File size: 122,939 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
"""
An extension of scipy.stats._stats_py to support masked arrays

"""
# Original author (2007): Pierre GF Gerard-Marchant


__all__ = ['argstoarray',
           'count_tied_groups',
           'describe',
           'f_oneway', 'find_repeats','friedmanchisquare',
           'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis',
           'ks_twosamp', 'ks_2samp', 'kurtosis', 'kurtosistest',
           'ks_1samp', 'kstest',
           'linregress',
           'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign',
           'normaltest',
           'obrientransform',
           'pearsonr','plotting_positions','pointbiserialr',
           'rankdata',
           'scoreatpercentile','sem',
           'sen_seasonal_slopes','skew','skewtest','spearmanr',
           'siegelslopes', 'theilslopes',
           'tmax','tmean','tmin','trim','trimboth',
           'trimtail','trima','trimr','trimmed_mean','trimmed_std',
           'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp',
           'ttest_ind','ttest_rel','tvar',
           'variation',
           'winsorize',
           'brunnermunzel',
           ]

import numpy as np
from numpy import ndarray
import numpy.ma as ma
from numpy.ma import masked, nomask
import math

import itertools
import warnings
from collections import namedtuple

from . import distributions
from scipy._lib._util import _rename_parameter, _contains_nan
from scipy._lib._bunch import _make_tuple_bunch
import scipy.special as special
import scipy.stats._stats_py
import scipy.stats._stats_py as _stats_py

from ._stats_mstats_common import (
        _find_repeats,
        theilslopes as stats_theilslopes,
        siegelslopes as stats_siegelslopes
        )


def _chk_asarray(a, axis):
    # Always returns a masked array, raveled for axis=None
    a = ma.asanyarray(a)
    if axis is None:
        a = ma.ravel(a)
        outaxis = 0
    else:
        outaxis = axis
    return a, outaxis


def _chk2_asarray(a, b, axis):
    a = ma.asanyarray(a)
    b = ma.asanyarray(b)
    if axis is None:
        a = ma.ravel(a)
        b = ma.ravel(b)
        outaxis = 0
    else:
        outaxis = axis
    return a, b, outaxis


def _chk_size(a, b):
    a = ma.asanyarray(a)
    b = ma.asanyarray(b)
    (na, nb) = (a.size, b.size)
    if na != nb:
        raise ValueError("The size of the input array should match!"
                         f" ({na} <> {nb})")
    return (a, b, na)


def _ttest_finish(df, t, alternative):
    """Common code between all 3 t-test functions."""
    # We use ``stdtr`` directly here to preserve masked arrays

    if alternative == 'less':
        pval = special._ufuncs.stdtr(df, t)
    elif alternative == 'greater':
        pval = special._ufuncs.stdtr(df, -t)
    elif alternative == 'two-sided':
        pval = special._ufuncs.stdtr(df, -np.abs(t))*2
    else:
        raise ValueError("alternative must be "
                         "'less', 'greater' or 'two-sided'")

    if t.ndim == 0:
        t = t[()]
    if pval.ndim == 0:
        pval = pval[()]

    return t, pval


def argstoarray(*args):
    """
    Constructs a 2D array from a group of sequences.

    Sequences are filled with missing values to match the length of the longest
    sequence.

    Parameters
    ----------
    *args : sequences
        Group of sequences.

    Returns
    -------
    argstoarray : MaskedArray
        A ( `m` x `n` ) masked array, where `m` is the number of arguments and
        `n` the length of the longest argument.

    Notes
    -----
    `numpy.ma.vstack` has identical behavior, but is called with a sequence
    of sequences.

    Examples
    --------
    A 2D masked array constructed from a group of sequences is returned.

    >>> from scipy.stats.mstats import argstoarray
    >>> argstoarray([1, 2, 3], [4, 5, 6])
    masked_array(
     data=[[1.0, 2.0, 3.0],
           [4.0, 5.0, 6.0]],
     mask=[[False, False, False],
           [False, False, False]],
     fill_value=1e+20)

    The returned masked array filled with missing values when the lengths of
    sequences are different.

    >>> argstoarray([1, 3], [4, 5, 6])
    masked_array(
     data=[[1.0, 3.0, --],
           [4.0, 5.0, 6.0]],
     mask=[[False, False,  True],
           [False, False, False]],
     fill_value=1e+20)

    """
    if len(args) == 1 and not isinstance(args[0], ndarray):
        output = ma.asarray(args[0])
        if output.ndim != 2:
            raise ValueError("The input should be 2D")
    else:
        n = len(args)
        m = max([len(k) for k in args])
        output = ma.array(np.empty((n,m), dtype=float), mask=True)
        for (k,v) in enumerate(args):
            output[k,:len(v)] = v

    output[np.logical_not(np.isfinite(output._data))] = masked
    return output


def find_repeats(arr):
    """Find repeats in arr and return a tuple (repeats, repeat_count).

    The input is cast to float64. Masked values are discarded.

    Parameters
    ----------
    arr : sequence
        Input array. The array is flattened if it is not 1D.

    Returns
    -------
    repeats : ndarray
        Array of repeated values.
    counts : ndarray
        Array of counts.

    Examples
    --------
    >>> from scipy.stats import mstats
    >>> mstats.find_repeats([2, 1, 2, 3, 2, 2, 5])
    (array([2.]), array([4]))

    In the above example, 2 repeats 4 times.

    >>> mstats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
    (array([4., 5.]), array([2, 2]))

    In the above example, both 4 and 5 repeat 2 times.

    """
    # Make sure we get a copy. ma.compressed promises a "new array", but can
    # actually return a reference.
    compr = np.asarray(ma.compressed(arr), dtype=np.float64)
    try:
        need_copy = np.may_share_memory(compr, arr)
    except AttributeError:
        # numpy < 1.8.2 bug: np.may_share_memory([], []) raises,
        # while in numpy 1.8.2 and above it just (correctly) returns False.
        need_copy = False
    if need_copy:
        compr = compr.copy()
    return _find_repeats(compr)


def count_tied_groups(x, use_missing=False):
    """
    Counts the number of tied values.

    Parameters
    ----------
    x : sequence
        Sequence of data on which to counts the ties
    use_missing : bool, optional
        Whether to consider missing values as tied.

    Returns
    -------
    count_tied_groups : dict
        Returns a dictionary (nb of ties: nb of groups).

    Examples
    --------
    >>> from scipy.stats import mstats
    >>> import numpy as np
    >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
    >>> mstats.count_tied_groups(z)
    {2: 1, 3: 2}

    In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).

    >>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
    >>> mstats.count_tied_groups(z)
    {2: 2, 3: 1}
    >>> z[[1,-1]] = np.ma.masked
    >>> mstats.count_tied_groups(z, use_missing=True)
    {2: 2, 3: 1}

    """
    nmasked = ma.getmask(x).sum()
    # We need the copy as find_repeats will overwrite the initial data
    data = ma.compressed(x).copy()
    (ties, counts) = find_repeats(data)
    nties = {}
    if len(ties):
        nties = dict(zip(np.unique(counts), itertools.repeat(1)))
        nties.update(dict(zip(*find_repeats(counts))))

    if nmasked and use_missing:
        try:
            nties[nmasked] += 1
        except KeyError:
            nties[nmasked] = 1

    return nties


def rankdata(data, axis=None, use_missing=False):
    """Returns the rank (also known as order statistics) of each data point
    along the given axis.

    If some values are tied, their rank is averaged.
    If some values are masked, their rank is set to 0 if use_missing is False,
    or set to the average rank of the unmasked values if use_missing is True.

    Parameters
    ----------
    data : sequence
        Input data. The data is transformed to a masked array
    axis : {None,int}, optional
        Axis along which to perform the ranking.
        If None, the array is first flattened. An exception is raised if
        the axis is specified for arrays with a dimension larger than 2
    use_missing : bool, optional
        Whether the masked values have a rank of 0 (False) or equal to the
        average rank of the unmasked values (True).

    """
    def _rank1d(data, use_missing=False):
        n = data.count()
        rk = np.empty(data.size, dtype=float)
        idx = data.argsort()
        rk[idx[:n]] = np.arange(1,n+1)

        if use_missing:
            rk[idx[n:]] = (n+1)/2.
        else:
            rk[idx[n:]] = 0

        repeats = find_repeats(data.copy())
        for r in repeats[0]:
            condition = (data == r).filled(False)
            rk[condition] = rk[condition].mean()
        return rk

    data = ma.array(data, copy=False)
    if axis is None:
        if data.ndim > 1:
            return _rank1d(data.ravel(), use_missing).reshape(data.shape)
        else:
            return _rank1d(data, use_missing)
    else:
        return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray)


ModeResult = namedtuple('ModeResult', ('mode', 'count'))


def mode(a, axis=0):
    """
    Returns an array of the modal (most common) value in the passed array.

    Parameters
    ----------
    a : array_like
        n-dimensional array of which to find mode(s).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    mode : ndarray
        Array of modal values.
    count : ndarray
        Array of counts for each mode.

    Notes
    -----
    For more details, see `scipy.stats.mode`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import stats
    >>> from scipy.stats import mstats
    >>> m_arr = np.ma.array([1, 1, 0, 0, 0, 0], mask=[0, 0, 1, 1, 1, 0])
    >>> mstats.mode(m_arr)  # note that most zeros are masked
    ModeResult(mode=array([1.]), count=array([2.]))

