default is 'norm' for a
normal probability plot. Objects that look enough like a
stats.distributions instance (i.e. they have a ``ppf`` method) are also
accepted.
fit : bool, optional
Fit a least-squares regression (best-fit) line to the sample data if
True (default).
plot : object, optional
If given, plots the quantiles.
If given and `fit` is True, also plots the least squares fit.
`plot` is an object that has to have methods "plot" and "text".
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
or a custom object with the same methods.
Default is None, which means that no plot is created.
rvalue : bool, optional
If `plot` is provided and `fit` is True, setting `rvalue` to True
includes the coefficient of determination on the plot.
Default is False.
Returns
-------
(osm, osr) : tuple of ndarrays
Tuple of theoretical quantiles (osm, or order statistic medians) and
ordered responses (osr). `osr` is simply sorted input `x`.
For details on how `osm` is calculated see the Notes section.
(slope, intercept, r) : tuple of floats, optional
Tuple containing the result of the least-squares fit, if that is
performed by `probplot`. `r` is the square root of the coefficient of
determination. If ``fit=False`` and ``plot=None``, this tuple is not
returned.
Notes
-----
Even if `plot` is given, the figure is not shown or saved by `probplot`;
``plt.show()`` or ``plt.savefig('figname.png')`` should be used after
calling `probplot`.
`probplot` generates a probability plot, which should not be confused with
a Q-Q or a P-P plot. Statsmodels has more extensive functionality of this
type, see ``statsmodels.api.ProbPlot``.
The formula used for the theoretical quantiles (horizontal axis of the
probability plot) is Filliben's estimate::
quantiles = dist.ppf(val), for
0.5**(1/n), for i = n
val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1
1 - 0.5**(1/n), for i = 1
where ``i`` indicates the i-th ordered value and ``n`` is the total number
of values.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> nsample = 100
>>> rng = np.random.default_rng()
A t distribution with small degrees of freedom:
>>> ax1 = plt.subplot(221)
>>> x = stats.t.rvs(3, size=nsample, random_state=rng)
>>> res = stats.probplot(x, plot=plt)
A t distribution with larger degrees of freedom:
>>> ax2 = plt.subplot(222)
>>> x = stats.t.rvs(25, size=nsample, random_state=rng)
>>> res = stats.probplot(x, plot=plt)
A mixture of two normal distributions with broadcasting:
>>> ax3 = plt.subplot(223)
>>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
... size=(nsample//2,2), random_state=rng).ravel()
>>> res = stats.probplot(x, plot=plt)
A standard normal distribution:
>>> ax4 = plt.subplot(224)
>>> x = stats.norm.rvs(loc=0, scale=1, size=nsample, random_state=rng)
>>> res = stats.probplot(x, plot=plt)
Produce a new figure with a loggamma distribution, using the ``dist`` and
``sparams`` keywords:
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> x = stats.loggamma.rvs(c=2.5, size=500, random_state=rng)
>>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
>>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")
Show the results with Matplotlib:
>>> plt.show()
"""
x = np.asarray(x)
if x.size == 0:
if fit:
return (x, x), (np.nan, np.nan, 0.0)
else:
return x, x
osm_uniform = _calc_uniform_order_statistic_medians(len(x))
dist = _parse_dist_kw(dist, enforce_subclass=False)
if sparams is None:
sparams = ()
if isscalar(sparams):
sparams = (sparams,)
if not isinstance(sparams, tuple):
sparams = tuple(sparams)
osm = dist.ppf(osm_uniform, *sparams)
osr = sort(x)
if fit:
# perform a linear least squares fit.
slope, intercept, r, prob, _ = _stats_py.linregress(osm, osr)
if plot is not None:
plot.plot(osm, osr, 'bo')
if fit:
plot.plot(osm, slope*osm + intercept, 'r-')
_add_axis_labels_title(plot, xlabel='Theoretical quantiles',
ylabel='Ordered Values',
title='Probability Plot')
# Add R^2 value to the plot as text
if fit and rvalue:
xmin = amin(osm)
xmax = amax(osm)
ymin = amin(x)
ymax = amax(x)
posx = xmin + 0.70 * (xmax - xmin)
posy = ymin + 0.01 * (ymax - ymin)
plot.text(posx, posy, f"$R^2={r ** 2:1.4f}$")
if fit:
return (osm, osr), (slope, intercept, r)
else:
return osm, osr
def ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda'):
"""Calculate the shape parameter that maximizes the PPCC.
The probability plot correlation coefficient (PPCC) plot can be used
to determine the optimal shape parameter for a one-parameter family
of distributions. ``ppcc_max`` returns the shape parameter that would
maximize the probability plot correlation coefficient for the given
data to a one-parameter family of distributions.
Parameters
----------
x : array_like
Input array.
brack : tuple, optional
Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c)
then they are assumed to be a starting interval for a downhill bracket
search (see `scipy.optimize.brent`).
dist : str or stats.distributions instance, optional
Distribution or distribution function name. Objects that look enough
like a stats.distributions instance (i.e. they have a ``ppf`` method)
are also accepted. The default is ``'tukeylambda'``.
Returns
-------
shape_value : float
The shape parameter at which the probability plot correlation
coefficient reaches its max value.
See Also
--------
ppcc_plot, probplot, boxcox
Notes
-----
The brack keyword serves as a starting point which is useful in corner
cases. One can use a plot to obtain a rough visual estimate of the location
for the maximum to start the search near it.
References
----------
.. [1] J.J. Filliben, "The Probability Plot Correlation Coefficient Test
for Normality", Technometrics, Vol. 17, pp. 111-117, 1975.
.. [2] Engineering Statistics Handbook, NIST/SEMATEC,
https://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
Examples
--------
First we generate some random data from a Weibull distribution
with shape parameter 2.5:
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> c = 2.5
>>> x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
Generate the PPCC plot for this data with the Weibull distribution.
>>> fig, ax = plt.subplots(figsize=(8, 6))
>>> res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax)
We calculate the value where the shape should reach its maximum and a
red line is drawn there. The line should coincide with the highest
point in the PPCC graph.
>>> cmax = stats.ppcc_max(x, brack=(c/2, 2*c), dist='weibull_min')
>>> ax.axvline(cmax, color='r')
>>> plt.show()
"""
dist = _parse_dist_kw(dist)
osm_uniform = _calc_uniform_order_statistic_medians(len(x))
osr = sort(x)
# this function computes the x-axis values of the probability plot
# and computes a linear regression (including the correlation)
# and returns 1-r so that a minimization function maximizes the
# correlation
def tempfunc(shape, mi, yvals, func):
xvals = func(mi, shape)
r, prob = _stats_py.pearsonr(xvals, yvals)
return 1 - r
return optimize.brent(tempfunc, brack=brack,
args=(osm_uniform, osr, dist.ppf))
def ppcc_plot(x, a, b, dist='tukeylambda', plot=None, N=80):
"""Calculate and optionally plot probability plot correlation coefficient.
The probability plot correlation coefficient (PPCC) plot can be used to
determine the optimal shape parameter for a one-parameter family of
distributions. It cannot be used for distributions without shape
parameters
(like the normal distribution) or with multiple shape parameters.
By default a Tukey-Lambda distribution (`stats.tukeylambda`) is used. A
Tukey-Lambda PPCC plot interpolates from long-tailed to short-tailed
distributions via an approximately normal one, and is therefore
particularly useful in practice.
Parameters
----------
x : array_like
Input array.
a, b : scalar
Lower and upper bounds of the shape parameter to use.
dist : str or stats.distributions instance, optional
Distribution or distribution function name. Objects that look enough
like a stats.distributions instance (i.e. they have a ``ppf`` method)
are also accepted. The default is ``'tukeylambda'``.
plot : object, optional
If given, plots PPCC against the shape parameter.
`plot` is an object that has to have methods "plot" and "text".
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
or a custom object with the same methods.
Default is None, which means that no plot is created.
N : int, optional
Number of points on the horizontal axis (equally distributed from
`a` to `b`).
Returns
-------
svals : ndarray
The shape values for which `ppcc` was calculated.
ppcc : ndarray
The calculated probability plot correlation coefficient values.
See Also
--------
ppcc_max, probplot, boxcox_normplot, tukeylambda
References
----------
J.J. Filliben, "The Probability Plot Correlation Coefficient Test for
Normality", Technometrics, Vol. 17, pp. 111-117, 1975.
Examples
--------
First we generate some random data from a Weibull distribution
with shape parameter 2.5, and plot the histogram of the data:
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> c = 2.5
>>> x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
Take a look at the histogram of the data.
>>> fig1, ax = plt.subplots(figsize=(9, 4))
>>> ax.hist(x, bins=50)
>>> ax.set_title('Histogram of x')
>>> plt.show()
Now we explore this data with a PPCC plot as well as the related
probability plot and Box-Cox normplot. A red line is drawn where we
expect the PPCC value to be maximal (at the shape parameter ``c``
used above):
>>> fig2 = plt.figure(figsize=(12, 4))
>>> ax1 = fig2.add_subplot(1, 3, 1)
>>> ax2 = fig2.add_subplot(1, 3, 2)
>>> ax3 = fig2.add_subplot(1, 3, 3)
>>> res = stats.probplot(x, plot=ax1)
>>> res = stats.boxcox_normplot(x, -4, 4, plot=ax2)
>>> res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax3)
>>> ax3.axvline(c, color='r')
>>> plt.show()
"""
if b <= a:
raise ValueError("`b` has to be larger than `a`.")
svals = np.linspace(a, b, num=N)
ppcc = np.empty_like(svals)
for k, sval in enumerate(svals):
_, r2 = probplot(x, sval, dist=dist, fit=True)
ppcc[k] = r2[-1]
if plot is not None:
plot.plot(svals, ppcc, 'x')
_add_axis_labels_title(plot, xlabel='Shape Values',
ylabel='Prob Plot Corr. Coef.',
title=f'({dist}) PPCC Plot')
return svals, ppcc
def _log_mean(logx):
# compute log of mean of x from log(x)
res = special.logsumexp(logx, axis=0) - math.log(logx.shape[0])
return res
def _log_var(logx, xp):
# compute log of variance of x from log(x)
logmean = _log_mean(logx)
# get complex dtype with component dtypes same as `logx` dtype;
# see data-apis/array-api#841
dtype = xp.result_type(logx.dtype, xp.complex64)
pij = xp.full(logx.shape, pi * 1j, dtype=dtype)
logxmu = special.logsumexp(xp.stack((logx, logmean + pij)), axis=0)
res = (xp.real(xp.asarray(special.logsumexp(2 * logxmu, axis=0)))
- math.log(logx.shape[0]))
return res
def boxcox_llf(lmb, data):
r"""The boxcox log-likelihood function.
Parameters
----------
lmb : scalar
Parameter for Box-Cox transformation. See `boxcox` for details.
data : array_like
Data to calculate Box-Cox log-likelihood for. If `data` is
multi-dimensional, the log-likelihood is calculated along the first
axis.
Returns
-------
llf : float or ndarray
Box-Cox log-likelihood of `data` given `lmb`. A float for 1-D `data`,
an array otherwise.
See Also
--------
boxcox, probplot, boxcox_normplot, boxcox_normmax
Notes
-----
The Box-Cox log-likelihood function is defined here as
.. math::
llf = (\lambda - 1) \sum_i(\log(x_i)) -
N/2 \log(\sum_i (y_i - \bar{y})^2 / N),
where ``y`` is the Box-Cox transformed input data ``x``.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
Generate some random variates and calculate Box-Cox log-likelihood values
for them for a range of ``lmbda`` values:
>>> rng = np.random.default_rng()
>>> x = stats.loggamma.rvs(5, loc=10, size=1000, random_state=rng)
>>> lmbdas = np.linspace(-2, 10)
>>> llf = np.zeros(lmbdas.shape, dtype=float)
>>> for ii, lmbda in enumerate(lmbdas):
... llf[ii] = stats.boxcox_llf(lmbda, x)
Also find the optimal lmbda value with `boxcox`:
>>> x_most_normal, lmbda_optimal = stats.boxcox(x)
Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a
horizontal line to check that that's really the optimum:
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(lmbdas, llf, 'b.-')
>>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
>>> ax.set_xlabel('lmbda parameter')
>>> ax.set_ylabel('Box-Cox log-likelihood')
Now add some probability plots to show that where the log-likelihood is
maximized the data transformed with `boxcox` looks closest to normal:
>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
... xt = stats.boxcox(x, lmbda=lmbda)
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
... ax_inset.set_xticklabels([])
... ax_inset.set_yticklabels([])
... ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)
>>> plt.show()
"""
xp = array_namespace(data)
data = xp.asarray(data)
N = data.shape[0]
if N == 0:
return xp.nan
dt = data.dtype
if xp.isdtype(dt, 'integral'):
data = xp.asarray(data, dtype=xp.float64)
dt = xp.float64
logdata = xp.log(data)
# Compute the variance of the transformed data.
if lmb == 0:
logvar = xp.log(xp.var(logdata, axis=0))
else:
# Transform without the constant offset 1/lmb. The offset does
# not affect the variance, and the subtraction of the offset can
# lead to loss of precision.
# Division by lmb can be factored out to enhance numerical stability.
logx = lmb * logdata
logvar = _log_var(logx, xp) - 2 * math.log(abs(lmb))
res = (lmb - 1) * xp.sum(logdata, axis=0) - N/2 * logvar
res = xp.astype(res, dt)
res = res[()] if res.ndim == 0 else res
return res
def _boxcox_conf_interval(x, lmax, alpha):
# Need to find the lambda for which
# f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1
fac = 0.5 * distributions.chi2.ppf(1 - alpha, 1)
target = boxcox_llf(lmax, x) - fac
def rootfunc(lmbda, data, target):
return boxcox_llf(lmbda, data) - target
# Find positive endpoint of interval in which answer is to be found
newlm = lmax + 0.5
N = 0
while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
newlm += 0.1
N += 1
if N == 500:
raise RuntimeError("Could not find endpoint.")
lmplus = optimize.brentq(rootfunc, lmax, newlm, args=(x, target))
# Now find negative interval in the same way
newlm = lmax - 0.5
N = 0
while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
newlm -= 0.1
N += 1
if N == 500:
raise RuntimeError("Could not find endpoint.")
lmminus = optimize.brentq(rootfunc, newlm, lmax, args=(x, target))
return lmminus, lmplus
def boxcox(x, lmbda=None, alpha=None, optimizer=None):
r"""Return a dataset transformed by a Box-Cox power transformation.
Parameters
----------
x : ndarray
Input array to be transformed.
If `lmbda` is not None, this is an alias of
`scipy.special.boxcox`.
Returns nan if ``x < 0``; returns -inf if ``x == 0 and lmbda < 0``.
If `lmbda` is None, array must be positive, 1-dimensional, and
non-constant.
lmbda : scalar, optional
If `lmbda` is None (default), find the value of `lmbda` that maximizes
the log-likelihood function and return it as the second output
argument.
If `lmbda` is not None, do the transformation for that value.
alpha : float, optional
If `lmbda` is None and `alpha` is not None (default), return the
``100 * (1-alpha)%`` confidence interval for `lmbda` as the third
output argument. Must be between 0.0 and 1.0.
If `lmbda` is not None, `alpha` is ignored.
optimizer : callable, optional
If `lmbda` is None, `optimizer` is the scalar optimizer used to find
the value of `lmbda` that minimizes the negative log-likelihood
function. `optimizer` is a callable that accepts one argument:
fun : callable
The objective function, which evaluates the negative
log-likelihood function at a provided value of `lmbda`
and returns an object, such as an instance of
`scipy.optimize.OptimizeResult`, which holds the optimal value of
`lmbda` in an attribute `x`.
See the example in `boxcox_normmax` or the documentation of
`scipy.optimize.minimize_scalar` for more information.
If `lmbda` is not None, `optimizer` is ignored.
Returns
-------
boxcox : ndarray
Box-Cox power transformed array.
maxlog : float, optional
If the `lmbda` parameter is None, the second returned argument is
the `lmbda` that maximizes the log-likelihood function.
(min_ci, max_ci) : tuple of float, optional
If `lmbda` parameter is None and `alpha` is not None, this returned
tuple of floats represents the minimum and maximum confidence limits
given `alpha`.
See Also
--------
probplot, boxcox_normplot, boxcox_normmax, boxcox_llf
Notes
-----
The Box-Cox transform is given by::
y = (x**lmbda - 1) / lmbda, for lmbda != 0
log(x), for lmbda = 0
`boxcox` requires the input data to be positive. Sometimes a Box-Cox
transformation provides a shift parameter to achieve this; `boxcox` does
not. Such a shift parameter is equivalent to adding a positive constant to
`x` before calling `boxcox`.
The confidence limits returned when `alpha` is provided give the interval
where:
.. math::
llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2}\chi^2(1 - \alpha, 1),
with ``llf`` the log-likelihood function and :math:`\chi^2` the chi-squared
function.
References
----------
G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal of the
Royal Statistical Society B, 26, 211-252 (1964).
Examples
--------
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
We generate some random variates from a non-normal distribution and make a
probability plot for it, to show it is non-normal in the tails:
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')
We now use `boxcox` to transform the data so it's closest to normal:
>>> ax2 = fig.add_subplot(212)
>>> xt, _ = stats.boxcox(x)
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('Probplot after Box-Cox transformation')
>>> plt.show()
"""
x = np.asarray(x)
if lmbda is not None: # single transformation
return special.boxcox(x, lmbda)
if x.ndim != 1:
raise ValueError("Data must be 1-dimensional.")
if x.size == 0:
return x
if np.all(x == x[0]):
raise ValueError("Data must not be constant.")
if np.any(x <= 0):
raise ValueError("Data must be positive.")
# If lmbda=None, find the lmbda that maximizes the log-likelihood function.
lmax = boxcox_normmax(x, method='mle', optimizer=optimizer)
y = boxcox(x, lmax)
if alpha is None:
return y, lmax
else:
# Find confidence interval
interval = _boxcox_conf_interval(x, lmax, alpha)
return y, lmax, interval
def _boxcox_inv_lmbda(x, y):
# compute lmbda given x and y for Box-Cox transformation
num = special.lambertw(-(x ** (-1 / y)) * np.log(x) / y, k=-1)
return np.real(-num / np.log(x) - 1 / y)
class _BigFloat:
def __repr__(self):
return "BIG_FLOAT"
_BigFloat_singleton = _BigFloat()
def boxcox_normmax(
x, brack=None, method='pearsonr', optimizer=None, *, ymax=_BigFloat_singleton
):
"""Compute optimal Box-Cox transform parameter for input data.
Parameters
----------
x : array_like
Input array. All entries must be positive, finite, real numbers.
brack : 2-tuple, optional, default (-2.0, 2.0)
The starting interval for a downhill bracket search for the default
`optimize.brent` solver. Note that this is in most cases not
critical; the final result is allowed to be outside this bracket.
If `optimizer` is passed, `brack` must be None.
method : str, optional
The method to determine the optimal transform parameter (`boxcox`
``lmbda`` parameter). Options are:
'pearsonr' (default)
Maximizes the Pearson correlation coefficient between
``y = boxcox(x)`` and the expected values for ``y`` if `x` would be
normally-distributed.
'mle'
Maximizes the log-likelihood `boxcox_llf`. This is the method used
in `boxcox`.
'all'
Use all optimization methods available, and return all results.
Useful to compare different methods.
optimizer : callable, optional
`optimizer` is a callable that accepts one argument:
fun : callable
The objective function to be minimized. `fun` accepts one argument,
the Box-Cox transform parameter `lmbda`, and returns the value of
the function (e.g., the negative log-likelihood) at the provided
argument. The job of `optimizer` is to find the value of `lmbda`
that *minimizes* `fun`.
and returns an object, such as an instance of
`scipy.optimize.OptimizeResult`, which holds the optimal value of
`lmbda` in an attribute `x`.
See the example below or the documentation of
`scipy.optimize.minimize_scalar` for more information.
ymax : float, optional
The unconstrained optimal transform parameter may cause Box-Cox
transformed data to have extreme magnitude or even overflow.
This parameter constrains MLE optimization such that the magnitude
of the transformed `x` does not exceed `ymax`. The default is
the maximum value of the input dtype. If set to infinity,
`boxcox_normmax` returns the unconstrained optimal lambda.
Ignored when ``method='pearsonr'``.
Returns
-------
maxlog : float or ndarray
The optimal transform parameter found. An array instead of a scalar
for ``method='all'``.
See Also
--------
boxcox, boxcox_llf, boxcox_normplot, scipy.optimize.minimize_scalar
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
We can generate some data and determine the optimal ``lmbda`` in various
ways:
>>> rng = np.random.default_rng()
>>> x = stats.loggamma.rvs(5, size=30, random_state=rng) + 5
>>> y, lmax_mle = stats.boxcox(x)
>>> lmax_pearsonr = stats.boxcox_normmax(x)
>>> lmax_mle
2.217563431465757
>>> lmax_pearsonr
2.238318660200961
>>> stats.boxcox_normmax(x, method='all')
array([2.23831866, 2.21756343])
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.boxcox_normplot(x, -10, 10, plot=ax)
>>> ax.axvline(lmax_mle, color='r')
>>> ax.axvline(lmax_pearsonr, color='g', ls='--')
>>> plt.show()
Alternatively, we can define our own `optimizer` function. Suppose we
are only interested in values of `lmbda` on the interval [6, 7], we
want to use `scipy.optimize.minimize_scalar` with ``method='bounded'``,
and we want to use tighter tolerances when optimizing the log-likelihood
function. To do this, we define a function that accepts positional argument
`fun` and uses `scipy.optimize.minimize_scalar` to minimize `fun` subject
to the provided bounds and tolerances:
>>> from scipy import optimize
>>> options = {'xatol': 1e-12} # absolute tolerance on `x`
>>> def optimizer(fun):
... return optimize.minimize_scalar(fun, bounds=(6, 7),
... method="bounded", options=options)
>>> stats.boxcox_normmax(x, optimizer=optimizer)
6.000000000
"""
x = np.asarray(x)
if not np.all(np.isfinite(x) & (x >= 0)):
message = ("The `x` argument of `boxcox_normmax` must contain "
"only positive, finite, real numbers.")
raise ValueError(message)
end_msg = "exceed specified `ymax`."
if ymax is _BigFloat_singleton:
dtype = x.dtype if np.issubdtype(x.dtype, np.floating) else np.float64
# 10000 is a safety factor because `special.boxcox` overflows prematurely.
ymax = np.finfo(dtype).max / 10000
end_msg = f"overflow in {dtype}."
elif ymax <= 0:
raise ValueError("`ymax` must be strictly positive")
# If optimizer is not given, define default 'brent' optimizer.
if optimizer is None:
# Set default value for `brack`.
if brack is None:
brack = (-2.0, 2.0)
def _optimizer(func, args):
return optimize.brent(func, args=args, brack=brack)
# Otherwise check optimizer.
else:
if not callable(optimizer):
raise ValueError("`optimizer` must be a callable")
if brack is not None:
raise ValueError("`brack` must be None if `optimizer` is given")
# `optimizer` is expected to return a `OptimizeResult` object, we here
# get the solution to the optimization problem.
def _optimizer(func, args):
def func_wrapped(x):
return func(x, *args)
return getattr(optimizer(func_wrapped), 'x', None)
def _pearsonr(x):
osm_uniform = _calc_uniform_order_statistic_medians(len(x))
xvals = distributions.norm.ppf(osm_uniform)
def _eval_pearsonr(lmbda, xvals, samps):
# This function computes the x-axis values of the probability plot
# and computes a linear regression (including the correlation) and
# returns ``1 - r`` so that a minimization function maximizes the
# correlation.
y = boxcox(samps, lmbda)
yvals = np.sort(y)
r, prob = _stats_py.pearsonr(xvals, yvals)
return 1 - r
return _optimizer(_eval_pearsonr, args=(xvals, x))
def _mle(x):
def _eval_mle(lmb, data):
# function to minimize
return -boxcox_llf(lmb, data)
return _optimizer(_eval_mle, args=(x,))
def _all(x):
maxlog = np.empty(2, dtype=float)
maxlog[0] = _pearsonr(x)
maxlog[1] = _mle(x)
return maxlog
methods = {'pearsonr': _pearsonr,
'mle': _mle,
'all': _all}
if method not in methods.keys():
raise ValueError(f"Method {method} not recognized.")
optimfunc = methods[method]
res = optimfunc(x)
if res is None:
message = ("The `optimizer` argument of `boxcox_normmax` must return "
"an object containing the optimal `lmbda` in attribute `x`.")
raise ValueError(message)
elif not np.isinf(ymax): # adjust the final lambda
# x > 1, boxcox(x) > 0; x < 1, boxcox(x) < 0
xmax, xmin = np.max(x), np.min(x)
if xmin >= 1:
x_treme = xmax
elif xmax <= 1:
x_treme = xmin
else: # xmin < 1 < xmax
indicator = special.boxcox(xmax, res) > abs(special.boxcox(xmin, res))
if isinstance(res, np.ndarray):
indicator = indicator[1] # select corresponds with 'mle'
x_treme = xmax if indicator else xmin
mask = abs(special.boxcox(x_treme, res)) > ymax
if np.any(mask):
message = (
f"The optimal lambda is {res}, but the returned lambda is the "
f"constrained optimum to ensure that the maximum or the minimum "
f"of the transformed data does not " + end_msg
)
warnings.warn(message, stacklevel=2)
# Return the constrained lambda to ensure the transformation
# does not cause overflow or exceed specified `ymax`
constrained_res = _boxcox_inv_lmbda(x_treme, ymax * np.sign(x_treme - 1))
if isinstance(res, np.ndarray):
res[mask] = constrained_res
else:
res = constrained_res
return res
def _normplot(method, x, la, lb, plot=None, N=80):
"""Compute parameters for a Box-Cox or Yeo-Johnson normality plot,
optionally show it.
See `boxcox_normplot` or `yeojohnson_normplot` for details.
"""
if method == 'boxcox':
title = 'Box-Cox Normality Plot'
transform_func = boxcox
else:
title = 'Yeo-Johnson Normality Plot'
transform_func = yeojohnson
x = np.asarray(x)
if x.size == 0:
return x
if lb <= la:
raise ValueError("`lb` has to be larger than `la`.")
if method == 'boxcox' and np.any(x <= 0):
raise ValueError("Data must be positive.")
lmbdas = np.linspace(la, lb, num=N)
ppcc = lmbdas * 0.0
for i, val in enumerate(lmbdas):
# Determine for each lmbda the square root of correlation coefficient
# of transformed x
z = transform_func(x, lmbda=val)
_, (_, _, r) = probplot(z, dist='norm', fit=True)
ppcc[i] = r
if plot is not None:
plot.plot(lmbdas, ppcc, 'x')
_add_axis_labels_title(plot, xlabel='$\\lambda$',
ylabel='Prob Plot Corr. Coef.',
title=title)
return lmbdas, ppcc
def boxcox_normplot(x, la, lb, plot=None, N=80):
"""Compute parameters for a Box-Cox normality plot, optionally show it.
A Box-Cox normality plot shows graphically what the best transformation
parameter is to use in `boxcox` to obtain a distribution that is close
to normal.
Parameters
----------
x : array_like
Input array.
la, lb : scalar
The lower and upper bounds for the ``lmbda`` values to pass to `boxcox`
for Box-Cox transformations. These are also the limits of the
horizontal axis of the plot if that is generated.
plot : object, optional
If given, plots the quantiles and least squares fit.
`plot` is an object that has to have methods "plot" and "text".
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
or a custom object with the same methods.
Default is None, which means that no plot is created.
N : int, optional
Number of points on the horizontal axis (equally distributed from
`la` to `lb`).
Returns
-------
lmbdas : ndarray
The ``lmbda`` values for which a Box-Cox transform was done.
ppcc : ndarray
Probability Plot Correlation Coefficient, as obtained from `probplot`
when fitting the Box-Cox transformed input `x` against a normal
distribution.
See Also
--------
probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max
Notes
-----
Even if `plot` is given, the figure is not shown or saved by
`boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
should be used after calling `probplot`.
Examples
--------
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
Generate some non-normally distributed data, and create a Box-Cox plot:
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.boxcox_normplot(x, -20, 20, plot=ax)
Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
the same plot:
>>> _, maxlog = stats.boxcox(x)
>>> ax.axvline(maxlog, color='r')
>>> plt.show()
"""
return _normplot('boxcox', x, la, lb, plot, N)
def yeojohnson(x, lmbda=None):
r"""Return a dataset transformed by a Yeo-Johnson power transformation.
Parameters
----------
x : ndarray
Input array. Should be 1-dimensional.
lmbda : float, optional
If ``lmbda`` is ``None``, find the lambda that maximizes the
log-likelihood function and return it as the second output argument.
Otherwise the transformation is done for the given value.
Returns
-------
yeojohnson: ndarray
Yeo-Johnson power transformed array.
maxlog : float, optional
If the `lmbda` parameter is None, the second returned argument is
the lambda that maximizes the log-likelihood function.
See Also
--------
probplot, yeojohnson_normplot, yeojohnson_normmax, yeojohnson_llf, boxcox
Notes
-----
The Yeo-Johnson transform is given by::
y = ((x + 1)**lmbda - 1) / lmbda, for x >= 0, lmbda != 0
log(x + 1), for x >= 0, lmbda = 0
-((-x + 1)**(2 - lmbda) - 1) / (2 - lmbda), for x < 0, lmbda != 2
-log(-x + 1), for x < 0, lmbda = 2
Unlike `boxcox`, `yeojohnson` does not require the input data to be
positive.
.. versionadded:: 1.2.0
References
----------
I. Yeo and R.A. Johnson, "A New Family of Power Transformations to
Improve Normality or Symmetry", Biometrika 87.4 (2000):
Examples
--------
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
We generate some random variates from a non-normal distribution and make a
probability plot for it, to show it is non-normal in the tails:
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')
We now use `yeojohnson` to transform the data so it's closest to normal:
>>> ax2 = fig.add_subplot(212)
>>> xt, lmbda = stats.yeojohnson(x)
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('Probplot after Yeo-Johnson transformation')
>>> plt.show()
"""
x = np.asarray(x)
if x.size == 0:
return x
if np.issubdtype(x.dtype, np.complexfloating):
raise ValueError('Yeo-Johnson transformation is not defined for '
'complex numbers.')
if np.issubdtype(x.dtype, np.integer):
x = x.astype(np.float64, copy=False)
if lmbda is not None:
return _yeojohnson_transform(x, lmbda)
# if lmbda=None, find the lmbda that maximizes the log-likelihood function.
lmax = yeojohnson_normmax(x)
y = _yeojohnson_transform(x, lmax)
return y, lmax
def _yeojohnson_transform(x, lmbda):
"""Returns `x` transformed by the Yeo-Johnson power transform with given
parameter `lmbda`.
"""
dtype = x.dtype if np.issubdtype(x.dtype, np.floating) else np.float64
out = np.zeros_like(x, dtype=dtype)
pos = x >= 0 # binary mask
# when x >= 0
if abs(lmbda) < np.spacing(1.):
out[pos] = np.log1p(x[pos])
else: # lmbda != 0
# more stable version of: ((x + 1) ** lmbda - 1) / lmbda
out[pos] = np.expm1(lmbda * np.log1p(x[pos])) / lmbda
# when x < 0
if abs(lmbda - 2) > np.spacing(1.):
out[~pos] = -np.expm1((2 - lmbda) * np.log1p(-x[~pos])) / (2 - lmbda)
else: # lmbda == 2
out[~pos] = -np.log1p(-x[~pos])
return out
def yeojohnson_llf(lmb, data):
r"""The yeojohnson log-likelihood function.
Parameters
----------
lmb : scalar
Parameter for Yeo-Johnson transformation. See `yeojohnson` for
details.
data : array_like
Data to calculate Yeo-Johnson log-likelihood for. If `data` is
multi-dimensional, the log-likelihood is calculated along the first
axis.
Returns
-------
llf : float
Yeo-Johnson log-likelihood of `data` given `lmb`.
See Also
--------
yeojohnson, probplot, yeojohnson_normplot, yeojohnson_normmax
Notes
-----
The Yeo-Johnson log-likelihood function is defined here as
.. math::
llf = -N/2 \log(\hat{\sigma}^2) + (\lambda - 1)
\sum_i \text{ sign }(x_i)\log(|x_i| + 1)
where :math:`\hat{\sigma}^2` is estimated variance of the Yeo-Johnson
transformed input data ``x``.