    """
    return _mode(a, axis=axis, keepdims=True)


def _mode(a, axis=0, keepdims=True):
    # Don't want to expose `keepdims` from the public `mstats.mode`
    a, axis = _chk_asarray(a, axis)

    def _mode1D(a):
        (rep,cnt) = find_repeats(a)
        if not cnt.ndim:
            return (0, 0)
        elif cnt.size:
            return (rep[cnt.argmax()], cnt.max())
        else:
            return (a.min(), 1)

    if axis is None:
        output = _mode1D(ma.ravel(a))
        output = (ma.array(output[0]), ma.array(output[1]))
    else:
        output = ma.apply_along_axis(_mode1D, axis, a)
        if keepdims is None or keepdims:
            newshape = list(a.shape)
            newshape[axis] = 1
            slices = [slice(None)] * output.ndim
            slices[axis] = 0
            modes = output[tuple(slices)].reshape(newshape)
            slices[axis] = 1
            counts = output[tuple(slices)].reshape(newshape)
            output = (modes, counts)
        else:
            output = np.moveaxis(output, axis, 0)

    return ModeResult(*output)


def _betai(a, b, x):
    x = np.asanyarray(x)
    x = ma.where(x < 1.0, x, 1.0)  # if x > 1 then return 1.0
    return special.betainc(a, b, x)


def msign(x):
    """Returns the sign of x, or 0 if x is masked."""
    return ma.filled(np.sign(x), 0)


def pearsonr(x, y):
    r"""
    Pearson correlation coefficient and p-value for testing non-correlation.

    The Pearson correlation coefficient [1]_ measures the linear relationship
    between two datasets.  The calculation of the p-value relies on the
    assumption that each dataset is normally distributed.  (See Kowalski [3]_
    for a discussion of the effects of non-normality of the input on the
    distribution of the correlation coefficient.)  Like other correlation
    coefficients, this one varies between -1 and +1 with 0 implying no
    correlation. Correlations of -1 or +1 imply an exact linear relationship.

    Parameters
    ----------
    x : (N,) array_like
        Input array.
    y : (N,) array_like
        Input array.

    Returns
    -------
    r : float
        Pearson's correlation coefficient.
    p-value : float
        Two-tailed p-value.

    Warns
    -----
    `~scipy.stats.ConstantInputWarning`
        Raised if an input is a constant array.  The correlation coefficient
        is not defined in this case, so ``np.nan`` is returned.

    `~scipy.stats.NearConstantInputWarning`
        Raised if an input is "nearly" constant.  The array ``x`` is considered
        nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
        Numerical errors in the calculation ``x - mean(x)`` in this case might
        result in an inaccurate calculation of r.

    See Also
    --------
    spearmanr : Spearman rank-order correlation coefficient.
    kendalltau : Kendall's tau, a correlation measure for ordinal data.

    Notes
    -----
    The correlation coefficient is calculated as follows:

    .. math::

        r = \frac{\sum (x - m_x) (y - m_y)}
                 {\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}

    where :math:`m_x` is the mean of the vector x and :math:`m_y` is
    the mean of the vector y.

    Under the assumption that x and y are drawn from
    independent normal distributions (so the population correlation coefficient
    is 0), the probability density function of the sample correlation
    coefficient r is ([1]_, [2]_):

    .. math::

        f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)}

    where n is the number of samples, and B is the beta function.  This
    is sometimes referred to as the exact distribution of r.  This is
    the distribution that is used in `pearsonr` to compute the p-value.
    The distribution is a beta distribution on the interval [-1, 1],
    with equal shape parameters a = b = n/2 - 1.  In terms of SciPy's
    implementation of the beta distribution, the distribution of r is::

        dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)

    The p-value returned by `pearsonr` is a two-sided p-value. The p-value
    roughly indicates the probability of an uncorrelated system
    producing datasets that have a Pearson correlation at least as extreme
    as the one computed from these datasets. More precisely, for a
    given sample with correlation coefficient r, the p-value is
    the probability that abs(r') of a random sample x' and y' drawn from
    the population with zero correlation would be greater than or equal
    to abs(r). In terms of the object ``dist`` shown above, the p-value
    for a given r and length n can be computed as::

        p = 2*dist.cdf(-abs(r))

    When n is 2, the above continuous distribution is not well-defined.
    One can interpret the limit of the beta distribution as the shape
    parameters a and b approach a = b = 0 as a discrete distribution with
    equal probability masses at r = 1 and r = -1.  More directly, one
    can observe that, given the data x = [x1, x2] and y = [y1, y2], and
    assuming x1 != x2 and y1 != y2, the only possible values for r are 1
    and -1.  Because abs(r') for any sample x' and y' with length 2 will
    be 1, the two-sided p-value for a sample of length 2 is always 1.

    References
    ----------
    .. [1] "Pearson correlation coefficient", Wikipedia,
           https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    .. [2] Student, "Probable error of a correlation coefficient",
           Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
    .. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
           of the Sample Product-Moment Correlation Coefficient"
           Journal of the Royal Statistical Society. Series C (Applied
           Statistics), Vol. 21, No. 1 (1972), pp. 1-12.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import stats
    >>> from scipy.stats import mstats
    >>> mstats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
    (-0.7426106572325057, 0.1505558088534455)

    There is a linear dependence between x and y if y = a + b*x + e, where
    a,b are constants and e is a random error term, assumed to be independent
    of x. For simplicity, assume that x is standard normal, a=0, b=1 and let
    e follow a normal distribution with mean zero and standard deviation s>0.

    >>> s = 0.5
    >>> x = stats.norm.rvs(size=500)
    >>> e = stats.norm.rvs(scale=s, size=500)
    >>> y = x + e
    >>> mstats.pearsonr(x, y)
    (0.9029601878969703, 8.428978827629898e-185) # may vary

    This should be close to the exact value given by

    >>> 1/np.sqrt(1 + s**2)
    0.8944271909999159

    For s=0.5, we observe a high level of correlation. In general, a large
    variance of the noise reduces the correlation, while the correlation
    approaches one as the variance of the error goes to zero.

    It is important to keep in mind that no correlation does not imply
    independence unless (x, y) is jointly normal. Correlation can even be zero
    when there is a very simple dependence structure: if X follows a
    standard normal distribution, let y = abs(x). Note that the correlation
    between x and y is zero. Indeed, since the expectation of x is zero,
    cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero
    by symmetry. The following lines of code illustrate this observation:

    >>> y = np.abs(x)
    >>> mstats.pearsonr(x, y)
    (-0.016172891856853524, 0.7182823678751942) # may vary

    A non-zero correlation coefficient can be misleading. For example, if X has
    a standard normal distribution, define y = x if x < 0 and y = 0 otherwise.
    A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797...,
    implying a high level of correlation:

    >>> y = np.where(x < 0, x, 0)
    >>> mstats.pearsonr(x, y)
    (0.8537091583771509, 3.183461621422181e-143) # may vary

    This is unintuitive since there is no dependence of x and y if x is larger
    than zero which happens in about half of the cases if we sample x and y.
    """
    (x, y, n) = _chk_size(x, y)
    (x, y) = (x.ravel(), y.ravel())
    # Get the common mask and the total nb of unmasked elements
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    n -= m.sum()
    df = n-2
    if df < 0:
        return (masked, masked)

    return scipy.stats._stats_py.pearsonr(
                ma.masked_array(x, mask=m).compressed(),
                ma.masked_array(y, mask=m).compressed())


def spearmanr(x, y=None, use_ties=True, axis=None, nan_policy='propagate',
              alternative='two-sided'):
    """
    Calculates a Spearman rank-order correlation coefficient and the p-value
    to test for non-correlation.

    The Spearman correlation is a nonparametric measure of the linear
    relationship between two datasets. Unlike the Pearson correlation, the
    Spearman correlation does not assume that both datasets are normally
    distributed. Like other correlation coefficients, this one varies
    between -1 and +1 with 0 implying no correlation. Correlations of -1 or
    +1 imply a monotonic relationship. Positive correlations imply that
    as `x` increases, so does `y`. Negative correlations imply that as `x`
    increases, `y` decreases.

    Missing values are discarded pair-wise: if a value is missing in `x`, the
    corresponding value in `y` is masked.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Spearman correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    x, y : 1D or 2D array_like, y is optional
        One or two 1-D or 2-D arrays containing multiple variables and
        observations. When these are 1-D, each represents a vector of
        observations of a single variable. For the behavior in the 2-D case,
        see under ``axis``, below.
    use_ties : bool, optional
        DO NOT USE.  Does not do anything, keyword is only left in place for
        backwards compatibility reasons.
    axis : int or None, optional
        If axis=0 (default), then each column represents a variable, with
        observations in the rows. If axis=1, the relationship is transposed:
        each row represents a variable, while the columns contain observations.
        If axis=None, then both arrays will be raveled.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis. Default is 'two-sided'.
        The following options are available:

        * 'two-sided': the correlation is nonzero
        * 'less': the correlation is negative (less than zero)
        * 'greater':  the correlation is positive (greater than zero)

        .. versionadded:: 1.7.0

    Returns
    -------
    res : SignificanceResult
        An object containing attributes:

        statistic : float or ndarray (2-D square)
            Spearman correlation matrix or correlation coefficient (if only 2
            variables are given as parameters). Correlation matrix is square
            with length equal to total number of variables (columns or rows) in
            ``a`` and ``b`` combined.
        pvalue : float
            The p-value for a hypothesis test whose null hypothesis
            is that two sets of data are linearly uncorrelated. See
            `alternative` above for alternative hypotheses. `pvalue` has the
            same shape as `statistic`.

    References
    ----------
    [CRCProbStat2000] section 14.7

    """
    if not use_ties:
        raise ValueError("`use_ties=False` is not supported in SciPy >= 1.2.0")

    # Always returns a masked array, raveled if axis=None
    x, axisout = _chk_asarray(x, axis)
    if y is not None:
        # Deal only with 2-D `x` case.
        y, _ = _chk_asarray(y, axis)
        if axisout == 0:
            x = ma.column_stack((x, y))
        else:
            x = ma.vstack((x, y))

    if axisout == 1:
        # To simplify the code that follow (always use `n_obs, n_vars` shape)
        x = x.T

    if nan_policy == 'omit':
        x = ma.masked_invalid(x)

    def _spearmanr_2cols(x):
        # Mask the same observations for all variables, and then drop those
        # observations (can't leave them masked, rankdata is weird).
        x = ma.mask_rowcols(x, axis=0)
        x = x[~x.mask.any(axis=1), :]

        # If either column is entirely NaN or Inf
        if not np.any(x.data):
            res = scipy.stats._stats_py.SignificanceResult(np.nan, np.nan)
            res.correlation = np.nan
            return res

        m = ma.getmask(x)
        n_obs = x.shape[0]
        dof = n_obs - 2 - int(m.sum(axis=0)[0])
        if dof < 0:
            raise ValueError("The input must have at least 3 entries!")

        # Gets the ranks and rank differences
        x_ranked = rankdata(x, axis=0)
        rs = ma.corrcoef(x_ranked, rowvar=False).data

        # rs can have elements equal to 1, so avoid zero division warnings
        with np.errstate(divide='ignore'):
            # clip the small negative values possibly caused by rounding
            # errors before taking the square root
            t = rs * np.sqrt((dof / ((rs+1.0) * (1.0-rs))).clip(0))

        t, prob = _ttest_finish(dof, t, alternative)

        # For backwards compatibility, return scalars when comparing 2 columns
        if rs.shape == (2, 2):
            res = scipy.stats._stats_py.SignificanceResult(rs[1, 0],
                                                           prob[1, 0])
            res.correlation = rs[1, 0]
            return res
        else:
            res = scipy.stats._stats_py.SignificanceResult(rs, prob)
            res.correlation = rs
            return res

    # Need to do this per pair of variables, otherwise the dropped observations
    # in a third column mess up the result for a pair.
    n_vars = x.shape[1]
    if n_vars == 2:
        return _spearmanr_2cols(x)
    else:
        rs = np.ones((n_vars, n_vars), dtype=float)
        prob = np.zeros((n_vars, n_vars), dtype=float)
        for var1 in range(n_vars - 1):
            for var2 in range(var1+1, n_vars):
                result = _spearmanr_2cols(x[:, [var1, var2]])
                rs[var1, var2] = result.correlation
                rs[var2, var1] = result.correlation
                prob[var1, var2] = result.pvalue
                prob[var2, var1] = result.pvalue

        res = scipy.stats._stats_py.SignificanceResult(rs, prob)
        res.correlation = rs
        return res


def _kendall_p_exact(n, c, alternative='two-sided'):

    # Use the fact that distribution is symmetric: always calculate a CDF in
    # the left tail.
    # This will be the one-sided p-value if `c` is on the side of
    # the null distribution predicted by the alternative hypothesis.
    # The two-sided p-value will be twice this value.
    # If `c` is on the other side of the null distribution, we'll need to
    # take the complement and add back the probability mass at `c`.
    in_right_tail = (c >= (n*(n-1))//2 - c)
    alternative_greater = (alternative == 'greater')
    c = int(min(c, (n*(n-1))//2 - c))

    # Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods"
    # (4th Edition), Charles Griffin & Co., 1970.
    if n <= 0:
        raise ValueError(f'n ({n}) must be positive')
    elif c < 0 or 4*c > n*(n-1):
        raise ValueError(f'c ({c}) must satisfy 0 <= 4c <= n(n-1) = {n*(n-1)}.')
    elif n == 1:
        prob = 1.0
        p_mass_at_c = 1
    elif n == 2:
        prob = 1.0
        p_mass_at_c = 0.5
    elif c == 0:
        prob = 2.0/math.factorial(n) if n < 171 else 0.0
        p_mass_at_c = prob/2
    elif c == 1:
        prob = 2.0/math.factorial(n-1) if n < 172 else 0.0
        p_mass_at_c = (n-1)/math.factorial(n)
    elif 4*c == n*(n-1) and alternative == 'two-sided':
        # I'm sure there's a simple formula for p_mass_at_c in this
        # case, but I don't know it. Use generic formula for one-sided p-value.
        prob = 1.0
    elif n < 171:
        new = np.zeros(c+1)
        new[0:2] = 1.0
        for j in range(3,n+1):
            new = np.cumsum(new)
            if j <= c:
                new[j:] -= new[:c+1-j]
        prob = 2.0*np.sum(new)/math.factorial(n)
        p_mass_at_c = new[-1]/math.factorial(n)
    else:
        new = np.zeros(c+1)
        new[0:2] = 1.0
        for j in range(3, n+1):
            new = np.cumsum(new)/j
            if j <= c:
                new[j:] -= new[:c+1-j]
        prob = np.sum(new)
        p_mass_at_c = new[-1]/2

    if alternative != 'two-sided':
        # if the alternative hypothesis and alternative agree,
        # one-sided p-value is half the two-sided p-value
        if in_right_tail == alternative_greater:
            prob /= 2
        else:
            prob = 1 - prob/2 + p_mass_at_c

    prob = np.clip(prob, 0, 1)

    return prob


def kendalltau(x, y, use_ties=True, use_missing=False, method='auto',
               alternative='two-sided'):
    """
    Computes Kendall's rank correlation tau on two variables *x* and *y*.

    Parameters
    ----------
    x : sequence
        First data list (for example, time).
    y : sequence
        Second data list.
    use_ties : {True, False}, optional
        Whether ties correction should be performed.
    use_missing : {False, True}, optional
        Whether missing data should be allocated a rank of 0 (False) or the
        average rank (True)
    method : {'auto', 'asymptotic', 'exact'}, optional
        Defines which method is used to calculate the p-value [1]_.
        'asymptotic' uses a normal approximation valid for large samples.
        'exact' computes the exact p-value, but can only be used if no ties
        are present. As the sample size increases, the 'exact' computation
        time may grow and the result may lose some precision.
        'auto' is the default and selects the appropriate
        method based on a trade-off between speed and accuracy.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis. Default is 'two-sided'.
        The following options are available:

        * 'two-sided': the rank correlation is nonzero
        * 'less': the rank correlation is negative (less than zero)
        * 'greater':  the rank correlation is positive (greater than zero)

    Returns
    -------
    res : SignificanceResult
        An object containing attributes:

        statistic : float
           The tau statistic.
        pvalue : float
           The p-value for a hypothesis test whose null hypothesis is
           an absence of association, tau = 0.

    References
    ----------
    .. [1] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
           Charles Griffin & Co., 1970.

    """
    (x, y, n) = _chk_size(x, y)
    (x, y) = (x.flatten(), y.flatten())
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        x = ma.array(x, mask=m, copy=True)
        y = ma.array(y, mask=m, copy=True)
        # need int() here, otherwise numpy defaults to 32 bit
        # integer on all Windows architectures, causing overflow.
        # int() will keep it infinite precision.
        n -= int(m.sum())

    if n < 2:
        res = scipy.stats._stats_py.SignificanceResult(np.nan, np.nan)
        res.correlation = np.nan
        return res

    rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0)
    ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0)
    idx = rx.argsort()
    (rx, ry) = (rx[idx], ry[idx])
    C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum()
                for i in range(len(ry)-1)], dtype=float)
    D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum()
                for i in range(len(ry)-1)], dtype=float)
    xties = count_tied_groups(x)
    yties = count_tied_groups(y)
    if use_ties:
        corr_x = np.sum([v*k*(k-1) for (k,v) in xties.items()], dtype=float)
        corr_y = np.sum([v*k*(k-1) for (k,v) in yties.items()], dtype=float)
        denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.)
    else:
        denom = n*(n-1)/2.
    tau = (C-D) / denom

    if method == 'exact' and (xties or yties):
        raise ValueError("Ties found, exact method cannot be used.")

    if method == 'auto':
        if (not xties and not yties) and (n <= 33 or min(C, n*(n-1)/2.0-C) <= 1):
            method = 'exact'
        else:
            method = 'asymptotic'

    if not xties and not yties and method == 'exact':
        prob = _kendall_p_exact(n, C, alternative)

    elif method == 'asymptotic':
        var_s = n*(n-1)*(2*n+5)
        if use_ties:
            var_s -= np.sum([v*k*(k-1)*(2*k+5)*1. for (k,v) in xties.items()])
            var_s -= np.sum([v*k*(k-1)*(2*k+5)*1. for (k,v) in yties.items()])
            v1 = (np.sum([v*k*(k-1) for (k, v) in xties.items()], dtype=float) *
                  np.sum([v*k*(k-1) for (k, v) in yties.items()], dtype=float))
            v1 /= 2.*n*(n-1)
            if n > 2:
                v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in xties.items()],
                            dtype=float) * \
                     np.sum([v*k*(k-1)*(k-2) for (k,v) in yties.items()],
                            dtype=float)
                v2 /= 9.*n*(n-1)*(n-2)
            else:
                v2 = 0
        else:
            v1 = v2 = 0

        var_s /= 18.
        var_s += (v1 + v2)
        z = (C-D)/np.sqrt(var_s)
        prob = scipy.stats._stats_py._get_pvalue(z, distributions.norm, alternative)
    else:
        raise ValueError("Unknown method "+str(method)+" specified, please "
                         "use auto, exact or asymptotic.")

    res = scipy.stats._stats_py.SignificanceResult(tau[()], prob[()])
    res.correlation = tau
    return res


def kendalltau_seasonal(x):
    """
    Computes a multivariate Kendall's rank correlation tau, for seasonal data.