.. versionadded:: 1.2.0
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
Generate some random variates and calculate Yeo-Johnson log-likelihood
values for them for a range of ``lmbda`` values:
>>> x = stats.loggamma.rvs(5, loc=10, size=1000)
>>> lmbdas = np.linspace(-2, 10)
>>> llf = np.zeros(lmbdas.shape, dtype=float)
>>> for ii, lmbda in enumerate(lmbdas):
... llf[ii] = stats.yeojohnson_llf(lmbda, x)
Also find the optimal lmbda value with `yeojohnson`:
>>> x_most_normal, lmbda_optimal = stats.yeojohnson(x)
Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a
horizontal line to check that that's really the optimum:
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(lmbdas, llf, 'b.-')
>>> ax.axhline(stats.yeojohnson_llf(lmbda_optimal, x), color='r')
>>> ax.set_xlabel('lmbda parameter')
>>> ax.set_ylabel('Yeo-Johnson log-likelihood')
Now add some probability plots to show that where the log-likelihood is
maximized the data transformed with `yeojohnson` looks closest to normal:
>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
... xt = stats.yeojohnson(x, lmbda=lmbda)
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
... ax_inset.set_xticklabels([])
... ax_inset.set_yticklabels([])
... ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)
>>> plt.show()
"""
data = np.asarray(data)
n_samples = data.shape[0]
if n_samples == 0:
return np.nan
trans = _yeojohnson_transform(data, lmb)
trans_var = trans.var(axis=0)
loglike = np.empty_like(trans_var)
# Avoid RuntimeWarning raised by np.log when the variance is too low
tiny_variance = trans_var < np.finfo(trans_var.dtype).tiny
loglike[tiny_variance] = np.inf
loglike[~tiny_variance] = (
-n_samples / 2 * np.log(trans_var[~tiny_variance]))
loglike[~tiny_variance] += (
(lmb - 1) * (np.sign(data) * np.log1p(np.abs(data))).sum(axis=0))
return loglike
def yeojohnson_normmax(x, brack=None):
"""Compute optimal Yeo-Johnson transform parameter.
Compute optimal Yeo-Johnson transform parameter for input data, using
maximum likelihood estimation.
Parameters
----------
x : array_like
Input array.
brack : 2-tuple, optional
The starting interval for a downhill bracket search with
`optimize.brent`. Note that this is in most cases not critical; the
final result is allowed to be outside this bracket. If None,
`optimize.fminbound` is used with bounds that avoid overflow.
Returns
-------
maxlog : float
The optimal transform parameter found.
See Also
--------
yeojohnson, yeojohnson_llf, yeojohnson_normplot
Notes
-----
.. versionadded:: 1.2.0
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
Generate some data and determine optimal ``lmbda``
>>> rng = np.random.default_rng()
>>> x = stats.loggamma.rvs(5, size=30, random_state=rng) + 5
>>> lmax = stats.yeojohnson_normmax(x)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.yeojohnson_normplot(x, -10, 10, plot=ax)
>>> ax.axvline(lmax, color='r')
>>> plt.show()
"""
def _neg_llf(lmbda, data):
llf = yeojohnson_llf(lmbda, data)
# reject likelihoods that are inf which are likely due to small
# variance in the transformed space
llf[np.isinf(llf)] = -np.inf
return -llf
with np.errstate(invalid='ignore'):
if not np.all(np.isfinite(x)):
raise ValueError('Yeo-Johnson input must be finite.')
if np.all(x == 0):
return 1.0
if brack is not None:
return optimize.brent(_neg_llf, brack=brack, args=(x,))
x = np.asarray(x)
dtype = x.dtype if np.issubdtype(x.dtype, np.floating) else np.float64
# Allow values up to 20 times the maximum observed value to be safely
# transformed without over- or underflow.
log1p_max_x = np.log1p(20 * np.max(np.abs(x)))
# Use half of floating point's exponent range to allow safe computation
# of the variance of the transformed data.
log_eps = np.log(np.finfo(dtype).eps)
log_tiny_float = (np.log(np.finfo(dtype).tiny) - log_eps) / 2
log_max_float = (np.log(np.finfo(dtype).max) + log_eps) / 2
# Compute the bounds by approximating the inverse of the Yeo-Johnson
# transform on the smallest and largest floating point exponents, given
# the largest data we expect to observe. See [1] for further details.
# [1] https://github.com/scipy/scipy/pull/18852#issuecomment-1630286174
lb = log_tiny_float / log1p_max_x
ub = log_max_float / log1p_max_x
# Convert the bounds if all or some of the data is negative.
if np.all(x < 0):
lb, ub = 2 - ub, 2 - lb
elif np.any(x < 0):
lb, ub = max(2 - ub, lb), min(2 - lb, ub)
# Match `optimize.brent`'s tolerance.
tol_brent = 1.48e-08
return optimize.fminbound(_neg_llf, lb, ub, args=(x,), xtol=tol_brent)
def yeojohnson_normplot(x, la, lb, plot=None, N=80):
"""Compute parameters for a Yeo-Johnson normality plot, optionally show it.
A Yeo-Johnson normality plot shows graphically what the best
transformation parameter is to use in `yeojohnson` to obtain a
distribution that is close to normal.
Parameters
----------
x : array_like
Input array.
la, lb : scalar
The lower and upper bounds for the ``lmbda`` values to pass to
`yeojohnson` for Yeo-Johnson transformations. These are also the
limits of the horizontal axis of the plot if that is generated.
plot : object, optional
If given, plots the quantiles and least squares fit.
`plot` is an object that has to have methods "plot" and "text".
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
or a custom object with the same methods.
Default is None, which means that no plot is created.
N : int, optional
Number of points on the horizontal axis (equally distributed from
`la` to `lb`).
Returns
-------
lmbdas : ndarray
The ``lmbda`` values for which a Yeo-Johnson transform was done.
ppcc : ndarray
Probability Plot Correlation Coefficient, as obtained from `probplot`
when fitting the Box-Cox transformed input `x` against a normal
distribution.
See Also
--------
probplot, yeojohnson, yeojohnson_normmax, yeojohnson_llf, ppcc_max
Notes
-----
Even if `plot` is given, the figure is not shown or saved by
`boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
should be used after calling `probplot`.
.. versionadded:: 1.2.0
Examples
--------
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
Generate some non-normally distributed data, and create a Yeo-Johnson plot:
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.yeojohnson_normplot(x, -20, 20, plot=ax)
Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
the same plot:
>>> _, maxlog = stats.yeojohnson(x)
>>> ax.axvline(maxlog, color='r')
>>> plt.show()
"""
return _normplot('yeojohnson', x, la, lb, plot, N)
ShapiroResult = namedtuple('ShapiroResult', ('statistic', 'pvalue'))
@_axis_nan_policy_factory(ShapiroResult, n_samples=1, too_small=2, default_axis=None)
def shapiro(x):
r"""Perform the Shapiro-Wilk test for normality.
The Shapiro-Wilk test tests the null hypothesis that the
data was drawn from a normal distribution.
Parameters
----------
x : array_like
Array of sample data. Must contain at least three observations.
Returns
-------
statistic : float
The test statistic.
p-value : float
The p-value for the hypothesis test.
See Also
--------
anderson : The Anderson-Darling test for normality
kstest : The Kolmogorov-Smirnov test for goodness of fit.
:ref:`hypothesis_shapiro` : Extended example
Notes
-----
The algorithm used is described in [4]_ but censoring parameters as
described are not implemented. For N > 5000 the W test statistic is
accurate, but the p-value may not be.
References
----------
.. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
:doi:`10.18434/M32189`
.. [2] Shapiro, S. S. & Wilk, M.B, "An analysis of variance test for
normality (complete samples)", Biometrika, 1965, Vol. 52,
pp. 591-611, :doi:`10.2307/2333709`
.. [3] Razali, N. M. & Wah, Y. B., "Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", Journal
of Statistical Modeling and Analytics, 2011, Vol. 2, pp. 21-33.
.. [4] Royston P., "Remark AS R94: A Remark on Algorithm AS 181: The
W-test for Normality", 1995, Applied Statistics, Vol. 44,
:doi:`10.2307/2986146`
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(loc=5, scale=3, size=100, random_state=rng)
>>> shapiro_test = stats.shapiro(x)
>>> shapiro_test
ShapiroResult(statistic=0.9813305735588074, pvalue=0.16855233907699585)
>>> shapiro_test.statistic
0.9813305735588074
>>> shapiro_test.pvalue
0.16855233907699585
For a more detailed example, see :ref:`hypothesis_shapiro`.
"""
x = np.ravel(x).astype(np.float64)
N = len(x)
if N < 3:
raise ValueError("Data must be at least length 3.")
a = zeros(N//2, dtype=np.float64)
init = 0
y = sort(x)
y -= x[N//2] # subtract the median (or a nearby value); see gh-15777
w, pw, ifault = swilk(y, a, init)
if ifault not in [0, 2]:
warnings.warn("scipy.stats.shapiro: Input data has range zero. The"
" results may not be accurate.", stacklevel=2)
if N > 5000:
warnings.warn("scipy.stats.shapiro: For N > 5000, computed p-value "
f"may not be accurate. Current N is {N}.",
stacklevel=2)
# `w` and `pw` are always Python floats, which are double precision.
# We want to ensure that they are NumPy floats, so until dtypes are
# respected, we can explicitly convert each to float64 (faster than
# `np.array([w, pw])`).
return ShapiroResult(np.float64(w), np.float64(pw))
# Values from Stephens, M A, "EDF Statistics for Goodness of Fit and
# Some Comparisons", Journal of the American Statistical
# Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737
_Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092])
_Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957])
# From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution",
# Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588.
_Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038])
# From Stephens, M A, "Tests of Fit for the Logistic Distribution Based
# on the Empirical Distribution Function.", Biometrika,
# Vol. 66, Issue 3, Dec. 1979, pp 591-595.
_Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010])
# From Richard A. Lockhart and Michael A. Stephens "Estimation and Tests of
# Fit for the Three-Parameter Weibull Distribution"
# Journal of the Royal Statistical Society.Series B(Methodological)
# Vol. 56, No. 3 (1994), pp. 491-500, table 1. Keys are c*100
_Avals_weibull = [[0.292, 0.395, 0.467, 0.522, 0.617, 0.711, 0.836, 0.931],
[0.295, 0.399, 0.471, 0.527, 0.623, 0.719, 0.845, 0.941],
[0.298, 0.403, 0.476, 0.534, 0.631, 0.728, 0.856, 0.954],
[0.301, 0.408, 0.483, 0.541, 0.640, 0.738, 0.869, 0.969],
[0.305, 0.414, 0.490, 0.549, 0.650, 0.751, 0.885, 0.986],
[0.309, 0.421, 0.498, 0.559, 0.662, 0.765, 0.902, 1.007],
[0.314, 0.429, 0.508, 0.570, 0.676, 0.782, 0.923, 1.030],
[0.320, 0.438, 0.519, 0.583, 0.692, 0.802, 0.947, 1.057],
[0.327, 0.448, 0.532, 0.598, 0.711, 0.824, 0.974, 1.089],
[0.334, 0.469, 0.547, 0.615, 0.732, 0.850, 1.006, 1.125],
[0.342, 0.472, 0.563, 0.636, 0.757, 0.879, 1.043, 1.167]]
_Avals_weibull = np.array(_Avals_weibull)
_cvals_weibull = np.linspace(0, 0.5, 11)
_get_As_weibull = interpolate.interp1d(_cvals_weibull, _Avals_weibull.T,
kind='linear', bounds_error=False,
fill_value=_Avals_weibull[-1])
def _weibull_fit_check(params, x):
# Refine the fit returned by `weibull_min.fit` to ensure that the first
# order necessary conditions are satisfied. If not, raise an error.
# Here, use `m` for the shape parameter to be consistent with [7]
# and avoid confusion with `c` as defined in [7].
n = len(x)
m, u, s = params
def dnllf_dm(m, u):
# Partial w.r.t. shape w/ optimal scale. See [7] Equation 5.
xu = x-u
return (1/m - (xu**m*np.log(xu)).sum()/(xu**m).sum()
+ np.log(xu).sum()/n)
def dnllf_du(m, u):
# Partial w.r.t. loc w/ optimal scale. See [7] Equation 6.
xu = x-u
return (m-1)/m*(xu**-1).sum() - n*(xu**(m-1)).sum()/(xu**m).sum()
def get_scale(m, u):
# Partial w.r.t. scale solved in terms of shape and location.
# See [7] Equation 7.
return ((x-u)**m/n).sum()**(1/m)
def dnllf(params):
# Partial derivatives of the NLLF w.r.t. parameters, i.e.
# first order necessary conditions for MLE fit.
return [dnllf_dm(*params), dnllf_du(*params)]
suggestion = ("Maximum likelihood estimation is known to be challenging "
"for the three-parameter Weibull distribution. Consider "
"performing a custom goodness-of-fit test using "
"`scipy.stats.monte_carlo_test`.")
if np.allclose(u, np.min(x)) or m < 1:
# The critical values provided by [7] don't seem to control the
# Type I error rate in this case. Error out.
message = ("Maximum likelihood estimation has converged to "
"a solution in which the location is equal to the minimum "
"of the data, the shape parameter is less than 2, or both. "
"The table of critical values in [7] does not "
"include this case. " + suggestion)
raise ValueError(message)
try:
# Refine the MLE / verify that first-order necessary conditions are
# satisfied. If so, the critical values provided in [7] seem reliable.
with np.errstate(over='raise', invalid='raise'):
res = optimize.root(dnllf, params[:-1])
message = ("Solution of MLE first-order conditions failed: "
f"{res.message}. `anderson` cannot continue. " + suggestion)
if not res.success:
raise ValueError(message)
except (FloatingPointError, ValueError) as e:
message = ("An error occurred while fitting the Weibull distribution "
"to the data, so `anderson` cannot continue. " + suggestion)
raise ValueError(message) from e
m, u = res.x
s = get_scale(m, u)
return m, u, s
AndersonResult = _make_tuple_bunch('AndersonResult',
['statistic', 'critical_values',
'significance_level'], ['fit_result'])
def anderson(x, dist='norm'):
"""Anderson-Darling test for data coming from a particular distribution.
The Anderson-Darling test tests the null hypothesis that a sample is
drawn from a population that follows a particular distribution.
For the Anderson-Darling test, the critical values depend on
which distribution is being tested against. This function works
for normal, exponential, logistic, weibull_min, or Gumbel (Extreme Value
Type I) distributions.
Parameters
----------
x : array_like
Array of sample data.
dist : {'norm', 'expon', 'logistic', 'gumbel', 'gumbel_l', 'gumbel_r', 'extreme1', 'weibull_min'}, optional
The type of distribution to test against. The default is 'norm'.
The names 'extreme1', 'gumbel_l' and 'gumbel' are synonyms for the
same distribution.
Returns
-------
result : AndersonResult
An object with the following attributes:
statistic : float
The Anderson-Darling test statistic.
critical_values : list
The critical values for this distribution.
significance_level : list
The significance levels for the corresponding critical values
in percents. The function returns critical values for a
differing set of significance levels depending on the
distribution that is being tested against.
fit_result : `~scipy.stats._result_classes.FitResult`
An object containing the results of fitting the distribution to
the data.
See Also
--------
kstest : The Kolmogorov-Smirnov test for goodness-of-fit.
Notes
-----
Critical values provided are for the following significance levels:
normal/exponential
15%, 10%, 5%, 2.5%, 1%
logistic
25%, 10%, 5%, 2.5%, 1%, 0.5%
gumbel_l / gumbel_r
25%, 10%, 5%, 2.5%, 1%
weibull_min
50%, 25%, 15%, 10%, 5%, 2.5%, 1%, 0.5%
If the returned statistic is larger than these critical values then
for the corresponding significance level, the null hypothesis that
the data come from the chosen distribution can be rejected.
The returned statistic is referred to as 'A2' in the references.
For `weibull_min`, maximum likelihood estimation is known to be
challenging. If the test returns successfully, then the first order
conditions for a maximum likelihood estimate have been verified and
the critical values correspond relatively well to the significance levels,
provided that the sample is sufficiently large (>10 observations [7]).
However, for some data - especially data with no left tail - `anderson`
is likely to result in an error message. In this case, consider
performing a custom goodness of fit test using
`scipy.stats.monte_carlo_test`.
References
----------
.. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
.. [2] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and
Some Comparisons, Journal of the American Statistical Association,
Vol. 69, pp. 730-737.
.. [3] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit
Statistics with Unknown Parameters, Annals of Statistics, Vol. 4,
pp. 357-369.
.. [4] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value
Distribution, Biometrika, Vol. 64, pp. 583-588.
.. [5] Stephens, M. A. (1977). Goodness of Fit with Special Reference
to Tests for Exponentiality , Technical Report No. 262,
Department of Statistics, Stanford University, Stanford, CA.