    Parameters
    ----------
    x : 2-D ndarray
        Array of seasonal data, with seasons in columns.

    """
    x = ma.array(x, subok=True, copy=False, ndmin=2)
    (n,m) = x.shape
    n_p = x.count(0)

    S_szn = sum(msign(x[i:]-x[i]).sum(0) for i in range(n))
    S_tot = S_szn.sum()

    n_tot = x.count()
    ties = count_tied_groups(x.compressed())
    corr_ties = sum(v*k*(k-1) for (k,v) in ties.items())
    denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2.

    R = rankdata(x, axis=0, use_missing=True)
    K = ma.empty((m,m), dtype=int)
    covmat = ma.empty((m,m), dtype=float)
    denom_szn = ma.empty(m, dtype=float)
    for j in range(m):
        ties_j = count_tied_groups(x[:,j].compressed())
        corr_j = sum(v*k*(k-1) for (k,v) in ties_j.items())
        cmb = n_p[j]*(n_p[j]-1)
        for k in range(j,m,1):
            K[j,k] = sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum()
                         for i in range(n))
            covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() -
                           n*(n_p[j]+1)*(n_p[k]+1))/3.
            K[k,j] = K[j,k]
            covmat[k,j] = covmat[j,k]

        denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2.

    var_szn = covmat.diagonal()

    z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn)
    z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum())
    z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum())

    prob_szn = special.erfc(abs(z_szn.data)/np.sqrt(2))
    prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2))
    prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2))

    chi2_tot = (z_szn*z_szn).sum()
    chi2_trd = m * z_szn.mean()**2
    output = {'seasonal tau': S_szn/denom_szn,
              'global tau': S_tot/denom_tot,
              'global tau (alt)': S_tot/denom_szn.sum(),
              'seasonal p-value': prob_szn,
              'global p-value (indep)': prob_tot_ind,
              'global p-value (dep)': prob_tot_dep,
              'chi2 total': chi2_tot,
              'chi2 trend': chi2_trd,
              }
    return output


PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation',
                                                           'pvalue'))


def pointbiserialr(x, y):
    """Calculates a point biserial correlation coefficient and its p-value.

    Parameters
    ----------
    x : array_like of bools
        Input array.
    y : array_like
        Input array.

    Returns
    -------
    correlation : float
        R value
    pvalue : float
        2-tailed p-value

    Notes
    -----
    Missing values are considered pair-wise: if a value is missing in x,
    the corresponding value in y is masked.

    For more details on `pointbiserialr`, see `scipy.stats.pointbiserialr`.

    """
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]

    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()

    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()

    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = _betai(0.5*df, 0.5, df/(df+t*t))

    return PointbiserialrResult(rpb, prob)


def linregress(x, y=None):
    r"""
    Calculate a linear least-squares regression for two sets of measurements.

    Parameters
    ----------
    x, y : array_like
        Two sets of measurements.  Both arrays should have the same length N.  If
        only `x` is given (and ``y=None``), then it must be a two-dimensional
        array where one dimension has length 2.  The two sets of measurements
        are then found by splitting the array along the length-2 dimension. In
        the case where ``y=None`` and `x` is a 2xN array, ``linregress(x)`` is
        equivalent to ``linregress(x[0], x[1])``.

    Returns
    -------
    result : ``LinregressResult`` instance
        The return value is an object with the following attributes:

        slope : float
            Slope of the regression line.
        intercept : float
            Intercept of the regression line.
        rvalue : float
            The Pearson correlation coefficient. The square of ``rvalue``
            is equal to the coefficient of determination.
        pvalue : float
            The p-value for a hypothesis test whose null hypothesis is
            that the slope is zero, using Wald Test with t-distribution of
            the test statistic. See `alternative` above for alternative
            hypotheses.
        stderr : float
            Standard error of the estimated slope (gradient), under the
            assumption of residual normality.
        intercept_stderr : float
            Standard error of the estimated intercept, under the assumption
            of residual normality.

    See Also
    --------
    scipy.optimize.curve_fit :
        Use non-linear least squares to fit a function to data.
    scipy.optimize.leastsq :
        Minimize the sum of squares of a set of equations.

    Notes
    -----
    Missing values are considered pair-wise: if a value is missing in `x`,
    the corresponding value in `y` is masked.

    For compatibility with older versions of SciPy, the return value acts
    like a ``namedtuple`` of length 5, with fields ``slope``, ``intercept``,
    ``rvalue``, ``pvalue`` and ``stderr``, so one can continue to write::

        slope, intercept, r, p, se = linregress(x, y)

    With that style, however, the standard error of the intercept is not
    available.  To have access to all the computed values, including the
    standard error of the intercept, use the return value as an object
    with attributes, e.g.::

        result = linregress(x, y)
        print(result.intercept, result.intercept_stderr)

    Examples
    --------
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy import stats
    >>> rng = np.random.default_rng()

    Generate some data:

    >>> x = rng.random(10)
    >>> y = 1.6*x + rng.random(10)

    Perform the linear regression:

    >>> res = stats.mstats.linregress(x, y)

    Coefficient of determination (R-squared):

    >>> print(f"R-squared: {res.rvalue**2:.6f}")
    R-squared: 0.717533

    Plot the data along with the fitted line:

    >>> plt.plot(x, y, 'o', label='original data')
    >>> plt.plot(x, res.intercept + res.slope*x, 'r', label='fitted line')
    >>> plt.legend()
    >>> plt.show()

    Calculate 95% confidence interval on slope and intercept:

    >>> # Two-sided inverse Students t-distribution
    >>> # p - probability, df - degrees of freedom
    >>> from scipy.stats import t
    >>> tinv = lambda p, df: abs(t.ppf(p/2, df))

    >>> ts = tinv(0.05, len(x)-2)
    >>> print(f"slope (95%): {res.slope:.6f} +/- {ts*res.stderr:.6f}")
    slope (95%): 1.453392 +/- 0.743465
    >>> print(f"intercept (95%): {res.intercept:.6f}"
    ...       f" +/- {ts*res.intercept_stderr:.6f}")
    intercept (95%): 0.616950 +/- 0.544475

    """
    if y is None:
        x = ma.array(x)
        if x.shape[0] == 2:
            x, y = x
        elif x.shape[1] == 2:
            x, y = x.T
        else:
            raise ValueError("If only `x` is given as input, "
                             "it has to be of shape (2, N) or (N, 2), "
                             f"provided shape was {x.shape}")
    else:
        x = ma.array(x)
        y = ma.array(y)

    x = x.flatten()
    y = y.flatten()

    if np.amax(x) == np.amin(x) and len(x) > 1:
        raise ValueError("Cannot calculate a linear regression "
                         "if all x values are identical")

    m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
    if m is not nomask:
        x = ma.array(x, mask=m)
        y = ma.array(y, mask=m)
        if np.any(~m):
            result = _stats_py.linregress(x.data[~m], y.data[~m])
        else:
            # All data is masked
            result = _stats_py.LinregressResult(slope=None, intercept=None,
                                                rvalue=None, pvalue=None,
                                                stderr=None,
                                                intercept_stderr=None)
    else:
        result = _stats_py.linregress(x.data, y.data)

    return result


def theilslopes(y, x=None, alpha=0.95, method='separate'):
    r"""
    Computes the Theil-Sen estimator for a set of points (x, y).

    `theilslopes` implements a method for robust linear regression.  It
    computes the slope as the median of all slopes between paired values.

    Parameters
    ----------
    y : array_like
        Dependent variable.
    x : array_like or None, optional
        Independent variable. If None, use ``arange(len(y))`` instead.
    alpha : float, optional
        Confidence degree between 0 and 1. Default is 95% confidence.
        Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
        interpreted as "find the 90% confidence interval".
    method : {'joint', 'separate'}, optional
        Method to be used for computing estimate for intercept.
        Following methods are supported,

            * 'joint': Uses np.median(y - slope * x) as intercept.
            * 'separate': Uses np.median(y) - slope * np.median(x)
                          as intercept.

        The default is 'separate'.

        .. versionadded:: 1.8.0

    Returns
    -------
    result : ``TheilslopesResult`` instance
        The return value is an object with the following attributes:

        slope : float
            Theil slope.
        intercept : float
            Intercept of the Theil line.
        low_slope : float
            Lower bound of the confidence interval on `slope`.
        high_slope : float
            Upper bound of the confidence interval on `slope`.

    See Also
    --------
    siegelslopes : a similar technique using repeated medians


    Notes
    -----
    For more details on `theilslopes`, see `scipy.stats.theilslopes`.

    """
    y = ma.asarray(y).flatten()
    if x is None:
        x = ma.arange(len(y), dtype=float)
    else:
        x = ma.asarray(x).flatten()
        if len(x) != len(y):
            raise ValueError(f"Incompatible lengths ! ({len(y)}<>{len(x)})")

    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    y._mask = x._mask = m
    # Disregard any masked elements of x or y
    y = y.compressed()
    x = x.compressed().astype(float)
    # We now have unmasked arrays so can use `scipy.stats.theilslopes`
    return stats_theilslopes(y, x, alpha=alpha, method=method)


def siegelslopes(y, x=None, method="hierarchical"):
    r"""
    Computes the Siegel estimator for a set of points (x, y).

    `siegelslopes` implements a method for robust linear regression
    using repeated medians to fit a line to the points (x, y).
    The method is robust to outliers with an asymptotic breakdown point
    of 50%.

    Parameters
    ----------
    y : array_like
        Dependent variable.
    x : array_like or None, optional
        Independent variable. If None, use ``arange(len(y))`` instead.
    method : {'hierarchical', 'separate'}
        If 'hierarchical', estimate the intercept using the estimated
        slope ``slope`` (default option).
        If 'separate', estimate the intercept independent of the estimated
        slope. See Notes for details.

    Returns
    -------
    result : ``SiegelslopesResult`` instance
        The return value is an object with the following attributes:

        slope : float
            Estimate of the slope of the regression line.
        intercept : float
            Estimate of the intercept of the regression line.

    See Also
    --------
    theilslopes : a similar technique without repeated medians

    Notes
    -----
    For more details on `siegelslopes`, see `scipy.stats.siegelslopes`.

    """
    y = ma.asarray(y).ravel()
    if x is None:
        x = ma.arange(len(y), dtype=float)
    else:
        x = ma.asarray(x).ravel()
        if len(x) != len(y):
            raise ValueError(f"Incompatible lengths ! ({len(y)}<>{len(x)})")

    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    y._mask = x._mask = m
    # Disregard any masked elements of x or y
    y = y.compressed()
    x = x.compressed().astype(float)
    # We now have unmasked arrays so can use `scipy.stats.siegelslopes`
    return stats_siegelslopes(y, x, method=method)


SenSeasonalSlopesResult = _make_tuple_bunch('SenSeasonalSlopesResult',
                                            ['intra_slope', 'inter_slope'])


def sen_seasonal_slopes(x):
    r"""
    Computes seasonal Theil-Sen and Kendall slope estimators.

    The seasonal generalization of Sen's slope computes the slopes between all
    pairs of values within a "season" (column) of a 2D array. It returns an
    array containing the median of these "within-season" slopes for each
    season (the Theil-Sen slope estimator of each season), and it returns the
    median of the within-season slopes across all seasons (the seasonal Kendall
    slope estimator).

    Parameters
    ----------
    x : 2D array_like
        Each column of `x` contains measurements of the dependent variable
        within a season. The independent variable (usually time) of each season
        is assumed to be ``np.arange(x.shape[0])``.

    Returns
    -------
    result : ``SenSeasonalSlopesResult`` instance
        The return value is an object with the following attributes:

        intra_slope : ndarray
            For each season, the Theil-Sen slope estimator: the median of
            within-season slopes.
        inter_slope : float
            The seasonal Kendall slope estimator: the median of within-season
            slopes *across all* seasons.

    See Also
    --------
    theilslopes : the analogous function for non-seasonal data
    scipy.stats.theilslopes : non-seasonal slopes for non-masked arrays

    Notes
    -----
    The slopes :math:`d_{ijk}` within season :math:`i` are:

    .. math::

        d_{ijk} = \frac{x_{ij} - x_{ik}}
                            {j - k}

    for pairs of distinct integer indices :math:`j, k` of :math:`x`.

    Element :math:`i` of the returned `intra_slope` array is the median of the
    :math:`d_{ijk}` over all :math:`j < k`; this is the Theil-Sen slope
    estimator of season :math:`i`. The returned `inter_slope` value, better
    known as the seasonal Kendall slope estimator, is the median of the
    :math:`d_{ijk}` over all :math:`i, j, k`.

    References
    ----------
    .. [1] Hirsch, Robert M., James R. Slack, and Richard A. Smith.
           "Techniques of trend analysis for monthly water quality data."
           *Water Resources Research* 18.1 (1982): 107-121.

    Examples
    --------
    Suppose we have 100 observations of a dependent variable for each of four
    seasons:

    >>> import numpy as np
    >>> rng = np.random.default_rng()
    >>> x = rng.random(size=(100, 4))

    We compute the seasonal slopes as:

    >>> from scipy import stats
    >>> intra_slope, inter_slope = stats.mstats.sen_seasonal_slopes(x)

    If we define a function to compute all slopes between observations within
    a season:

    >>> def dijk(yi):
    ...     n = len(yi)
    ...     x = np.arange(n)
    ...     dy = yi - yi[:, np.newaxis]
    ...     dx = x - x[:, np.newaxis]
    ...     # we only want unique pairs of distinct indices
    ...     mask = np.triu(np.ones((n, n), dtype=bool), k=1)
    ...     return dy[mask]/dx[mask]

    then element ``i`` of ``intra_slope`` is the median of ``dijk[x[:, i]]``:

    >>> i = 2
    >>> np.allclose(np.median(dijk(x[:, i])), intra_slope[i])
    True

    and ``inter_slope`` is the median of the values returned by ``dijk`` for
    all seasons:

    >>> all_slopes = np.concatenate([dijk(x[:, i]) for i in range(x.shape[1])])
    >>> np.allclose(np.median(all_slopes), inter_slope)
    True

    Because the data are randomly generated, we would expect the median slopes
    to be nearly zero both within and across all seasons, and indeed they are:

    >>> intra_slope.data
    array([ 0.00124504, -0.00277761, -0.00221245, -0.00036338])
    >>> inter_slope
    -0.0010511779872922058

    """
    x = ma.array(x, subok=True, copy=False, ndmin=2)
    (n,_) = x.shape
    # Get list of slopes per season
    szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
                            for i in range(n)])
    szn_medslopes = ma.median(szn_slopes, axis=0)
    medslope = ma.median(szn_slopes, axis=None)
    return SenSeasonalSlopesResult(szn_medslopes, medslope)


Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))


def ttest_1samp(a, popmean, axis=0, alternative='two-sided'):
    """
    Calculates the T-test for the mean of ONE group of scores.

    Parameters
    ----------
    a : array_like
        sample observation
    popmean : float or array_like
        expected value in null hypothesis, if array_like than it must have the
        same shape as `a` excluding the axis dimension
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        array `a`.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

        * 'two-sided': the mean of the underlying distribution of the sample
          is different than the given population mean (`popmean`)
        * 'less': the mean of the underlying distribution of the sample is
          less than the given population mean (`popmean`)
        * 'greater': the mean of the underlying distribution of the sample is
          greater than the given population mean (`popmean`)

        .. versionadded:: 1.7.0

    Returns
    -------
    statistic : float or array
        t-statistic
    pvalue : float or array
        The p-value

    Notes
    -----
    For more details on `ttest_1samp`, see `scipy.stats.ttest_1samp`.

    """
    a, axis = _chk_asarray(a, axis)
    if a.size == 0:
        return (np.nan, np.nan)

    x = a.mean(axis=axis)
    v = a.var(axis=axis, ddof=1)
    n = a.count(axis=axis)
    # force df to be an array for masked division not to throw a warning
    df = ma.asanyarray(n - 1.0)
    svar = ((n - 1.0) * v) / df
    with np.errstate(divide='ignore', invalid='ignore'):
        t = (x - popmean) / ma.sqrt(svar / n)

    t, prob = _ttest_finish(df, t, alternative)
    return Ttest_1sampResult(t, prob)


ttest_onesamp = ttest_1samp


Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))


def ttest_ind(a, b, axis=0, equal_var=True, alternative='two-sided'):
    """
    Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

    Parameters
    ----------
    a, b : array_like
        The arrays must have the same shape, except in the dimension
        corresponding to `axis` (the first, by default).
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        arrays, `a`, and `b`.
    equal_var : bool, optional
        If True, perform a standard independent 2 sample test that assumes equal
        population variances.
        If False, perform Welch's t-test, which does not assume equal population
        variance.

        .. versionadded:: 0.17.0
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

        * 'two-sided': the means of the distributions underlying the samples
          are unequal.
        * 'less': the mean of the distribution underlying the first sample
          is less than the mean of the distribution underlying the second
          sample.
        * 'greater': the mean of the distribution underlying the first
          sample is greater than the mean of the distribution underlying
          the second sample.

        .. versionadded:: 1.7.0

    Returns
    -------
    statistic : float or array
        The calculated t-statistic.
    pvalue : float or array
        The p-value.

    Notes
    -----
    For more details on `ttest_ind`, see `scipy.stats.ttest_ind`.