.. [6] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution
Based on the Empirical Distribution Function, Biometrika, Vol. 66,
pp. 591-595.
.. [7] Richard A. Lockhart and Michael A. Stephens "Estimation and Tests of
Fit for the Three-Parameter Weibull Distribution"
Journal of the Royal Statistical Society.Series B(Methodological)
Vol. 56, No. 3 (1994), pp. 491-500, Table 0.
Examples
--------
Test the null hypothesis that a random sample was drawn from a normal
distribution (with unspecified mean and standard deviation).
>>> import numpy as np
>>> from scipy.stats import anderson
>>> rng = np.random.default_rng()
>>> data = rng.random(size=35)
>>> res = anderson(data)
>>> res.statistic
0.8398018749744764
>>> res.critical_values
array([0.527, 0.6 , 0.719, 0.839, 0.998])
>>> res.significance_level
array([15. , 10. , 5. , 2.5, 1. ])
The value of the statistic (barely) exceeds the critical value associated
with a significance level of 2.5%, so the null hypothesis may be rejected
at a significance level of 2.5%, but not at a significance level of 1%.
""" # numpy/numpydoc#87 # noqa: E501
dist = dist.lower()
if dist in {'extreme1', 'gumbel'}:
dist = 'gumbel_l'
dists = {'norm', 'expon', 'gumbel_l',
'gumbel_r', 'logistic', 'weibull_min'}
if dist not in dists:
raise ValueError(f"Invalid distribution; dist must be in {dists}.")
y = sort(x)
xbar = np.mean(x, axis=0)
N = len(y)
if dist == 'norm':
s = np.std(x, ddof=1, axis=0)
w = (y - xbar) / s
fit_params = xbar, s
logcdf = distributions.norm.logcdf(w)
logsf = distributions.norm.logsf(w)
sig = array([15, 10, 5, 2.5, 1])
critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N), 3)
elif dist == 'expon':
w = y / xbar
fit_params = 0, xbar
logcdf = distributions.expon.logcdf(w)
logsf = distributions.expon.logsf(w)
sig = array([15, 10, 5, 2.5, 1])
critical = around(_Avals_expon / (1.0 + 0.6/N), 3)
elif dist == 'logistic':
def rootfunc(ab, xj, N):
a, b = ab
tmp = (xj - a) / b
tmp2 = exp(tmp)
val = [np.sum(1.0/(1+tmp2), axis=0) - 0.5*N,
np.sum(tmp*(1.0-tmp2)/(1+tmp2), axis=0) + N]
return array(val)
sol0 = array([xbar, np.std(x, ddof=1, axis=0)])
sol = optimize.fsolve(rootfunc, sol0, args=(x, N), xtol=1e-5)
w = (y - sol[0]) / sol[1]
fit_params = sol
logcdf = distributions.logistic.logcdf(w)
logsf = distributions.logistic.logsf(w)
sig = array([25, 10, 5, 2.5, 1, 0.5])
critical = around(_Avals_logistic / (1.0 + 0.25/N), 3)
elif dist == 'gumbel_r':
xbar, s = distributions.gumbel_r.fit(x)
w = (y - xbar) / s
fit_params = xbar, s
logcdf = distributions.gumbel_r.logcdf(w)
logsf = distributions.gumbel_r.logsf(w)
sig = array([25, 10, 5, 2.5, 1])
critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)
elif dist == 'gumbel_l':
xbar, s = distributions.gumbel_l.fit(x)
w = (y - xbar) / s
fit_params = xbar, s
logcdf = distributions.gumbel_l.logcdf(w)
logsf = distributions.gumbel_l.logsf(w)
sig = array([25, 10, 5, 2.5, 1])
critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)
elif dist == 'weibull_min':
message = ("Critical values of the test statistic are given for the "
"asymptotic distribution. These may not be accurate for "
"samples with fewer than 10 observations. Consider using "
"`scipy.stats.monte_carlo_test`.")
if N < 10:
warnings.warn(message, stacklevel=2)
# [7] writes our 'c' as 'm', and they write `c = 1/m`. Use their names.
m, loc, scale = distributions.weibull_min.fit(y)
m, loc, scale = _weibull_fit_check((m, loc, scale), y)
fit_params = m, loc, scale
logcdf = stats.weibull_min(*fit_params).logcdf(y)
logsf = stats.weibull_min(*fit_params).logsf(y)
c = 1 / m # m and c are as used in [7]
sig = array([0.5, 0.75, 0.85, 0.9, 0.95, 0.975, 0.99, 0.995])
critical = _get_As_weibull(c)
# Goodness-of-fit tests should only be used to provide evidence
# _against_ the null hypothesis. Be conservative and round up.
critical = np.round(critical + 0.0005, decimals=3)
i = arange(1, N + 1)
A2 = -N - np.sum((2*i - 1.0) / N * (logcdf + logsf[::-1]), axis=0)
# FitResult initializer expects an optimize result, so let's work with it
message = '`anderson` successfully fit the distribution to the data.'
res = optimize.OptimizeResult(success=True, message=message)
res.x = np.array(fit_params)
fit_result = FitResult(getattr(distributions, dist), y,
discrete=False, res=res)
return AndersonResult(A2, critical, sig, fit_result=fit_result)
def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N):
"""Compute A2akN equation 7 of Scholz and Stephens.
Parameters
----------
samples : sequence of 1-D array_like
Array of sample arrays.
Z : array_like
Sorted array of all observations.
Zstar : array_like
Sorted array of unique observations.
k : int
Number of samples.
n : array_like
Number of observations in each sample.
N : int
Total number of observations.
Returns
-------
A2aKN : float
The A2aKN statistics of Scholz and Stephens 1987.
"""
A2akN = 0.
Z_ssorted_left = Z.searchsorted(Zstar, 'left')
if N == Zstar.size:
lj = 1.
else:
lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left
Bj = Z_ssorted_left + lj / 2.
for i in arange(0, k):
s = np.sort(samples[i])
s_ssorted_right = s.searchsorted(Zstar, side='right')
Mij = s_ssorted_right.astype(float)
fij = s_ssorted_right - s.searchsorted(Zstar, 'left')
Mij -= fij / 2.
inner = lj / float(N) * (N*Mij - Bj*n[i])**2 / (Bj*(N - Bj) - N*lj/4.)
A2akN += inner.sum() / n[i]
A2akN *= (N - 1.) / N
return A2akN
def _anderson_ksamp_right(samples, Z, Zstar, k, n, N):
"""Compute A2akN equation 6 of Scholz & Stephens.
Parameters
----------
samples : sequence of 1-D array_like
Array of sample arrays.
Z : array_like
Sorted array of all observations.
Zstar : array_like
Sorted array of unique observations.
k : int
Number of samples.
n : array_like
Number of observations in each sample.
N : int
Total number of observations.
Returns
-------
A2KN : float
The A2KN statistics of Scholz and Stephens 1987.
"""
A2kN = 0.
lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1],
'left')
Bj = lj.cumsum()
for i in arange(0, k):
s = np.sort(samples[i])
Mij = s.searchsorted(Zstar[:-1], side='right')
inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj))
A2kN += inner.sum() / n[i]
return A2kN
Anderson_ksampResult = _make_tuple_bunch(
'Anderson_ksampResult',
['statistic', 'critical_values', 'pvalue'], []
)
def anderson_ksamp(samples, midrank=True, *, method=None):
"""The Anderson-Darling test for k-samples.
The k-sample Anderson-Darling test is a modification of the
one-sample Anderson-Darling test. It tests the null hypothesis
that k-samples are drawn from the same population without having
to specify the distribution function of that population. The
critical values depend on the number of samples.
Parameters
----------
samples : sequence of 1-D array_like
Array of sample data in arrays.
midrank : bool, optional
Type of Anderson-Darling test which is computed. Default
(True) is the midrank test applicable to continuous and
discrete populations. If False, the right side empirical
distribution is used.
method : PermutationMethod, optional
Defines the method used to compute the p-value. If `method` is an
instance of `PermutationMethod`, the p-value is computed using
`scipy.stats.permutation_test` with the provided configuration options
and other appropriate settings. Otherwise, the p-value is interpolated
from tabulated values.
Returns
-------
res : Anderson_ksampResult
An object containing attributes:
statistic : float
Normalized k-sample Anderson-Darling test statistic.
critical_values : array
The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%,
0.5%, 0.1%.
pvalue : float
The approximate p-value of the test. If `method` is not
provided, the value is floored / capped at 0.1% / 25%.
Raises
------
ValueError
If fewer than 2 samples are provided, a sample is empty, or no
distinct observations are in the samples.
See Also
--------
ks_2samp : 2 sample Kolmogorov-Smirnov test
anderson : 1 sample Anderson-Darling test
Notes
-----
[1]_ defines three versions of the k-sample Anderson-Darling test:
one for continuous distributions and two for discrete
distributions, in which ties between samples may occur. The
default of this routine is to compute the version based on the
midrank empirical distribution function. This test is applicable
to continuous and discrete data. If midrank is set to False, the
right side empirical distribution is used for a test for discrete
data. According to [1]_, the two discrete test statistics differ
only slightly if a few collisions due to round-off errors occur in
the test not adjusted for ties between samples.
The critical values corresponding to the significance levels from 0.01
to 0.25 are taken from [1]_. p-values are floored / capped
at 0.1% / 25%. Since the range of critical values might be extended in
future releases, it is recommended not to test ``p == 0.25``, but rather
``p >= 0.25`` (analogously for the lower bound).
.. versionadded:: 0.14.0
References
----------
.. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample
Anderson-Darling Tests, Journal of the American Statistical
Association, Vol. 82, pp. 918-924.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> res = stats.anderson_ksamp([rng.normal(size=50),
... rng.normal(loc=0.5, size=30)])
>>> res.statistic, res.pvalue
(1.974403288713695, 0.04991293614572478)
>>> res.critical_values
array([0.325, 1.226, 1.961, 2.718, 3.752, 4.592, 6.546])
The null hypothesis that the two random samples come from the same
distribution can be rejected at the 5% level because the returned
test value is greater than the critical value for 5% (1.961) but
not at the 2.5% level. The interpolation gives an approximate
p-value of 4.99%.
>>> samples = [rng.normal(size=50), rng.normal(size=30),
... rng.normal(size=20)]
>>> res = stats.anderson_ksamp(samples)
>>> res.statistic, res.pvalue
(-0.29103725200789504, 0.25)
>>> res.critical_values
array([ 0.44925884, 1.3052767 , 1.9434184 , 2.57696569, 3.41634856,
4.07210043, 5.56419101])
The null hypothesis cannot be rejected for three samples from an
identical distribution. The reported p-value (25%) has been capped and
may not be very accurate (since it corresponds to the value 0.449
whereas the statistic is -0.291).
In such cases where the p-value is capped or when sample sizes are
small, a permutation test may be more accurate.
>>> method = stats.PermutationMethod(n_resamples=9999, random_state=rng)
>>> res = stats.anderson_ksamp(samples, method=method)
>>> res.pvalue
0.5254
"""
k = len(samples)
if (k < 2):
raise ValueError("anderson_ksamp needs at least two samples")
samples = list(map(np.asarray, samples))
Z = np.sort(np.hstack(samples))
N = Z.size
Zstar = np.unique(Z)
if Zstar.size < 2:
raise ValueError("anderson_ksamp needs more than one distinct "
"observation")
n = np.array([sample.size for sample in samples])
if np.any(n == 0):
raise ValueError("anderson_ksamp encountered sample without "
"observations")
if midrank:
A2kN_fun = _anderson_ksamp_midrank
else:
A2kN_fun = _anderson_ksamp_right
A2kN = A2kN_fun(samples, Z, Zstar, k, n, N)
def statistic(*samples):
return A2kN_fun(samples, Z, Zstar, k, n, N)
if method is not None:
res = stats.permutation_test(samples, statistic, **method._asdict(),
alternative='greater')
H = (1. / n).sum()
hs_cs = (1. / arange(N - 1, 1, -1)).cumsum()
h = hs_cs[-1] + 1
g = (hs_cs / arange(2, N)).sum()
a = (4*g - 6) * (k - 1) + (10 - 6*g)*H
b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6
c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h
d = (2*h + 6)*k**2 - 4*h*k
sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.))
m = k - 1
A2 = (A2kN - m) / math.sqrt(sigmasq)
# The b_i values are the interpolation coefficients from Table 2
# of Scholz and Stephens 1987
b0 = np.array([0.675, 1.281, 1.645, 1.96, 2.326, 2.573, 3.085])
b1 = np.array([-0.245, 0.25, 0.678, 1.149, 1.822, 2.364, 3.615])
b2 = np.array([-0.105, -0.305, -0.362, -0.391, -0.396, -0.345, -0.154])
critical = b0 + b1 / math.sqrt(m) + b2 / m
sig = np.array([0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001])
if A2 < critical.min() and method is None:
p = sig.max()
msg = (f"p-value capped: true value larger than {p}. Consider "
"specifying `method` "
"(e.g. `method=stats.PermutationMethod()`.)")
warnings.warn(msg, stacklevel=2)
elif A2 > critical.max() and method is None:
p = sig.min()
msg = (f"p-value floored: true value smaller than {p}. Consider "
"specifying `method` "
"(e.g. `method=stats.PermutationMethod()`.)")
warnings.warn(msg, stacklevel=2)
elif method is None:
# interpolation of probit of significance level
pf = np.polyfit(critical, log(sig), 2)
p = math.exp(np.polyval(pf, A2))
else:
p = res.pvalue if method is not None else p
# create result object with alias for backward compatibility
res = Anderson_ksampResult(A2, critical, p)
res.significance_level = p
return res
AnsariResult = namedtuple('AnsariResult', ('statistic', 'pvalue'))
class _ABW:
"""Distribution of Ansari-Bradley W-statistic under the null hypothesis."""
# TODO: calculate exact distribution considering ties
# We could avoid summing over more than half the frequencies,
# but initially it doesn't seem worth the extra complexity
def __init__(self):
"""Minimal initializer."""
self.m = None
self.n = None
self.astart = None
self.total = None
self.freqs = None
def _recalc(self, n, m):
"""When necessary, recalculate exact distribution."""
if n != self.n or m != self.m:
self.n, self.m = n, m
# distribution is NOT symmetric when m + n is odd
# n is len(x), m is len(y), and ratio of scales is defined x/y
astart, a1, _ = gscale(n, m)
self.astart = astart # minimum value of statistic
# Exact distribution of test statistic under null hypothesis
# expressed as frequencies/counts/integers to maintain precision.
# Stored as floats to avoid overflow of sums.
self.freqs = a1.astype(np.float64)
self.total = self.freqs.sum() # could calculate from m and n
# probability mass is self.freqs / self.total;
def pmf(self, k, n, m):
"""Probability mass function."""
self._recalc(n, m)
# The convention here is that PMF at k = 12.5 is the same as at k = 12,
# -> use `floor` in case of ties.
ind = np.floor(k - self.astart).astype(int)
return self.freqs[ind] / self.total
def cdf(self, k, n, m):
"""Cumulative distribution function."""
self._recalc(n, m)
# Null distribution derived without considering ties is
# approximate. Round down to avoid Type I error.
ind = np.ceil(k - self.astart).astype(int)
return self.freqs[:ind+1].sum() / self.total
def sf(self, k, n, m):
"""Survival function."""
self._recalc(n, m)
# Null distribution derived without considering ties is
# approximate. Round down to avoid Type I error.
ind = np.floor(k - self.astart).astype(int)
return self.freqs[ind:].sum() / self.total
# Maintain state for faster repeat calls to ansari w/ method='exact'
# _ABW() is calculated once per thread and stored as an attribute on
# this thread-local variable inside ansari().
_abw_state = threading.local()
@_axis_nan_policy_factory(AnsariResult, n_samples=2)
def ansari(x, y, alternative='two-sided'):
"""Perform the Ansari-Bradley test for equal scale parameters.
The Ansari-Bradley test ([1]_, [2]_) is a non-parametric test
for the equality of the scale parameter of the distributions
from which two samples were drawn. The null hypothesis states that
the ratio of the scale of the distribution underlying `x` to the scale
of the distribution underlying `y` is 1.
Parameters
----------
x, y : array_like
Arrays of sample data.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the ratio of scales is not equal to 1.
* 'less': the ratio of scales is less than 1.
* 'greater': the ratio of scales is greater than 1.