    """
    a, b, axis = _chk2_asarray(a, b, axis)

    if a.size == 0 or b.size == 0:
        return Ttest_indResult(np.nan, np.nan)

    (x1, x2) = (a.mean(axis), b.mean(axis))
    (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
    (n1, n2) = (a.count(axis), b.count(axis))

    if equal_var:
        # force df to be an array for masked division not to throw a warning
        df = ma.asanyarray(n1 + n2 - 2.0)
        svar = ((n1-1)*v1+(n2-1)*v2) / df
        denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2))  # n-D computation here!
    else:
        vn1 = v1/n1
        vn2 = v2/n2
        with np.errstate(divide='ignore', invalid='ignore'):
            df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))

        # If df is undefined, variances are zero.
        # It doesn't matter what df is as long as it is not NaN.
        df = np.where(np.isnan(df), 1, df)
        denom = ma.sqrt(vn1 + vn2)

    with np.errstate(divide='ignore', invalid='ignore'):
        t = (x1-x2) / denom

    t, prob = _ttest_finish(df, t, alternative)
    return Ttest_indResult(t, prob)


Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))


def ttest_rel(a, b, axis=0, alternative='two-sided'):
    """
    Calculates the T-test on TWO RELATED samples of scores, a and b.

    Parameters
    ----------
    a, b : array_like
        The arrays must have the same shape.
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        arrays, `a`, and `b`.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

        * 'two-sided': the means of the distributions underlying the samples
          are unequal.
        * 'less': the mean of the distribution underlying the first sample
          is less than the mean of the distribution underlying the second
          sample.
        * 'greater': the mean of the distribution underlying the first
          sample is greater than the mean of the distribution underlying
          the second sample.

        .. versionadded:: 1.7.0

    Returns
    -------
    statistic : float or array
        t-statistic
    pvalue : float or array
        two-tailed p-value

    Notes
    -----
    For more details on `ttest_rel`, see `scipy.stats.ttest_rel`.

    """
    a, b, axis = _chk2_asarray(a, b, axis)
    if len(a) != len(b):
        raise ValueError('unequal length arrays')

    if a.size == 0 or b.size == 0:
        return Ttest_relResult(np.nan, np.nan)

    n = a.count(axis)
    df = ma.asanyarray(n-1.0)
    d = (a-b).astype('d')
    dm = d.mean(axis)
    v = d.var(axis=axis, ddof=1)
    denom = ma.sqrt(v / n)
    with np.errstate(divide='ignore', invalid='ignore'):
        t = dm / denom

    t, prob = _ttest_finish(df, t, alternative)
    return Ttest_relResult(t, prob)


MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic',
                                                       'pvalue'))


def mannwhitneyu(x,y, use_continuity=True):
    """
    Computes the Mann-Whitney statistic

    Missing values in `x` and/or `y` are discarded.

    Parameters
    ----------
    x : sequence
        Input
    y : sequence
        Input
    use_continuity : {True, False}, optional
        Whether a continuity correction (1/2.) should be taken into account.

    Returns
    -------
    statistic : float
        The minimum of the Mann-Whitney statistics
    pvalue : float
        Approximate two-sided p-value assuming a normal distribution.

    """
    x = ma.asarray(x).compressed().view(ndarray)
    y = ma.asarray(y).compressed().view(ndarray)
    ranks = rankdata(np.concatenate([x,y]))
    (nx, ny) = (len(x), len(y))
    nt = nx + ny
    U = ranks[:nx].sum() - nx*(nx+1)/2.
    U = max(U, nx*ny - U)
    u = nx*ny - U

    mu = (nx*ny)/2.
    sigsq = (nt**3 - nt)/12.
    ties = count_tied_groups(ranks)
    sigsq -= sum(v*(k**3-k) for (k,v) in ties.items())/12.
    sigsq *= nx*ny/float(nt*(nt-1))

    if use_continuity:
        z = (U - 1/2. - mu) / ma.sqrt(sigsq)
    else:
        z = (U - mu) / ma.sqrt(sigsq)

    prob = special.erfc(abs(z)/np.sqrt(2))
    return MannwhitneyuResult(u, prob)


KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))


def kruskal(*args):
    """
    Compute the Kruskal-Wallis H-test for independent samples

    Parameters
    ----------
    sample1, sample2, ... : array_like
       Two or more arrays with the sample measurements can be given as
       arguments.

    Returns
    -------
    statistic : float
       The Kruskal-Wallis H statistic, corrected for ties
    pvalue : float
       The p-value for the test using the assumption that H has a chi
       square distribution

    Notes
    -----
    For more details on `kruskal`, see `scipy.stats.kruskal`.

    Examples
    --------
    >>> from scipy.stats.mstats import kruskal

    Random samples from three different brands of batteries were tested
    to see how long the charge lasted. Results were as follows:

    >>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
    >>> b = [6.9, 7.0, 6.1, 7.9]
    >>> c = [7.2, 6.9, 6.1, 6.5]

    Test the hypothesis that the distribution functions for all of the brands'
    durations are identical. Use 5% level of significance.

    >>> kruskal(a, b, c)
    KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)

    The null hypothesis is rejected at the 5% level of significance
    because the returned p-value is less than the critical value of 5%.

    """
    output = argstoarray(*args)
    ranks = ma.masked_equal(rankdata(output, use_missing=False), 0)
    sumrk = ranks.sum(-1)
    ngrp = ranks.count(-1)
    ntot = ranks.count()
    H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1)
    # Tie correction
    ties = count_tied_groups(ranks)
    T = 1. - sum(v*(k**3-k) for (k,v) in ties.items())/float(ntot**3-ntot)
    if T == 0:
        raise ValueError('All numbers are identical in kruskal')

    H /= T
    df = len(output) - 1
    prob = distributions.chi2.sf(H, df)
    return KruskalResult(H, prob)


kruskalwallis = kruskal


@_rename_parameter("mode", "method")
def ks_1samp(x, cdf, args=(), alternative="two-sided", method='auto'):
    """
    Computes the Kolmogorov-Smirnov test on one sample of masked values.

    Missing values in `x` are discarded.

    Parameters
    ----------
    x : array_like
        a 1-D array of observations of random variables.
    cdf : str or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If a callable, that callable is used to calculate the cdf.
    args : tuple, sequence, optional
        Distribution parameters, used if `cdf` is a string.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Indicates the alternative hypothesis.  Default is 'two-sided'.
    method : {'auto', 'exact', 'asymp'}, optional
        Defines the method used for calculating the p-value.
        The following options are available (default is 'auto'):

          * 'auto' : use 'exact' for small size arrays, 'asymp' for large
          * 'exact' : use approximation to exact distribution of test statistic
          * 'asymp' : use asymptotic distribution of test statistic

    Returns
    -------
    d : float
        Value of the Kolmogorov Smirnov test
    p : float
        Corresponding p-value.

    """
    alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
       alternative.lower()[0], alternative)
    return scipy.stats._stats_py.ks_1samp(
        x, cdf, args=args, alternative=alternative, method=method)


@_rename_parameter("mode", "method")
def ks_2samp(data1, data2, alternative="two-sided", method='auto'):
    """
    Computes the Kolmogorov-Smirnov test on two samples.

    Missing values in `x` and/or `y` are discarded.

    Parameters
    ----------
    data1 : array_like
        First data set
    data2 : array_like
        Second data set
    alternative : {'two-sided', 'less', 'greater'}, optional
        Indicates the alternative hypothesis.  Default is 'two-sided'.
    method : {'auto', 'exact', 'asymp'}, optional
        Defines the method used for calculating the p-value.
        The following options are available (default is 'auto'):

          * 'auto' : use 'exact' for small size arrays, 'asymp' for large
          * 'exact' : use approximation to exact distribution of test statistic
          * 'asymp' : use asymptotic distribution of test statistic

    Returns
    -------
    d : float
        Value of the Kolmogorov Smirnov test
    p : float
        Corresponding p-value.

    """
    # Ideally this would be accomplished by
    # ks_2samp = scipy.stats._stats_py.ks_2samp
    # but the circular dependencies between _mstats_basic and stats prevent that.
    alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
       alternative.lower()[0], alternative)
    return scipy.stats._stats_py.ks_2samp(data1, data2,
                                          alternative=alternative,
                                          method=method)


ks_twosamp = ks_2samp


@_rename_parameter("mode", "method")
def kstest(data1, data2, args=(), alternative='two-sided', method='auto'):
    """

    Parameters
    ----------
    data1 : array_like
    data2 : str, callable or array_like
    args : tuple, sequence, optional
        Distribution parameters, used if `data1` or `data2` are strings.
    alternative : str, as documented in stats.kstest
    method : str, as documented in stats.kstest

    Returns
    -------
    tuple of (K-S statistic, probability)

    """
    return scipy.stats._stats_py.kstest(data1, data2, args,
                                        alternative=alternative, method=method)


def trima(a, limits=None, inclusive=(True,True)):
    """
    Trims an array by masking the data outside some given limits.

    Returns a masked version of the input array.

    Parameters
    ----------
    a : array_like
        Input array.
    limits : {None, tuple}, optional
        Tuple of (lower limit, upper limit) in absolute values.
        Values of the input array lower (greater) than the lower (upper) limit
        will be masked.  A limit is None indicates an open interval.
    inclusive : (bool, bool) tuple, optional
        Tuple of (lower flag, upper flag), indicating whether values exactly
        equal to the lower (upper) limit are allowed.

    Examples
    --------
    >>> from scipy.stats.mstats import trima
    >>> import numpy as np

    >>> a = np.arange(10)

    The interval is left-closed and right-open, i.e., `[2, 8)`.
    Trim the array by keeping only values in the interval.

    >>> trima(a, limits=(2, 8), inclusive=(True, False))
    masked_array(data=[--, --, 2, 3, 4, 5, 6, 7, --, --],
                 mask=[ True,  True, False, False, False, False, False, False,
                        True,  True],
           fill_value=999999)

    """
    a = ma.asarray(a)
    a.unshare_mask()
    if (limits is None) or (limits == (None, None)):
        return a

    (lower_lim, upper_lim) = limits
    (lower_in, upper_in) = inclusive
    condition = False
    if lower_lim is not None:
        if lower_in:
            condition |= (a < lower_lim)
        else:
            condition |= (a <= lower_lim)

    if upper_lim is not None:
        if upper_in:
            condition |= (a > upper_lim)
        else:
            condition |= (a >= upper_lim)

    a[condition.filled(True)] = masked
    return a


def trimr(a, limits=None, inclusive=(True, True), axis=None):
    """
    Trims an array by masking some proportion of the data on each end.
    Returns a masked version of the input array.

    Parameters
    ----------
    a : sequence
        Input array.
    limits : {None, tuple}, optional
        Tuple of the percentages to cut on each side of the array, with respect
        to the number of unmasked data, as floats between 0. and 1.
        Noting n the number of unmasked data before trimming, the
        (n*limits[0])th smallest data and the (n*limits[1])th largest data are
        masked, and the total number of unmasked data after trimming is
        n*(1.-sum(limits)).  The value of one limit can be set to None to
        indicate an open interval.
    inclusive : {(True,True) tuple}, optional
        Tuple of flags indicating whether the number of data being masked on
        the left (right) end should be truncated (True) or rounded (False) to
        integers.
    axis : {None,int}, optional
        Axis along which to trim. If None, the whole array is trimmed, but its
        shape is maintained.

    """
    def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
        n = a.count()
        idx = a.argsort()
        if low_limit:
            if low_inclusive:
                lowidx = int(low_limit*n)
            else:
                lowidx = int(np.round(low_limit*n))
            a[idx[:lowidx]] = masked
        if up_limit is not None:
            if up_inclusive:
                upidx = n - int(n*up_limit)
            else:
                upidx = n - int(np.round(n*up_limit))
            a[idx[upidx:]] = masked
        return a

    a = ma.asarray(a)
    a.unshare_mask()
    if limits is None:
        return a

    # Check the limits
    (lolim, uplim) = limits
    errmsg = "The proportion to cut from the %s should be between 0. and 1."
    if lolim is not None:
        if lolim > 1. or lolim < 0:
            raise ValueError(errmsg % 'beginning' + f"(got {lolim})")
    if uplim is not None:
        if uplim > 1. or uplim < 0:
            raise ValueError(errmsg % 'end' + f"(got {uplim})")

    (loinc, upinc) = inclusive

    if axis is None:
        shp = a.shape
        return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
    else:
        return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc)


trimdoc = """
    Parameters
    ----------
    a : sequence
        Input array
    limits : {None, tuple}, optional
        If `relative` is False, tuple (lower limit, upper limit) in absolute values.
        Values of the input array lower (greater) than the lower (upper) limit are
        masked.

        If `relative` is True, tuple (lower percentage, upper percentage) to cut
        on each side of the  array, with respect to the number of unmasked data.

        Noting n the number of unmasked data before trimming, the (n*limits[0])th
        smallest data and the (n*limits[1])th largest data are masked, and the
        total number of unmasked data after trimming is n*(1.-sum(limits))
        In each case, the value of one limit can be set to None to indicate an
        open interval.

        If limits is None, no trimming is performed
    inclusive : {(bool, bool) tuple}, optional
        If `relative` is False, tuple indicating whether values exactly equal
        to the absolute limits are allowed.
        If `relative` is True, tuple indicating whether the number of data
        being masked on each side should be rounded (True) or truncated
        (False).
    relative : bool, optional
        Whether to consider the limits as absolute values (False) or proportions
        to cut (True).
    axis : int, optional
        Axis along which to trim.
"""


def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None):
    """
    Trims an array by masking the data outside some given limits.

    Returns a masked version of the input array.

    %s

    Examples
    --------
    >>> from scipy.stats.mstats import trim
    >>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
    >>> print(trim(z,(3,8)))
    [-- -- 3 4 5 6 7 8 -- --]
    >>> print(trim(z,(0.1,0.2),relative=True))
    [-- 2 3 4 5 6 7 8 -- --]

    """
    if relative:
        return trimr(a, limits=limits, inclusive=inclusive, axis=axis)
    else:
        return trima(a, limits=limits, inclusive=inclusive)


if trim.__doc__:
    trim.__doc__ = trim.__doc__ % trimdoc


def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None):
    """
    Trims the smallest and largest data values.

    Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and
    ``int(proportiontocut * n)`` largest values of data along the given axis,
    where n is the number of unmasked values before trimming.

    Parameters
    ----------
    data : ndarray
        Data to trim.
    proportiontocut : float, optional
        Percentage of trimming (as a float between 0 and 1).
        If n is the number of unmasked values before trimming, the number of
        values after trimming is ``(1 - 2*proportiontocut) * n``.
        Default is 0.2.
    inclusive : {(bool, bool) tuple}, optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).
    axis : int, optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.

    """
    return trimr(data, limits=(proportiontocut,proportiontocut),
                 inclusive=inclusive, axis=axis)


def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True),
             axis=None):
    """
    Trims the data by masking values from one tail.

    Parameters
    ----------
    data : array_like
        Data to trim.
    proportiontocut : float, optional
        Percentage of trimming. If n is the number of unmasked values
        before trimming, the number of values after trimming is
        ``(1 - proportiontocut) * n``.  Default is 0.2.
    tail : {'left','right'}, optional
        If 'left' the `proportiontocut` lowest values will be masked.
        If 'right' the `proportiontocut` highest values will be masked.
        Default is 'left'.
    inclusive : {(bool, bool) tuple}, optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).  Default is
        (True, True).
    axis : int, optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.  Default is None.

    Returns
    -------
    trimtail : ndarray
        Returned array of same shape as `data` with masked tail values.

    """
    tail = str(tail).lower()[0]
    if tail == 'l':
        limits = (proportiontocut,None)
    elif tail == 'r':
        limits = (None, proportiontocut)
    else:
        raise TypeError("The tail argument should be in ('left','right')")

    return trimr(data, limits=limits, axis=axis, inclusive=inclusive)


trim1 = trimtail


def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
                 axis=None):
    """Returns the trimmed mean of the data along the given axis.

    %s

    """
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    if relative:
        return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis)
    else:
        return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis)


if trimmed_mean.__doc__:
    trimmed_mean.__doc__ = trimmed_mean.__doc__ % trimdoc


def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
                axis=None, ddof=0):
    """Returns the trimmed variance of the data along the given axis.

    %s
    ddof : {0,integer}, optional
        Means Delta Degrees of Freedom. The denominator used during computations
        is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
        biased estimate of the variance.

    """
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    if relative:
        out = trimr(a,limits=limits, inclusive=inclusive,axis=axis)
    else:
        out = trima(a,limits=limits,inclusive=inclusive)

    return out.var(axis=axis, ddof=ddof)


if trimmed_var.__doc__:
    trimmed_var.__doc__ = trimmed_var.__doc__ % trimdoc


def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
                axis=None, ddof=0):
    """Returns the trimmed standard deviation of the data along the given axis.

    %s
    ddof : {0,integer}, optional
        Means Delta Degrees of Freedom. The denominator used during computations
        is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
        biased estimate of the variance.

    """
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    if relative:
        out = trimr(a,limits=limits,inclusive=inclusive,axis=axis)
    else:
        out = trima(a,limits=limits,inclusive=inclusive)
    return out.std(axis=axis,ddof=ddof)


if trimmed_std.__doc__:
    trimmed_std.__doc__ = trimmed_std.__doc__ % trimdoc


def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None):
    """
    Returns the standard error of the trimmed mean along the given axis.

    Parameters
    ----------
    a : sequence
        Input array
    limits : {(0.1,0.1), tuple of float}, optional
        tuple (lower percentage, upper percentage) to cut  on each side of the
        array, with respect to the number of unmasked data.

        If n is the number of unmasked data before trimming, the values
        smaller than ``n * limits[0]`` and the values larger than
        ``n * `limits[1]`` are masked, and the total number of unmasked
        data after trimming is ``n * (1.-sum(limits))``.  In each case,
        the value of one limit can be set to None to indicate an open interval.
        If `limits` is None, no trimming is performed.
    inclusive : {(bool, bool) tuple} optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).
    axis : int, optional
        Axis along which to trim.

    Returns
    -------
    trimmed_stde : scalar or ndarray

    """
    def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
        "Returns the standard error of the trimmed mean for a 1D input data."
        n = a.count()
        idx = a.argsort()
        if low_limit:
            if low_inclusive:
                lowidx = int(low_limit*n)
            else:
                lowidx = np.round(low_limit*n)
            a[idx[:lowidx]] = masked
        if up_limit is not None:
            if up_inclusive:
                upidx = n - int(n*up_limit)
            else:
                upidx = n - np.round(n*up_limit)
            a[idx[upidx:]] = masked
        a[idx[:lowidx]] = a[idx[lowidx]]
        a[idx[upidx:]] = a[idx[upidx-1]]
        winstd = a.std(ddof=1)
        return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a)))

    a = ma.array(a, copy=True, subok=True)
    a.unshare_mask()
    if limits is None:
        return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis))
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)

    # Check the limits
    (lolim, uplim) = limits
    errmsg = "The proportion to cut from the %s should be between 0. and 1."
    if lolim is not None:
        if lolim > 1. or lolim < 0:
            raise ValueError(errmsg % 'beginning' + f"(got {lolim})")
    if uplim is not None:
        if uplim > 1. or uplim < 0:
            raise ValueError(errmsg % 'end' + f"(got {uplim})")

    (loinc, upinc) = inclusive
    if (axis is None):
        return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc)
    else:
        if a.ndim > 2:
            raise ValueError("Array 'a' must be at most two dimensional, "
                             "but got a.ndim = %d" % a.ndim)
        return ma.apply_along_axis(_trimmed_stde_1D, axis, a,
                                   lolim,uplim,loinc,upinc)


def _mask_to_limits(a, limits, inclusive):
    """Mask an array for values outside of given limits.