.. versionadded:: 1.7.0
Returns
-------
statistic : float
The Ansari-Bradley test statistic.
pvalue : float
The p-value of the hypothesis test.
See Also
--------
fligner : A non-parametric test for the equality of k variances
mood : A non-parametric test for the equality of two scale parameters
Notes
-----
The p-value given is exact when the sample sizes are both less than
55 and there are no ties, otherwise a normal approximation for the
p-value is used.
References
----------
.. [1] Ansari, A. R. and Bradley, R. A. (1960) Rank-sum tests for
dispersions, Annals of Mathematical Statistics, 31, 1174-1189.
.. [2] Sprent, Peter and N.C. Smeeton. Applied nonparametric
statistical methods. 3rd ed. Chapman and Hall/CRC. 2001.
Section 5.8.2.
.. [3] Nathaniel E. Helwig "Nonparametric Dispersion and Equality
Tests" at http://users.stat.umn.edu/~helwig/notes/npde-Notes.pdf
Examples
--------
>>> import numpy as np
>>> from scipy.stats import ansari
>>> rng = np.random.default_rng()
For these examples, we'll create three random data sets. The first
two, with sizes 35 and 25, are drawn from a normal distribution with
mean 0 and standard deviation 2. The third data set has size 25 and
is drawn from a normal distribution with standard deviation 1.25.
>>> x1 = rng.normal(loc=0, scale=2, size=35)
>>> x2 = rng.normal(loc=0, scale=2, size=25)
>>> x3 = rng.normal(loc=0, scale=1.25, size=25)
First we apply `ansari` to `x1` and `x2`. These samples are drawn
from the same distribution, so we expect the Ansari-Bradley test
should not lead us to conclude that the scales of the distributions
are different.
>>> ansari(x1, x2)
AnsariResult(statistic=541.0, pvalue=0.9762532927399098)
With a p-value close to 1, we cannot conclude that there is a
significant difference in the scales (as expected).
Now apply the test to `x1` and `x3`:
>>> ansari(x1, x3)
AnsariResult(statistic=425.0, pvalue=0.0003087020407974518)
The probability of observing such an extreme value of the statistic
under the null hypothesis of equal scales is only 0.03087%. We take this
as evidence against the null hypothesis in favor of the alternative:
the scales of the distributions from which the samples were drawn
are not equal.
We can use the `alternative` parameter to perform a one-tailed test.
In the above example, the scale of `x1` is greater than `x3` and so
the ratio of scales of `x1` and `x3` is greater than 1. This means
that the p-value when ``alternative='greater'`` should be near 0 and
hence we should be able to reject the null hypothesis:
>>> ansari(x1, x3, alternative='greater')
AnsariResult(statistic=425.0, pvalue=0.0001543510203987259)
As we can see, the p-value is indeed quite low. Use of
``alternative='less'`` should thus yield a large p-value:
>>> ansari(x1, x3, alternative='less')
AnsariResult(statistic=425.0, pvalue=0.9998643258449039)
"""
if alternative not in {'two-sided', 'greater', 'less'}:
raise ValueError("'alternative' must be 'two-sided',"
" 'greater', or 'less'.")
if not hasattr(_abw_state, 'a'):
_abw_state.a = _ABW()
x, y = asarray(x), asarray(y)
n = len(x)
m = len(y)
if m < 1:
raise ValueError("Not enough other observations.")
if n < 1:
raise ValueError("Not enough test observations.")
N = m + n
xy = r_[x, y] # combine
rank = _stats_py.rankdata(xy)
symrank = amin(array((rank, N - rank + 1)), 0)
AB = np.sum(symrank[:n], axis=0)
uxy = unique(xy)
repeats = (len(uxy) != len(xy))
exact = ((m < 55) and (n < 55) and not repeats)
if repeats and (m < 55 or n < 55):
warnings.warn("Ties preclude use of exact statistic.", stacklevel=2)
if exact:
if alternative == 'two-sided':
pval = 2.0 * np.minimum(_abw_state.a.cdf(AB, n, m),
_abw_state.a.sf(AB, n, m))
elif alternative == 'greater':
# AB statistic is _smaller_ when ratio of scales is larger,
# so this is the opposite of the usual calculation
pval = _abw_state.a.cdf(AB, n, m)
else:
pval = _abw_state.a.sf(AB, n, m)
return AnsariResult(AB, min(1.0, pval))
# otherwise compute normal approximation
if N % 2: # N odd
mnAB = n * (N+1.0)**2 / 4.0 / N
varAB = n * m * (N+1.0) * (3+N**2) / (48.0 * N**2)
else:
mnAB = n * (N+2.0) / 4.0
varAB = m * n * (N+2) * (N-2.0) / 48 / (N-1.0)
if repeats: # adjust variance estimates
# compute np.sum(tj * rj**2,axis=0)
fac = np.sum(symrank**2, axis=0)
if N % 2: # N odd
varAB = m * n * (16*N*fac - (N+1)**4) / (16.0 * N**2 * (N-1))
else: # N even
varAB = m * n * (16*fac - N*(N+2)**2) / (16.0 * N * (N-1))
# Small values of AB indicate larger dispersion for the x sample.
# Large values of AB indicate larger dispersion for the y sample.
# This is opposite to the way we define the ratio of scales. see [1]_.
z = (mnAB - AB) / sqrt(varAB)
pvalue = _get_pvalue(z, _SimpleNormal(), alternative, xp=np)
return AnsariResult(AB[()], pvalue[()])
BartlettResult = namedtuple('BartlettResult', ('statistic', 'pvalue'))
@_axis_nan_policy_factory(BartlettResult, n_samples=None)
def bartlett(*samples, axis=0):
r"""Perform Bartlett's test for equal variances.
Bartlett's test tests the null hypothesis that all input samples
are from populations with equal variances. For samples
from significantly non-normal populations, Levene's test
`levene` is more robust.
Parameters
----------
sample1, sample2, ... : array_like
arrays of sample data. Only 1d arrays are accepted, they may have
different lengths.
Returns
-------
statistic : float
The test statistic.
pvalue : float
The p-value of the test.
See Also
--------
fligner : A non-parametric test for the equality of k variances
levene : A robust parametric test for equality of k variances
:ref:`hypothesis_bartlett` : Extended example
Notes
-----
Conover et al. (1981) examine many of the existing parametric and
nonparametric tests by extensive simulations and they conclude that the
tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
superior in terms of robustness of departures from normality and power
([3]_).
References
----------
.. [1] https://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm
.. [2] Snedecor, George W. and Cochran, William G. (1989), Statistical
Methods, Eighth Edition, Iowa State University Press.
.. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
Hypothesis Testing based on Quadratic Inference Function. Technical
Report #99-03, Center for Likelihood Studies, Pennsylvania State
University.
.. [4] Bartlett, M. S. (1937). Properties of Sufficiency and Statistical
Tests. Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, Vol. 160, No.901, pp. 268-282.
Examples
--------
Test whether the lists `a`, `b` and `c` come from populations
with equal variances.
>>> import numpy as np
>>> from scipy import stats
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
>>> stat, p = stats.bartlett(a, b, c)
>>> p
1.1254782518834628e-05
The very small p-value suggests that the populations do not have equal
variances.
This is not surprising, given that the sample variance of `b` is much
larger than that of `a` and `c`:
>>> [np.var(x, ddof=1) for x in [a, b, c]]
[0.007054444444444413, 0.13073888888888888, 0.008890000000000002]
For a more detailed example, see :ref:`hypothesis_bartlett`.
"""
xp = array_namespace(*samples)
k = len(samples)
if k < 2:
raise ValueError("Must enter at least two input sample vectors.")
samples = _broadcast_arrays(samples, axis=axis, xp=xp)
samples = [xp_moveaxis_to_end(sample, axis, xp=xp) for sample in samples]
Ni = [xp.asarray(sample.shape[-1], dtype=sample.dtype) for sample in samples]
Ni = [xp.broadcast_to(N, samples[0].shape[:-1]) for N in Ni]
ssq = [xp.var(sample, correction=1, axis=-1) for sample in samples]
Ni = [arr[xp.newaxis, ...] for arr in Ni]
ssq = [arr[xp.newaxis, ...] for arr in ssq]
Ni = xp.concat(Ni, axis=0)
ssq = xp.concat(ssq, axis=0)
# sum dtype can be removed when 2023.12 rules kick in
dtype = Ni.dtype
Ntot = xp.sum(Ni, axis=0, dtype=dtype)
spsq = xp.sum((Ni - 1)*ssq, axis=0, dtype=dtype) / (Ntot - k)
numer = ((Ntot - k) * xp.log(spsq)
- xp.sum((Ni - 1)*xp.log(ssq), axis=0, dtype=dtype))
denom = (1 + 1/(3*(k - 1))
* ((xp.sum(1/(Ni - 1), axis=0, dtype=dtype)) - 1/(Ntot - k)))
T = numer / denom
chi2 = _SimpleChi2(xp.asarray(k-1))
pvalue = _get_pvalue(T, chi2, alternative='greater', symmetric=False, xp=xp)
T = xp.clip(T, min=0., max=xp.inf)
T = T[()] if T.ndim == 0 else T
pvalue = pvalue[()] if pvalue.ndim == 0 else pvalue
return BartlettResult(T, pvalue)
LeveneResult = namedtuple('LeveneResult', ('statistic', 'pvalue'))
@_axis_nan_policy_factory(LeveneResult, n_samples=None)
def levene(*samples, center='median', proportiontocut=0.05):
r"""Perform Levene test for equal variances.
The Levene test tests the null hypothesis that all input samples
are from populations with equal variances. Levene's test is an
alternative to Bartlett's test `bartlett` in the case where
there are significant deviations from normality.
Parameters
----------
sample1, sample2, ... : array_like
The sample data, possibly with different lengths. Only one-dimensional
samples are accepted.
center : {'mean', 'median', 'trimmed'}, optional
Which function of the data to use in the test. The default
is 'median'.
proportiontocut : float, optional
When `center` is 'trimmed', this gives the proportion of data points
to cut from each end. (See `scipy.stats.trim_mean`.)
Default is 0.05.
Returns
-------
statistic : float
The test statistic.
pvalue : float
The p-value for the test.
See Also
--------
fligner : A non-parametric test for the equality of k variances
bartlett : A parametric test for equality of k variances in normal samples
:ref:`hypothesis_levene` : Extended example
Notes
-----
Three variations of Levene's test are possible. The possibilities
and their recommended usages are:
* 'median' : Recommended for skewed (non-normal) distributions>
* 'mean' : Recommended for symmetric, moderate-tailed distributions.
* 'trimmed' : Recommended for heavy-tailed distributions.
The test version using the mean was proposed in the original article
of Levene ([2]_) while the median and trimmed mean have been studied by
Brown and Forsythe ([3]_), sometimes also referred to as Brown-Forsythe
test.
References
----------
.. [1] https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
.. [2] Levene, H. (1960). In Contributions to Probability and Statistics:
Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,
Stanford University Press, pp. 278-292.
.. [3] Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
Statistical Association, 69, 364-367
Examples
--------
Test whether the lists `a`, `b` and `c` come from populations
with equal variances.
>>> import numpy as np
>>> from scipy import stats
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
>>> stat, p = stats.levene(a, b, c)
>>> p
0.002431505967249681
The small p-value suggests that the populations do not have equal
variances.
This is not surprising, given that the sample variance of `b` is much
larger than that of `a` and `c`:
>>> [np.var(x, ddof=1) for x in [a, b, c]]
[0.007054444444444413, 0.13073888888888888, 0.008890000000000002]
For a more detailed example, see :ref:`hypothesis_levene`.
"""
if center not in ['mean', 'median', 'trimmed']:
raise ValueError("center must be 'mean', 'median' or 'trimmed'.")
k = len(samples)
if k < 2:
raise ValueError("Must enter at least two input sample vectors.")
Ni = np.empty(k)
Yci = np.empty(k, 'd')
if center == 'median':
def func(x):
return np.median(x, axis=0)
elif center == 'mean':
def func(x):
return np.mean(x, axis=0)
else: # center == 'trimmed'
samples = tuple(_stats_py.trimboth(np.sort(sample), proportiontocut)
for sample in samples)
def func(x):
return np.mean(x, axis=0)
for j in range(k):
Ni[j] = len(samples[j])
Yci[j] = func(samples[j])
Ntot = np.sum(Ni, axis=0)
# compute Zij's
Zij = [None] * k
for i in range(k):
Zij[i] = abs(asarray(samples[i]) - Yci[i])
# compute Zbari
Zbari = np.empty(k, 'd')
Zbar = 0.0
for i in range(k):
Zbari[i] = np.mean(Zij[i], axis=0)
Zbar += Zbari[i] * Ni[i]
Zbar /= Ntot
numer = (Ntot - k) * np.sum(Ni * (Zbari - Zbar)**2, axis=0)
# compute denom_variance
dvar = 0.0
for i in range(k):
dvar += np.sum((Zij[i] - Zbari[i])**2, axis=0)
denom = (k - 1.0) * dvar
W = numer / denom
pval = distributions.f.sf(W, k-1, Ntot-k) # 1 - cdf
return LeveneResult(W, pval)
def _apply_func(x, g, func):
# g is list of indices into x
# separating x into different groups
# func should be applied over the groups
g = unique(r_[0, g, len(x)])
output = [func(x[g[k]:g[k+1]]) for k in range(len(g) - 1)]
return asarray(output)
FlignerResult = namedtuple('FlignerResult', ('statistic', 'pvalue'))
@_axis_nan_policy_factory(FlignerResult, n_samples=None)
def fligner(*samples, center='median', proportiontocut=0.05):
r"""Perform Fligner-Killeen test for equality of variance.
Fligner's test tests the null hypothesis that all input samples
are from populations with equal variances. Fligner-Killeen's test is
distribution free when populations are identical [2]_.
Parameters
----------
sample1, sample2, ... : array_like
Arrays of sample data. Need not be the same length.
center : {'mean', 'median', 'trimmed'}, optional
Keyword argument controlling which function of the data is used in
computing the test statistic. The default is 'median'.
proportiontocut : float, optional
When `center` is 'trimmed', this gives the proportion of data points
to cut from each end. (See `scipy.stats.trim_mean`.)
Default is 0.05.
Returns
-------
statistic : float
The test statistic.
pvalue : float
The p-value for the hypothesis test.
See Also
--------
bartlett : A parametric test for equality of k variances in normal samples
levene : A robust parametric test for equality of k variances
:ref:`hypothesis_fligner` : Extended example
Notes
-----
As with Levene's test there are three variants of Fligner's test that
differ by the measure of central tendency used in the test. See `levene`
for more information.
Conover et al. (1981) examine many of the existing parametric and
nonparametric tests by extensive simulations and they conclude that the
tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
superior in terms of robustness of departures from normality and power
[3]_.
References
----------
.. [1] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
Hypothesis Testing based on Quadratic Inference Function. Technical
Report #99-03, Center for Likelihood Studies, Pennsylvania State
University.
https://cecas.clemson.edu/~cspark/cv/paper/qif/draftqif2.pdf
.. [2] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample
tests for scale. Journal of the American Statistical Association.
71(353), 210-213.
.. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
Hypothesis Testing based on Quadratic Inference Function. Technical
Report #99-03, Center for Likelihood Studies, Pennsylvania State
University.
.. [4] Conover, W. J., Johnson, M. E. and Johnson M. M. (1981). A
comparative study of tests for homogeneity of variances, with
applications to the outer continental shelf bidding data.
Technometrics, 23(4), 351-361.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
Test whether the lists `a`, `b` and `c` come from populations
with equal variances.
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
>>> stat, p = stats.fligner(a, b, c)
>>> p
0.00450826080004775
The small p-value suggests that the populations do not have equal
variances.
This is not surprising, given that the sample variance of `b` is much
larger than that of `a` and `c`:
>>> [np.var(x, ddof=1) for x in [a, b, c]]
[0.007054444444444413, 0.13073888888888888, 0.008890000000000002]
For a more detailed example, see :ref:`hypothesis_fligner`.
"""
if center not in ['mean', 'median', 'trimmed']:
raise ValueError("center must be 'mean', 'median' or 'trimmed'.")
k = len(samples)
if k < 2:
raise ValueError("Must enter at least two input sample vectors.")
# Handle empty input
for sample in samples:
if sample.size == 0:
NaN = _get_nan(*samples)
return FlignerResult(NaN, NaN)
if center == 'median':
def func(x):
return np.median(x, axis=0)
elif center == 'mean':
def func(x):
return np.mean(x, axis=0)
else: # center == 'trimmed'
samples = tuple(_stats_py.trimboth(sample, proportiontocut)
for sample in samples)
def func(x):
return np.mean(x, axis=0)
Ni = asarray([len(samples[j]) for j in range(k)])
Yci = asarray([func(samples[j]) for j in range(k)])
Ntot = np.sum(Ni, axis=0)
# compute Zij's
Zij = [abs(asarray(samples[i]) - Yci[i]) for i in range(k)]
allZij = []
g = [0]
for i in range(k):
allZij.extend(list(Zij[i]))
g.append(len(allZij))
ranks = _stats_py.rankdata(allZij)
sample = distributions.norm.ppf(ranks / (2*(Ntot + 1.0)) + 0.5)
# compute Aibar
Aibar = _apply_func(sample, g, np.sum) / Ni
anbar = np.mean(sample, axis=0)
varsq = np.var(sample, axis=0, ddof=1)
statistic = np.sum(Ni * (asarray(Aibar) - anbar)**2.0, axis=0) / varsq
chi2 = _SimpleChi2(k-1)
pval = _get_pvalue(statistic, chi2, alternative='greater', symmetric=False, xp=np)
return FlignerResult(statistic, pval)
@_axis_nan_policy_factory(lambda x1: (x1,), n_samples=4, n_outputs=1)
def _mood_inner_lc(xy, x, diffs, sorted_xy, n, m, N) -> float:
# Obtain the unique values and their frequencies from the pooled samples.
# "a_j, + b_j, = t_j, for j = 1, ... k" where `k` is the number of unique
# classes, and "[t]he number of values associated with the x's and y's in
# the jth class will be denoted by a_j, and b_j respectively."
# (Mielke, 312)
# Reuse previously computed sorted array and `diff` arrays to obtain the
# unique values and counts. Prepend `diffs` with a non-zero to indicate
# that the first element should be marked as not matching what preceded it.
diffs_prep = np.concatenate(([1], diffs))
# Unique elements are where the was a difference between elements in the
# sorted array
uniques = sorted_xy[diffs_prep != 0]
# The count of each element is the bin size for each set of consecutive
# differences where the difference is zero. Replace nonzero differences
# with 1 and then use the cumulative sum to count the indices.
t = np.bincount(np.cumsum(np.asarray(diffs_prep != 0, dtype=int)))[1:]
k = len(uniques)
js = np.arange(1, k + 1, dtype=int)
# the `b` array mentioned in the paper is not used, outside of the
# calculation of `t`, so we do not need to calculate it separately. Here
# we calculate `a`. In plain language, `a[j]` is the number of values in
# `x` that equal `uniques[j]`.
sorted_xyx = np.sort(np.concatenate((xy, x)))
diffs = np.diff(sorted_xyx)
diffs_prep = np.concatenate(([1], diffs))
diff_is_zero = np.asarray(diffs_prep != 0, dtype=int)
xyx_counts = np.bincount(np.cumsum(diff_is_zero))[1:]
a = xyx_counts - t
# "Define .. a_0 = b_0 = t_0 = S_0 = 0" (Mielke 312) so we shift `a`
# and `t` arrays over 1 to allow a first element of 0 to accommodate this
# indexing.
t = np.concatenate(([0], t))
a = np.concatenate(([0], a))
# S is built from `t`, so it does not need a preceding zero added on.
S = np.cumsum(t)
# define a copy of `S` with a prepending zero for later use to avoid
# the need for indexing.
S_i_m1 = np.concatenate(([0], S[:-1]))
# Psi, as defined by the 6th unnumbered equation on page 313 (Mielke).
# Note that in the paper there is an error where the denominator `2` is
# squared when it should be the entire equation.
def psi(indicator):
return (indicator - (N + 1)/2)**2
# define summation range for use in calculation of phi, as seen in sum
# in the unnumbered equation on the bottom of page 312 (Mielke).
s_lower = S[js - 1] + 1
s_upper = S[js] + 1
phi_J = [np.arange(s_lower[idx], s_upper[idx]) for idx in range(k)]
# for every range in the above array, determine the sum of psi(I) for
# every element in the range. Divide all the sums by `t`. Following the
# last unnumbered equation on page 312.
phis = [np.sum(psi(I_j)) for I_j in phi_J] / t[js]
# `T` is equal to a[j] * phi[j], per the first unnumbered equation on
# page 312. `phis` is already in the order based on `js`, so we index
# into `a` with `js` as well.
T = sum(phis * a[js])
# The approximate statistic
E_0_T = n * (N * N - 1) / 12
varM = (m * n * (N + 1.0) * (N ** 2 - 4) / 180 -
m * n / (180 * N * (N - 1)) * np.sum(
t * (t**2 - 1) * (t**2 - 4 + (15 * (N - S - S_i_m1) ** 2))
))
return ((T - E_0_T) / np.sqrt(varM),)
def _mood_too_small(samples, kwargs, axis=-1):
x, y = samples
n = x.shape[axis]
m = y.shape[axis]
N = m + n
return N < 3
@_axis_nan_policy_factory(SignificanceResult, n_samples=2, too_small=_mood_too_small)
def mood(x, y, axis=0, alternative="two-sided"):
"""Perform Mood's test for equal scale parameters.
Mood's two-sample test for scale parameters is a non-parametric
test for the null hypothesis that two samples are drawn from the
same distribution with the same scale parameter.
Parameters
----------
x, y : array_like
Arrays of sample data. There must be at least three observations
total.
axis : int, optional
The axis along which the samples are tested. `x` and `y` can be of
different length along `axis`.
If `axis` is None, `x` and `y` are flattened and the test is done on
all values in the flattened arrays.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the scales of the distributions underlying `x` and `y`
are different.
* 'less': the scale of the distribution underlying `x` is less than
the scale of the distribution underlying `y`.
* 'greater': the scale of the distribution underlying `x` is greater
than the scale of the distribution underlying `y`.
.. versionadded:: 1.7.0
Returns
-------
res : SignificanceResult
An object containing attributes:
statistic : scalar or ndarray
The z-score for the hypothesis test. For 1-D inputs a scalar is
returned.
pvalue : scalar ndarray
The p-value for the hypothesis test.
See Also
--------
fligner : A non-parametric test for the equality of k variances
ansari : A non-parametric test for the equality of 2 variances
bartlett : A parametric test for equality of k variances in normal samples
levene : A parametric test for equality of k variances
Notes
-----
The data are assumed to be drawn from probability distributions ``f(x)``
and ``f(x/s) / s`` respectively, for some probability density function f.
The null hypothesis is that ``s == 1``.
For multi-dimensional arrays, if the inputs are of shapes
``(n0, n1, n2, n3)`` and ``(n0, m1, n2, n3)``, then if ``axis=1``, the
resulting z and p values will have shape ``(n0, n2, n3)``. Note that
``n1`` and ``m1`` don't have to be equal, but the other dimensions do.
References
----------
[1] Mielke, Paul W. "Note on Some Squared Rank Tests with Existing Ties."
Technometrics, vol. 9, no. 2, 1967, pp. 312-14. JSTOR,
https://doi.org/10.2307/1266427. Accessed 18 May 2022.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x2 = rng.standard_normal((2, 45, 6, 7))
>>> x1 = rng.standard_normal((2, 30, 6, 7))
>>> res = stats.mood(x1, x2, axis=1)
>>> res.pvalue.shape
(2, 6, 7)
Find the number of points where the difference in scale is not significant:
>>> (res.pvalue > 0.1).sum()
78
Perform the test with different scales:
>>> x1 = rng.standard_normal((2, 30))
>>> x2 = rng.standard_normal((2, 35)) * 10.0
>>> stats.mood(x1, x2, axis=1)
SignificanceResult(statistic=array([-5.76174136, -6.12650783]),
pvalue=array([8.32505043e-09, 8.98287869e-10]))
"""
x = np.asarray(x, dtype=float)
y = np.asarray(y, dtype=float)
if axis < 0:
axis = x.ndim + axis
# Determine shape of the result arrays
res_shape = tuple([x.shape[ax] for ax in range(len(x.shape)) if ax != axis])
if not (res_shape == tuple([y.shape[ax] for ax in range(len(y.shape)) if
ax != axis])):
raise ValueError("Dimensions of x and y on all axes except `axis` "
"should match")
n = x.shape[axis]
m = y.shape[axis]
N = m + n
if N < 3:
raise ValueError("Not enough observations.")
xy = np.concatenate((x, y), axis=axis)
# determine if any of the samples contain ties
sorted_xy = np.sort(xy, axis=axis)
diffs = np.diff(sorted_xy, axis=axis)
if 0 in diffs:
z = np.asarray(_mood_inner_lc(xy, x, diffs, sorted_xy, n, m, N,
axis=axis))
else:
if axis != 0:
xy = np.moveaxis(xy, axis, 0)
xy = xy.reshape(xy.shape[0], -1)
# Generalized to the n-dimensional case by adding the axis argument,
# and using for loops, since rankdata is not vectorized. For improving
# performance consider vectorizing rankdata function.
all_ranks = np.empty_like(xy)
for j in range(xy.shape[1]):
all_ranks[:, j] = _stats_py.rankdata(xy[:, j])
Ri = all_ranks[:n]
M = np.sum((Ri - (N + 1.0) / 2) ** 2, axis=0)
# Approx stat.
mnM = n * (N * N - 1.0) / 12
varM = m * n * (N + 1.0) * (N + 2) * (N - 2) / 180
z = (M - mnM) / sqrt(varM)
pval = _get_pvalue(z, _SimpleNormal(), alternative, xp=np)
if res_shape == ():
# Return scalars, not 0-D arrays
z = z[0]
pval = pval[0]
else:
z.shape = res_shape
pval.shape = res_shape
return SignificanceResult(z[()], pval[()])
WilcoxonResult = _make_tuple_bunch('WilcoxonResult', ['statistic', 'pvalue'])
def wilcoxon_result_unpacker(res):
if hasattr(res, 'zstatistic'):
return res.statistic, res.pvalue, res.zstatistic
else:
return res.statistic, res.pvalue
def wilcoxon_result_object(statistic, pvalue, zstatistic=None):
res = WilcoxonResult(statistic, pvalue)
if zstatistic is not None:
res.zstatistic = zstatistic
return res
def wilcoxon_outputs(kwds):
method = kwds.get('method', 'auto')
if method == 'asymptotic':
return 3
return 2
@_rename_parameter("mode", "method")
@_axis_nan_policy_factory(
wilcoxon_result_object, paired=True,
n_samples=lambda kwds: 2 if kwds.get('y', None) is not None else 1,
result_to_tuple=wilcoxon_result_unpacker, n_outputs=wilcoxon_outputs,
)
def wilcoxon(x, y=None, zero_method="wilcox", correction=False,
alternative="two-sided", method='auto', *, axis=0):
"""Calculate the Wilcoxon signed-rank test.
The Wilcoxon signed-rank test tests the null hypothesis that two
related paired samples come from the same distribution. In particular,
it tests whether the distribution of the differences ``x - y`` is symmetric
about zero. It is a non-parametric version of the paired T-test.
Parameters
----------
x : array_like
Either the first set of measurements (in which case ``y`` is the second
set of measurements), or the differences between two sets of
measurements (in which case ``y`` is not to be specified.) Must be
one-dimensional.
y : array_like, optional
Either the second set of measurements (if ``x`` is the first set of
measurements), or not specified (if ``x`` is the differences between
two sets of measurements.) Must be one-dimensional.
.. warning::
When `y` is provided, `wilcoxon` calculates the test statistic
based on the ranks of the absolute values of ``d = x - y``.
Roundoff error in the subtraction can result in elements of ``d``
being assigned different ranks even when they would be tied with
exact arithmetic. Rather than passing `x` and `y` separately,
consider computing the difference ``x - y``, rounding as needed to
ensure that only truly unique elements are numerically distinct,
and passing the result as `x`, leaving `y` at the default (None).
zero_method : {"wilcox", "pratt", "zsplit"}, optional
There are different conventions for handling pairs of observations
with equal values ("zero-differences", or "zeros").
* "wilcox": Discards all zero-differences (default); see [4]_.
* "pratt": Includes zero-differences in the ranking process,
but drops the ranks of the zeros (more conservative); see [3]_.
In this case, the normal approximation is adjusted as in [5]_.
* "zsplit": Includes zero-differences in the ranking process and
splits the zero rank between positive and negative ones.
correction : bool, optional
If True, apply continuity correction by adjusting the Wilcoxon rank
statistic by 0.5 towards the mean value when computing the
z-statistic if a normal approximation is used. Default is False.
alternative : {"two-sided", "greater", "less"}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
In the following, let ``d`` represent the difference between the paired
samples: ``d = x - y`` if both ``x`` and ``y`` are provided, or
``d = x`` otherwise.
* 'two-sided': the distribution underlying ``d`` is not symmetric
about zero.
* 'less': the distribution underlying ``d`` is stochastically less
than a distribution symmetric about zero.
* 'greater': the distribution underlying ``d`` is stochastically
greater than a distribution symmetric about zero.
method : {"auto", "exact", "asymptotic"} or `PermutationMethod` instance, optional
Method to calculate the p-value, see Notes. Default is "auto".
axis : int or None, default: 0
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear
in a corresponding element of the output. If ``None``, the input will
be raveled before computing the statistic.
Returns
-------
An object with the following attributes.
statistic : array_like
If `alternative` is "two-sided", the sum of the ranks of the
differences above or below zero, whichever is smaller.
Otherwise the sum of the ranks of the differences above zero.
pvalue : array_like
The p-value for the test depending on `alternative` and `method`.
zstatistic : array_like
When ``method = 'asymptotic'``, this is the normalized z-statistic::
z = (T - mn - d) / se
where ``T`` is `statistic` as defined above, ``mn`` is the mean of the
distribution under the null hypothesis, ``d`` is a continuity
correction, and ``se`` is the standard error.
When ``method != 'asymptotic'``, this attribute is not available.
See Also
--------
kruskal, mannwhitneyu
Notes
-----
In the following, let ``d`` represent the difference between the paired
samples: ``d = x - y`` if both ``x`` and ``y`` are provided, or ``d = x``
otherwise. Assume that all elements of ``d`` are independent and
identically distributed observations, and all are distinct and nonzero.
- When ``len(d)`` is sufficiently large, the null distribution of the
normalized test statistic (`zstatistic` above) is approximately normal,
and ``method = 'asymptotic'`` can be used to compute the p-value.
- When ``len(d)`` is small, the normal approximation may not be accurate,
and ``method='exact'`` is preferred (at the cost of additional
execution time).
- The default, ``method='auto'``, selects between the two:
``method='exact'`` is used when ``len(d) <= 50``, and
``method='asymptotic'`` is used otherwise.
The presence of "ties" (i.e. not all elements of ``d`` are unique) or
"zeros" (i.e. elements of ``d`` are zero) changes the null distribution
of the test statistic, and ``method='exact'`` no longer calculates
the exact p-value. If ``method='asymptotic'``, the z-statistic is adjusted
for more accurate comparison against the standard normal, but still,
for finite sample sizes, the standard normal is only an approximation of
the true null distribution of the z-statistic. For such situations, the
`method` parameter also accepts instances of `PermutationMethod`. In this
case, the p-value is computed using `permutation_test` with the provided
configuration options and other appropriate settings.
The presence of ties and zeros affects the resolution of ``method='auto'``
accordingly: exhasutive permutations are performed when ``len(d) <= 13``,
and the asymptotic method is used otherwise. Note that they asymptotic
method may not be very accurate even for ``len(d) > 14``; the threshold
was chosen as a compromise between execution time and accuracy under the
constraint that the results must be deterministic. Consider providing an
instance of `PermutationMethod` method manually, choosing the
``n_resamples`` parameter to balance time constraints and accuracy
requirements.
Please also note that in the edge case that all elements of ``d`` are zero,
the p-value relying on the normal approximaton cannot be computed (NaN)
if ``zero_method='wilcox'`` or ``zero_method='pratt'``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
.. [2] Conover, W.J., Practical Nonparametric Statistics, 1971.
.. [3] Pratt, J.W., Remarks on Zeros and Ties in the Wilcoxon Signed
Rank Procedures, Journal of the American Statistical Association,
Vol. 54, 1959, pp. 655-667. :doi:`10.1080/01621459.1959.10501526`
.. [4] Wilcoxon, F., Individual Comparisons by Ranking Methods,
Biometrics Bulletin, Vol. 1, 1945, pp. 80-83. :doi:`10.2307/3001968`
.. [5] Cureton, E.E., The Normal Approximation to the Signed-Rank
Sampling Distribution When Zero Differences are Present,
Journal of the American Statistical Association, Vol. 62, 1967,
pp. 1068-1069. :doi:`10.1080/01621459.1967.10500917`
Examples
--------
In [4]_, the differences in height between cross- and self-fertilized
corn plants is given as follows:
>>> d = [6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75]
Cross-fertilized plants appear to be higher. To test the null
hypothesis that there is no height difference, we can apply the
two-sided test:
>>> from scipy.stats import wilcoxon
>>> res = wilcoxon(d)
>>> res.statistic, res.pvalue
(24.0, 0.041259765625)
Hence, we would reject the null hypothesis at a confidence level of 5%,
concluding that there is a difference in height between the groups.
To confirm that the median of the differences can be assumed to be
positive, we use:
>>> res = wilcoxon(d, alternative='greater')
>>> res.statistic, res.pvalue
(96.0, 0.0206298828125)
This shows that the null hypothesis that the median is negative can be
rejected at a confidence level of 5% in favor of the alternative that
the median is greater than zero. The p-values above are exact. Using the
normal approximation gives very similar values:
>>> res = wilcoxon(d, method='asymptotic')
>>> res.statistic, res.pvalue
(24.0, 0.04088813291185591)
Note that the statistic changed to 96 in the one-sided case (the sum
of ranks of positive differences) whereas it is 24 in the two-sided
case (the minimum of sum of ranks above and below zero).
In the example above, the differences in height between paired plants are
provided to `wilcoxon` directly. Alternatively, `wilcoxon` accepts two
samples of equal length, calculates the differences between paired
elements, then performs the test. Consider the samples ``x`` and ``y``:
>>> import numpy as np
>>> x = np.array([0.5, 0.825, 0.375, 0.5])
>>> y = np.array([0.525, 0.775, 0.325, 0.55])
>>> res = wilcoxon(x, y, alternative='greater')
>>> res
WilcoxonResult(statistic=5.0, pvalue=0.5625)
Note that had we calculated the differences by hand, the test would have
produced different results:
>>> d = [-0.025, 0.05, 0.05, -0.05]
>>> ref = wilcoxon(d, alternative='greater')
>>> ref
WilcoxonResult(statistic=6.0, pvalue=0.5)
The substantial difference is due to roundoff error in the results of
``x-y``:
>>> d - (x-y)
array([2.08166817e-17, 6.93889390e-17, 1.38777878e-17, 4.16333634e-17])
Even though we expected all the elements of ``(x-y)[1:]`` to have the same
magnitude ``0.05``, they have slightly different magnitudes in practice,
and therefore are assigned different ranks in the test. Before performing
the test, consider calculating ``d`` and adjusting it as necessary to
ensure that theoretically identically values are not numerically distinct.
For example:
>>> d2 = np.around(x - y, decimals=3)
>>> wilcoxon(d2, alternative='greater')
WilcoxonResult(statistic=6.0, pvalue=0.5)
"""
# replace approx by asymptotic to ensure backwards compatability
if method == "approx":
method = "asymptotic"
return _wilcoxon._wilcoxon_nd(x, y, zero_method, correction, alternative,
method, axis)
MedianTestResult = _make_tuple_bunch(
'MedianTestResult',
['statistic', 'pvalue', 'median', 'table'], []
)
def median_test(*samples, ties='below', correction=True, lambda_=1,
nan_policy='propagate'):
"""Perform a Mood's median test.
Test that two or more samples come from populations with the same median.
Let ``n = len(samples)`` be the number of samples. The "grand median" of
all the data is computed, and a contingency table is formed by
classifying the values in each sample as being above or below the grand
median. The contingency table, along with `correction` and `lambda_`,
are passed to `scipy.stats.chi2_contingency` to compute the test statistic
and p-value.
Parameters
----------
sample1, sample2, ... : array_like
The set of samples. There must be at least two samples.
Each sample must be a one-dimensional sequence containing at least
one value. The samples are not required to have the same length.
ties : str, optional
Determines how values equal to the grand median are classified in
the contingency table. The string must be one of::
"below":
Values equal to the grand median are counted as "below".
"above":
Values equal to the grand median are counted as "above".
"ignore":
Values equal to the grand median are not counted.
The default is "below".
correction : bool, optional
If True, *and* there are just two samples, apply Yates' correction
for continuity when computing the test statistic associated with
the contingency table. Default is True.
lambda_ : float or str, optional
By default, the statistic computed in this test is Pearson's
chi-squared statistic. `lambda_` allows a statistic from the
Cressie-Read power divergence family to be used instead. See
`power_divergence` for details.
Default is 1 (Pearson's chi-squared statistic).
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
res : MedianTestResult
An object containing attributes:
statistic : float
The test statistic. The statistic that is returned is determined
by `lambda_`. The default is Pearson's chi-squared statistic.
pvalue : float
The p-value of the test.
median : float
The grand median.
table : ndarray
The contingency table. The shape of the table is (2, n), where
n is the number of samples. The first row holds the counts of the
values above the grand median, and the second row holds the counts
of the values below the grand median. The table allows further
analysis with, for example, `scipy.stats.chi2_contingency`, or with
`scipy.stats.fisher_exact` if there are two samples, without having
to recompute the table. If ``nan_policy`` is "propagate" and there
are nans in the input, the return value for ``table`` is ``None``.
See Also
--------
kruskal : Compute the Kruskal-Wallis H-test for independent samples.
mannwhitneyu : Computes the Mann-Whitney rank test on samples x and y.
Notes
-----
.. versionadded:: 0.15.0
References
----------
.. [1] Mood, A. M., Introduction to the Theory of Statistics. McGraw-Hill
(1950), pp. 394-399.
.. [2] Zar, J. H., Biostatistical Analysis, 5th ed. Prentice Hall (2010).
See Sections 8.12 and 10.15.
Examples
--------
A biologist runs an experiment in which there are three groups of plants.
Group 1 has 16 plants, group 2 has 15 plants, and group 3 has 17 plants.
Each plant produces a number of seeds. The seed counts for each group
are::
Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
Group 3: 0 3 9 22 23 25 25 33 34 34 40 45 46 48 62 67 84
The following code applies Mood's median test to these samples.
>>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
>>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
>>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
>>> from scipy.stats import median_test
>>> res = median_test(g1, g2, g3)
The median is
>>> res.median
34.0
and the contingency table is
>>> res.table
array([[ 5, 10, 7],
[11, 5, 10]])
`p` is too large to conclude that the medians are not the same:
>>> res.pvalue
0.12609082774093244
The "G-test" can be performed by passing ``lambda_="log-likelihood"`` to
`median_test`.
>>> res = median_test(g1, g2, g3, lambda_="log-likelihood")
>>> res.pvalue
0.12224779737117837
The median occurs several times in the data, so we'll get a different
result if, for example, ``ties="above"`` is used:
>>> res = median_test(g1, g2, g3, ties="above")
>>> res.pvalue
0.063873276069553273
>>> res.table
array([[ 5, 11, 9],
[11, 4, 8]])
This example demonstrates that if the data set is not large and there
are values equal to the median, the p-value can be sensitive to the
choice of `ties`.
"""
if len(samples) < 2:
raise ValueError('median_test requires two or more samples.')
ties_options = ['below', 'above', 'ignore']
if ties not in ties_options:
raise ValueError(f"invalid 'ties' option '{ties}'; 'ties' must be one "
f"of: {str(ties_options)[1:-1]}")
data = [np.asarray(sample) for sample in samples]
# Validate the sizes and shapes of the arguments.
for k, d in enumerate(data):
if d.size == 0:
raise ValueError("Sample %d is empty. All samples must "
"contain at least one value." % (k + 1))
if d.ndim != 1:
raise ValueError("Sample %d has %d dimensions. All "
"samples must be one-dimensional sequences." %
(k + 1, d.ndim))
cdata = np.concatenate(data)
contains_nan, nan_policy = _contains_nan(cdata, nan_policy)
if contains_nan and nan_policy == 'propagate':
return MedianTestResult(np.nan, np.nan, np.nan, None)
if contains_nan:
grand_median = np.median(cdata[~np.isnan(cdata)])
else:
grand_median = np.median(cdata)
# When the minimum version of numpy supported by scipy is 1.9.0,
# the above if/else statement can be replaced by the single line:
# grand_median = np.nanmedian(cdata)
# Create the contingency table.
table = np.zeros((2, len(data)), dtype=np.int64)
for k, sample in enumerate(data):
sample = sample[~np.isnan(sample)]
nabove = count_nonzero(sample > grand_median)
nbelow = count_nonzero(sample < grand_median)
nequal = sample.size - (nabove + nbelow)
table[0, k] += nabove
table[1, k] += nbelow
if ties == "below":
table[1, k] += nequal
elif ties == "above":
table[0, k] += nequal
# Check that no row or column of the table is all zero.
# Such a table can not be given to chi2_contingency, because it would have
# a zero in the table of expected frequencies.
rowsums = table.sum(axis=1)
if rowsums[0] == 0:
raise ValueError(f"All values are below the grand median ({grand_median}).")
if rowsums[1] == 0:
raise ValueError(f"All values are above the grand median ({grand_median}).")
if ties == "ignore":
# We already checked that each sample has at least one value, but it
# is possible that all those values equal the grand median. If `ties`
# is "ignore", that would result in a column of zeros in `table`. We
# check for that case here.
zero_cols = np.nonzero((table == 0).all(axis=0))[0]
if len(zero_cols) > 0:
msg = ("All values in sample %d are equal to the grand "
"median (%r), so they are ignored, resulting in an "
"empty sample." % (zero_cols[0] + 1, grand_median))
raise ValueError(msg)
stat, p, dof, expected = chi2_contingency(table, lambda_=lambda_,
correction=correction)
return MedianTestResult(stat, p, grand_median, table)
def _circfuncs_common(samples, period, xp=None):
xp = array_namespace(samples) if xp is None else xp
if xp.isdtype(samples.dtype, 'integral'):
dtype = xp.asarray(1.).dtype # get default float type
samples = xp.asarray(samples, dtype=dtype)
# Recast samples as radians that range between 0 and 2 pi and calculate
# the sine and cosine
scaled_samples = samples * ((2.0 * pi) / period)
sin_samp = xp.sin(scaled_samples)
cos_samp = xp.cos(scaled_samples)
return samples, sin_samp, cos_samp
@_axis_nan_policy_factory(
lambda x: x, n_outputs=1, default_axis=None,
result_to_tuple=lambda x: (x,)
)
def circmean(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
r"""Compute the circular mean of a sample of angle observations.
Given :math:`n` angle observations :math:`x_1, \cdots, x_n` measured in
radians, their *circular mean* is defined by ([1]_, Eq. 2.2.4)
.. math::
\mathrm{Arg} \left( \frac{1}{n} \sum_{k=1}^n e^{i x_k} \right)
where :math:`i` is the imaginary unit and :math:`\mathop{\mathrm{Arg}} z`
gives the principal value of the argument of complex number :math:`z`,
restricted to the range :math:`[0,2\pi]` by default. :math:`z` in the
above expression is known as the `mean resultant vector`.
Parameters
----------
samples : array_like
Input array of angle observations. The value of a full angle is
equal to ``(high - low)``.
high : float, optional
Upper boundary of the principal value of an angle. Default is ``2*pi``.
low : float, optional
Lower boundary of the principal value of an angle. Default is ``0``.
Returns
-------
circmean : float
Circular mean, restricted to the range ``[low, high]``.
If the mean resultant vector is zero, an input-dependent,
implementation-defined number between ``[low, high]`` is returned.
If the input array is empty, ``np.nan`` is returned.
See Also
--------
circstd : Circular standard deviation.
circvar : Circular variance.
References
----------
.. [1] Mardia, K. V. and Jupp, P. E. *Directional Statistics*.
John Wiley & Sons, 1999.
Examples
--------
For readability, all angles are printed out in degrees.
>>> import numpy as np
>>> from scipy.stats import circmean
>>> import matplotlib.pyplot as plt
>>> angles = np.deg2rad(np.array([20, 30, 330]))
>>> circmean = circmean(angles)
>>> np.rad2deg(circmean)
7.294976657784009
>>> mean = angles.mean()
>>> np.rad2deg(mean)
126.66666666666666
Plot and compare the circular mean against the arithmetic mean.
>>> plt.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
... np.sin(np.linspace(0, 2*np.pi, 500)),
... c='k')
>>> plt.scatter(np.cos(angles), np.sin(angles), c='k')
>>> plt.scatter(np.cos(circmean), np.sin(circmean), c='b',
... label='circmean')
>>> plt.scatter(np.cos(mean), np.sin(mean), c='r', label='mean')
>>> plt.legend()
>>> plt.axis('equal')
>>> plt.show()
"""
xp = array_namespace(samples)
# Needed for non-NumPy arrays to get appropriate NaN result
# Apparently atan2(0, 0) is 0, even though it is mathematically undefined
if xp_size(samples) == 0:
return xp.mean(samples, axis=axis)
period = high - low
samples, sin_samp, cos_samp = _circfuncs_common(samples, period, xp=xp)
sin_sum = xp.sum(sin_samp, axis=axis)
cos_sum = xp.sum(cos_samp, axis=axis)
res = xp.atan2(sin_sum, cos_sum)
res = res[()] if res.ndim == 0 else res
return (res * (period / (2.0 * pi)) - low) % period + low
@_axis_nan_policy_factory(
lambda x: x, n_outputs=1, default_axis=None,
result_to_tuple=lambda x: (x,)
)
def circvar(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
r"""Compute the circular variance of a sample of angle observations.
Given :math:`n` angle observations :math:`x_1, \cdots, x_n` measured in
radians, their *circular variance* is defined by ([2]_, Eq. 2.3.3)
.. math::
1 - \left| \frac{1}{n} \sum_{k=1}^n e^{i x_k} \right|
where :math:`i` is the imaginary unit and :math:`|z|` gives the length
of the complex number :math:`z`. :math:`|z|` in the above expression
is known as the `mean resultant length`.
Parameters
----------
samples : array_like
Input array of angle observations. The value of a full angle is
equal to ``(high - low)``.
high : float, optional
Upper boundary of the principal value of an angle. Default is ``2*pi``.
low : float, optional
Lower boundary of the principal value of an angle. Default is ``0``.
Returns
-------
circvar : float
Circular variance. The returned value is in the range ``[0, 1]``,
where ``0`` indicates no variance and ``1`` indicates large variance.
If the input array is empty, ``np.nan`` is returned.
See Also
--------
circmean : Circular mean.
circstd : Circular standard deviation.
Notes
-----
In the limit of small angles, the circular variance is close to
half the 'linear' variance if measured in radians.
References
----------
.. [1] Fisher, N.I. *Statistical analysis of circular data*. Cambridge
University Press, 1993.
.. [2] Mardia, K. V. and Jupp, P. E. *Directional Statistics*.
John Wiley & Sons, 1999.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import circvar
>>> import matplotlib.pyplot as plt
>>> samples_1 = np.array([0.072, -0.158, 0.077, 0.108, 0.286,
... 0.133, -0.473, -0.001, -0.348, 0.131])
>>> samples_2 = np.array([0.111, -0.879, 0.078, 0.733, 0.421,
... 0.104, -0.136, -0.867, 0.012, 0.105])
>>> circvar_1 = circvar(samples_1)
>>> circvar_2 = circvar(samples_2)
Plot the samples.
>>> fig, (left, right) = plt.subplots(ncols=2)
>>> for image in (left, right):
... image.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
... np.sin(np.linspace(0, 2*np.pi, 500)),
... c='k')
... image.axis('equal')
... image.axis('off')
>>> left.scatter(np.cos(samples_1), np.sin(samples_1), c='k', s=15)
>>> left.set_title(f"circular variance: {np.round(circvar_1, 2)!r}")
>>> right.scatter(np.cos(samples_2), np.sin(samples_2), c='k', s=15)
>>> right.set_title(f"circular variance: {np.round(circvar_2, 2)!r}")
>>> plt.show()
"""
xp = array_namespace(samples)
period = high - low
samples, sin_samp, cos_samp = _circfuncs_common(samples, period, xp=xp)
sin_mean = xp.mean(sin_samp, axis=axis)
cos_mean = xp.mean(cos_samp, axis=axis)
hypotenuse = (sin_mean**2. + cos_mean**2.)**0.5
# hypotenuse can go slightly above 1 due to rounding errors
R = xp.clip(hypotenuse, max=1.)
res = 1. - R
return res
@_axis_nan_policy_factory(
lambda x: x, n_outputs=1, default_axis=None,
result_to_tuple=lambda x: (x,)
)
def circstd(samples, high=2*pi, low=0, axis=None, nan_policy='propagate', *,
normalize=False):
r"""
Compute the circular standard deviation of a sample of angle observations.
Given :math:`n` angle observations :math:`x_1, \cdots, x_n` measured in
radians, their `circular standard deviation` is defined by
([2]_, Eq. 2.3.11)
.. math::
\sqrt{ -2 \log \left| \frac{1}{n} \sum_{k=1}^n e^{i x_k} \right| }
where :math:`i` is the imaginary unit and :math:`|z|` gives the length
of the complex number :math:`z`. :math:`|z|` in the above expression
is known as the `mean resultant length`.
Parameters
----------
samples : array_like
Input array of angle observations. The value of a full angle is
equal to ``(high - low)``.
high : float, optional
Upper boundary of the principal value of an angle. Default is ``2*pi``.
low : float, optional
Lower boundary of the principal value of an angle. Default is ``0``.
normalize : boolean, optional
If ``False`` (the default), the return value is computed from the
above formula with the input scaled by ``(2*pi)/(high-low)`` and
the output scaled (back) by ``(high-low)/(2*pi)``. If ``True``,
the output is not scaled and is returned directly.
Returns
-------
circstd : float
Circular standard deviation, optionally normalized.
If the input array is empty, ``np.nan`` is returned.
See Also
--------
circmean : Circular mean.
circvar : Circular variance.
Notes
-----
In the limit of small angles, the circular standard deviation is close
to the 'linear' standard deviation if ``normalize`` is ``False``.
References
----------
.. [1] Mardia, K. V. (1972). 2. In *Statistics of Directional Data*
(pp. 18-24). Academic Press. :doi:`10.1016/C2013-0-07425-7`.
.. [2] Mardia, K. V. and Jupp, P. E. *Directional Statistics*.
John Wiley & Sons, 1999.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import circstd
>>> import matplotlib.pyplot as plt
>>> samples_1 = np.array([0.072, -0.158, 0.077, 0.108, 0.286,
... 0.133, -0.473, -0.001, -0.348, 0.131])
>>> samples_2 = np.array([0.111, -0.879, 0.078, 0.733, 0.421,
... 0.104, -0.136, -0.867, 0.012, 0.105])
>>> circstd_1 = circstd(samples_1)
>>> circstd_2 = circstd(samples_2)
Plot the samples.
>>> fig, (left, right) = plt.subplots(ncols=2)
>>> for image in (left, right):
... image.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
... np.sin(np.linspace(0, 2*np.pi, 500)),
... c='k')
... image.axis('equal')
... image.axis('off')
>>> left.scatter(np.cos(samples_1), np.sin(samples_1), c='k', s=15)
>>> left.set_title(f"circular std: {np.round(circstd_1, 2)!r}")
>>> right.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
... np.sin(np.linspace(0, 2*np.pi, 500)),
... c='k')
>>> right.scatter(np.cos(samples_2), np.sin(samples_2), c='k', s=15)
>>> right.set_title(f"circular std: {np.round(circstd_2, 2)!r}")
>>> plt.show()
"""
xp = array_namespace(samples)
period = high - low
samples, sin_samp, cos_samp = _circfuncs_common(samples, period, xp=xp)
sin_mean = xp.mean(sin_samp, axis=axis) # [1] (2.2.3)
cos_mean = xp.mean(cos_samp, axis=axis) # [1] (2.2.3)
hypotenuse = (sin_mean**2. + cos_mean**2.)**0.5
# hypotenuse can go slightly above 1 due to rounding errors
R = xp.clip(hypotenuse, max=1.) # [1] (2.2.4)
res = (-2*xp.log(R))**0.5+0.0 # torch.pow returns -0.0 if R==1
if not normalize:
res *= (high-low)/(2.*pi) # [1] (2.3.14) w/ (2.3.7)
return res
class DirectionalStats:
def __init__(self, mean_direction, mean_resultant_length):
self.mean_direction = mean_direction
self.mean_resultant_length = mean_resultant_length
def __repr__(self):
return (f"DirectionalStats(mean_direction={self.mean_direction},"
f" mean_resultant_length={self.mean_resultant_length})")
def directional_stats(samples, *, axis=0, normalize=True):
"""
Computes sample statistics for directional data.
Computes the directional mean (also called the mean direction vector) and
mean resultant length of a sample of vectors.
The directional mean is a measure of "preferred direction" of vector data.
It is analogous to the sample mean, but it is for use when the length of
the data is irrelevant (e.g. unit vectors).
The mean resultant length is a value between 0 and 1 used to quantify the
dispersion of directional data: the smaller the mean resultant length, the
greater the dispersion. Several definitions of directional variance
involving the mean resultant length are given in [1]_ and [2]_.
Parameters
----------
samples : array_like
Input array. Must be at least two-dimensional, and the last axis of the
input must correspond with the dimensionality of the vector space.
When the input is exactly two dimensional, this means that each row
of the data is a vector observation.
axis : int, default: 0
Axis along which the directional mean is computed.
normalize: boolean, default: True
If True, normalize the input to ensure that each observation is a
unit vector. It the observations are already unit vectors, consider
setting this to False to avoid unnecessary computation.
Returns
-------
res : DirectionalStats
An object containing attributes:
mean_direction : ndarray
Directional mean.
mean_resultant_length : ndarray
The mean resultant length [1]_.
See Also
--------
circmean: circular mean; i.e. directional mean for 2D *angles*
circvar: circular variance; i.e. directional variance for 2D *angles*
Notes
-----
This uses a definition of directional mean from [1]_.
Assuming the observations are unit vectors, the calculation is as follows.
.. code-block:: python
mean = samples.mean(axis=0)
mean_resultant_length = np.linalg.norm(mean)
mean_direction = mean / mean_resultant_length
This definition is appropriate for *directional* data (i.e. vector data
for which the magnitude of each observation is irrelevant) but not
for *axial* data (i.e. vector data for which the magnitude and *sign* of
each observation is irrelevant).
Several definitions of directional variance involving the mean resultant
length ``R`` have been proposed, including ``1 - R`` [1]_, ``1 - R**2``
[2]_, and ``2 * (1 - R)`` [2]_. Rather than choosing one, this function
returns ``R`` as attribute `mean_resultant_length` so the user can compute
their preferred measure of dispersion.
References
----------
.. [1] Mardia, Jupp. (2000). *Directional Statistics*
(p. 163). Wiley.
.. [2] https://en.wikipedia.org/wiki/Directional_statistics
Examples
--------
>>> import numpy as np
>>> from scipy.stats import directional_stats
>>> data = np.array([[3, 4], # first observation, 2D vector space
... [6, -8]]) # second observation
>>> dirstats = directional_stats(data)
>>> dirstats.mean_direction
array([1., 0.])
In contrast, the regular sample mean of the vectors would be influenced
by the magnitude of each observation. Furthermore, the result would not be
a unit vector.
>>> data.mean(axis=0)
array([4.5, -2.])
An exemplary use case for `directional_stats` is to find a *meaningful*
center for a set of observations on a sphere, e.g. geographical locations.
>>> data = np.array([[0.8660254, 0.5, 0.],
... [0.8660254, -0.5, 0.]])
>>> dirstats = directional_stats(data)
>>> dirstats.mean_direction
array([1., 0., 0.])
The regular sample mean on the other hand yields a result which does not
lie on the surface of the sphere.
>>> data.mean(axis=0)
array([0.8660254, 0., 0.])
The function also returns the mean resultant length, which
can be used to calculate a directional variance. For example, using the
definition ``Var(z) = 1 - R`` from [2]_ where ``R`` is the
mean resultant length, we can calculate the directional variance of the
vectors in the above example as:
>>> 1 - dirstats.mean_resultant_length
0.13397459716167093
"""
xp = array_namespace(samples)
samples = xp.asarray(samples)
if samples.ndim < 2:
raise ValueError("samples must at least be two-dimensional. "
f"Instead samples has shape: {tuple(samples.shape)}")
samples = xp.moveaxis(samples, axis, 0)
if normalize:
vectornorms = xp_vector_norm(samples, axis=-1, keepdims=True, xp=xp)
samples = samples/vectornorms
mean = xp.mean(samples, axis=0)
mean_resultant_length = xp_vector_norm(mean, axis=-1, keepdims=True, xp=xp)
mean_direction = mean / mean_resultant_length
mrl = xp.squeeze(mean_resultant_length, axis=-1)
mean_resultant_length = mrl[()] if mrl.ndim == 0 else mrl
return DirectionalStats(mean_direction, mean_resultant_length)
def false_discovery_control(ps, *, axis=0, method='bh'):
"""Adjust p-values to control the false discovery rate.
The false discovery rate (FDR) is the expected proportion of rejected null
hypotheses that are actually true.
If the null hypothesis is rejected when the *adjusted* p-value falls below
a specified level, the false discovery rate is controlled at that level.
Parameters
----------
ps : 1D array_like
The p-values to adjust. Elements must be real numbers between 0 and 1.
axis : int
The axis along which to perform the adjustment. The adjustment is
performed independently along each axis-slice. If `axis` is None, `ps`
is raveled before performing the adjustment.
method : {'bh', 'by'}
The false discovery rate control procedure to apply: ``'bh'`` is for
Benjamini-Hochberg [1]_ (Eq. 1), ``'by'`` is for Benjaminini-Yekutieli
[2]_ (Theorem 1.3). The latter is more conservative, but it is
guaranteed to control the FDR even when the p-values are not from
independent tests.
Returns
-------
ps_adusted : array_like
The adjusted p-values. If the null hypothesis is rejected where these
fall below a specified level, the false discovery rate is controlled
at that level.
See Also
--------
combine_pvalues
statsmodels.stats.multitest.multipletests
Notes
-----
In multiple hypothesis testing, false discovery control procedures tend to
offer higher power than familywise error rate control procedures (e.g.
Bonferroni correction [1]_).
If the p-values correspond with independent tests (or tests with
"positive regression dependencies" [2]_), rejecting null hypotheses
corresponding with Benjamini-Hochberg-adjusted p-values below :math:`q`
controls the false discovery rate at a level less than or equal to
:math:`q m_0 / m`, where :math:`m_0` is the number of true null hypotheses
and :math:`m` is the total number of null hypotheses tested. The same is
true even for dependent tests when the p-values are adjusted accorded to
the more conservative Benjaminini-Yekutieli procedure.
The adjusted p-values produced by this function are comparable to those
produced by the R function ``p.adjust`` and the statsmodels function
`statsmodels.stats.multitest.multipletests`. Please consider the latter
for more advanced methods of multiple comparison correction.
References
----------
.. [1] Benjamini, Yoav, and Yosef Hochberg. "Controlling the false
discovery rate: a practical and powerful approach to multiple
testing." Journal of the Royal statistical society: series B
(Methodological) 57.1 (1995): 289-300.
.. [2] Benjamini, Yoav, and Daniel Yekutieli. "The control of the false
discovery rate in multiple testing under dependency." Annals of
statistics (2001): 1165-1188.
.. [3] TileStats. FDR - Benjamini-Hochberg explained - Youtube.
https://www.youtube.com/watch?v=rZKa4tW2NKs.
.. [4] Neuhaus, Karl-Ludwig, et al. "Improved thrombolysis in acute
myocardial infarction with front-loaded administration of alteplase:
results of the rt-PA-APSAC patency study (TAPS)." Journal of the
American College of Cardiology 19.5 (1992): 885-891.
Examples
--------
We follow the example from [1]_.
Thrombolysis with recombinant tissue-type plasminogen activator (rt-PA)
and anisoylated plasminogen streptokinase activator (APSAC) in
myocardial infarction has been proved to reduce mortality. [4]_
investigated the effects of a new front-loaded administration of rt-PA
versus those obtained with a standard regimen of APSAC, in a randomized
multicentre trial in 421 patients with acute myocardial infarction.
There were four families of hypotheses tested in the study, the last of
which was "cardiac and other events after the start of thrombolitic
treatment". FDR control may be desired in this family of hypotheses
because it would not be appropriate to conclude that the front-loaded
treatment is better if it is merely equivalent to the previous treatment.
The p-values corresponding with the 15 hypotheses in this family were
>>> ps = [0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344,
... 0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, 1.000]
If the chosen significance level is 0.05, we may be tempted to reject the
null hypotheses for the tests corresponding with the first nine p-values,
as the first nine p-values fall below the chosen significance level.
However, this would ignore the problem of "multiplicity": if we fail to
correct for the fact that multiple comparisons are being performed, we
are more likely to incorrectly reject true null hypotheses.
One approach to the multiplicity problem is to control the family-wise
error rate (FWER), that is, the rate at which the null hypothesis is
rejected when it is actually true. A common procedure of this kind is the
Bonferroni correction [1]_. We begin by multiplying the p-values by the
number of hypotheses tested.
>>> import numpy as np
>>> np.array(ps) * len(ps)
array([1.5000e-03, 6.0000e-03, 2.8500e-02, 1.4250e-01, 3.0150e-01,
4.1700e-01, 4.4700e-01, 5.1600e-01, 6.8850e-01, 4.8600e+00,
6.3930e+00, 8.5785e+00, 9.7920e+00, 1.1385e+01, 1.5000e+01])
To control the FWER at 5%, we reject only the hypotheses corresponding
with adjusted p-values less than 0.05. In this case, only the hypotheses
corresponding with the first three p-values can be rejected. According to
[1]_, these three hypotheses concerned "allergic reaction" and "two
different aspects of bleeding."
An alternative approach is to control the false discovery rate: the
expected fraction of rejected null hypotheses that are actually true. The
advantage of this approach is that it typically affords greater power: an
increased rate of rejecting the null hypothesis when it is indeed false. To
control the false discovery rate at 5%, we apply the Benjamini-Hochberg
p-value adjustment.
>>> from scipy import stats
>>> stats.false_discovery_control(ps)
array([0.0015 , 0.003 , 0.0095 , 0.035625 , 0.0603 ,
0.06385714, 0.06385714, 0.0645 , 0.0765 , 0.486 ,
0.58118182, 0.714875 , 0.75323077, 0.81321429, 1. ])
Now, the first *four* adjusted p-values fall below 0.05, so we would reject
the null hypotheses corresponding with these *four* p-values. Rejection
of the fourth null hypothesis was particularly important to the original
study as it led to the conclusion that the new treatment had a
"substantially lower in-hospital mortality rate."
"""
# Input Validation and Special Cases
ps = np.asarray(ps)
ps_in_range = (np.issubdtype(ps.dtype, np.number)
and np.all(ps == np.clip(ps, 0, 1)))
if not ps_in_range:
raise ValueError("`ps` must include only numbers between 0 and 1.")
methods = {'bh', 'by'}
if method.lower() not in methods:
raise ValueError(f"Unrecognized `method` '{method}'."
f"Method must be one of {methods}.")
method = method.lower()
if axis is None:
axis = 0
ps = ps.ravel()
axis = np.asarray(axis)[()]
if not np.issubdtype(axis.dtype, np.integer) or axis.size != 1:
raise ValueError("`axis` must be an integer or `None`")
if ps.size <= 1 or ps.shape[axis] <= 1:
return ps[()]
ps = np.moveaxis(ps, axis, -1)
m = ps.shape[-1]
# Main Algorithm
# Equivalent to the ideas of [1] and [2], except that this adjusts the
# p-values as described in [3]. The results are similar to those produced
# by R's p.adjust.
# "Let [ps] be the ordered observed p-values..."
order = np.argsort(ps, axis=-1)
ps = np.take_along_axis(ps, order, axis=-1) # this copies ps
# Equation 1 of [1] rearranged to reject when p is less than specified q
i = np.arange(1, m+1)
ps *= m / i
# Theorem 1.3 of [2]
if method == 'by':
ps *= np.sum(1 / i)
# accounts for rejecting all null hypotheses i for i < k, where k is
# defined in Eq. 1 of either [1] or [2]. See [3]. Starting with the index j
# of the second to last element, we replace element j with element j+1 if
# the latter is smaller.
np.minimum.accumulate(ps[..., ::-1], out=ps[..., ::-1], axis=-1)
# Restore original order of axes and data
np.put_along_axis(ps, order, values=ps.copy(), axis=-1)
ps = np.moveaxis(ps, -1, axis)
return np.clip(ps, 0, 1)
|