    This is primarily a utility function.

    Parameters
    ----------
    a : array
    limits : (float or None, float or None)
    A tuple consisting of the (lower limit, upper limit).  Values in the
    input array less than the lower limit or greater than the upper limit
    will be masked out. None implies no limit.
    inclusive : (bool, bool)
    A tuple consisting of the (lower flag, upper flag).  These flags
    determine whether values exactly equal to lower or upper are allowed.

    Returns
    -------
    A MaskedArray.

    Raises
    ------
    A ValueError if there are no values within the given limits.
    """
    lower_limit, upper_limit = limits
    lower_include, upper_include = inclusive
    am = ma.MaskedArray(a)
    if lower_limit is not None:
        if lower_include:
            am = ma.masked_less(am, lower_limit)
        else:
            am = ma.masked_less_equal(am, lower_limit)

    if upper_limit is not None:
        if upper_include:
            am = ma.masked_greater(am, upper_limit)
        else:
            am = ma.masked_greater_equal(am, upper_limit)

    if am.count() == 0:
        raise ValueError("No array values within given limits")

    return am


def tmean(a, limits=None, inclusive=(True, True), axis=None):
    """
    Compute the trimmed mean.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored.  When limits is None (default), then all
        values are used.  Either of the limit values in the tuple can also be
        None representing a half-open interval.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. If None, compute over the
        whole array. Default is None.

    Returns
    -------
    tmean : float

    Notes
    -----
    For more details on `tmean`, see `scipy.stats.tmean`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import mstats
    >>> a = np.array([[6, 8, 3, 0],
    ...               [3, 9, 1, 2],
    ...               [8, 7, 8, 2],
    ...               [5, 6, 0, 2],
    ...               [4, 5, 5, 2]])
    ...
    ...
    >>> mstats.tmean(a, (2,5))
    3.3
    >>> mstats.tmean(a, (2,5), axis=0)
    masked_array(data=[4.0, 5.0, 4.0, 2.0],
                 mask=[False, False, False, False],
           fill_value=1e+20)

    """
    return trima(a, limits=limits, inclusive=inclusive).mean(axis=axis)


def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed variance

    This function computes the sample variance of an array of values,
    while ignoring values which are outside of given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. If None, compute over the
        whole array. Default is zero.
    ddof : int, optional
        Delta degrees of freedom. Default is 1.

    Returns
    -------
    tvar : float
        Trimmed variance.

    Notes
    -----
    For more details on `tvar`, see `scipy.stats.tvar`.

    """
    a = a.astype(float).ravel()
    if limits is None:
        n = (~a.mask).sum()  # todo: better way to do that?
        return np.ma.var(a) * n/(n-1.)
    am = _mask_to_limits(a, limits=limits, inclusive=inclusive)

    return np.ma.var(am, axis=axis, ddof=ddof)


def tmin(a, lowerlimit=None, axis=0, inclusive=True):
    """
    Compute the trimmed minimum

    Parameters
    ----------
    a : array_like
        array of values
    lowerlimit : None or float, optional
        Values in the input array less than the given limit will be ignored.
        When lowerlimit is None, then all values are used. The default value
        is None.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the lower limit
        are included.  The default value is True.

    Returns
    -------
    tmin : float, int or ndarray

    Notes
    -----
    For more details on `tmin`, see `scipy.stats.tmin`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import mstats
    >>> a = np.array([[6, 8, 3, 0],
    ...               [3, 2, 1, 2],
    ...               [8, 1, 8, 2],
    ...               [5, 3, 0, 2],
    ...               [4, 7, 5, 2]])
    ...
    >>> mstats.tmin(a, 5)
    masked_array(data=[5, 7, 5, --],
                 mask=[False, False, False,  True],
           fill_value=999999)

    """
    a, axis = _chk_asarray(a, axis)
    am = trima(a, (lowerlimit, None), (inclusive, False))
    return ma.minimum.reduce(am, axis)


def tmax(a, upperlimit=None, axis=0, inclusive=True):
    """
    Compute the trimmed maximum

    This function computes the maximum value of an array along a given axis,
    while ignoring values larger than a specified upper limit.

    Parameters
    ----------
    a : array_like
        array of values
    upperlimit : None or float, optional
        Values in the input array greater than the given limit will be ignored.
        When upperlimit is None, then all values are used. The default value
        is None.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the upper limit
        are included.  The default value is True.

    Returns
    -------
    tmax : float, int or ndarray

    Notes
    -----
    For more details on `tmax`, see `scipy.stats.tmax`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import mstats
    >>> a = np.array([[6, 8, 3, 0],
    ...               [3, 9, 1, 2],
    ...               [8, 7, 8, 2],
    ...               [5, 6, 0, 2],
    ...               [4, 5, 5, 2]])
    ...
    ...
    >>> mstats.tmax(a, 4)
    masked_array(data=[4, --, 3, 2],
                 mask=[False,  True, False, False],
           fill_value=999999)

    """
    a, axis = _chk_asarray(a, axis)
    am = trima(a, (None, upperlimit), (False, inclusive))
    return ma.maximum.reduce(am, axis)


def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed standard error of the mean.

    This function finds the standard error of the mean for given
    values, ignoring values outside the given `limits`.

    Parameters
    ----------
    a : array_like
        array of values
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. If None, compute over the
        whole array. Default is zero.
    ddof : int, optional
        Delta degrees of freedom. Default is 1.

    Returns
    -------
    tsem : float

    Notes
    -----
    For more details on `tsem`, see `scipy.stats.tsem`.

    """
    a = ma.asarray(a).ravel()
    if limits is None:
        n = float(a.count())
        return a.std(axis=axis, ddof=ddof)/ma.sqrt(n)

    am = trima(a.ravel(), limits, inclusive)
    sd = np.sqrt(am.var(axis=axis, ddof=ddof))
    return sd / np.sqrt(am.count())


def winsorize(a, limits=None, inclusive=(True, True), inplace=False,
              axis=None, nan_policy='propagate'):
    """Returns a Winsorized version of the input array.

    The (limits[0])th lowest values are set to the (limits[0])th percentile,
    and the (limits[1])th highest values are set to the (1 - limits[1])th
    percentile.
    Masked values are skipped.


    Parameters
    ----------
    a : sequence
        Input array.
    limits : {None, tuple of float}, optional
        Tuple of the percentages to cut on each side of the array, with respect
        to the number of unmasked data, as floats between 0. and 1.
        Noting n the number of unmasked data before trimming, the
        (n*limits[0])th smallest data and the (n*limits[1])th largest data are
        masked, and the total number of unmasked data after trimming
        is n*(1.-sum(limits)) The value of one limit can be set to None to
        indicate an open interval.
    inclusive : {(True, True) tuple}, optional
        Tuple indicating whether the number of data being masked on each side
        should be truncated (True) or rounded (False).
    inplace : {False, True}, optional
        Whether to winsorize in place (True) or to use a copy (False)
    axis : {None, int}, optional
        Axis along which to trim. If None, the whole array is trimmed, but its
        shape is maintained.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': allows nan values and may overwrite or propagate them
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Notes
    -----
    This function is applied to reduce the effect of possibly spurious outliers
    by limiting the extreme values.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats.mstats import winsorize

    A shuffled array contains integers from 1 to 10.

    >>> a = np.array([10, 4, 9, 8, 5, 3, 7, 2, 1, 6])

    The 10% of the lowest value (i.e., ``1``) and the 20% of the highest
    values (i.e., ``9`` and ``10``) are replaced.

    >>> winsorize(a, limits=[0.1, 0.2])
    masked_array(data=[8, 4, 8, 8, 5, 3, 7, 2, 2, 6],
                 mask=False,
           fill_value=999999)

    """
    def _winsorize1D(a, low_limit, up_limit, low_include, up_include,
                     contains_nan, nan_policy):
        n = a.count()
        idx = a.argsort()
        if contains_nan:
            nan_count = np.count_nonzero(np.isnan(a))
        if low_limit:
            if low_include:
                lowidx = int(low_limit * n)
            else:
                lowidx = np.round(low_limit * n).astype(int)
            if contains_nan and nan_policy == 'omit':
                lowidx = min(lowidx, n-nan_count-1)
            a[idx[:lowidx]] = a[idx[lowidx]]
        if up_limit is not None:
            if up_include:
                upidx = n - int(n * up_limit)
            else:
                upidx = n - np.round(n * up_limit).astype(int)
            if contains_nan and nan_policy == 'omit':
                a[idx[upidx:-nan_count]] = a[idx[upidx - 1]]
            else:
                a[idx[upidx:]] = a[idx[upidx - 1]]
        return a

    contains_nan, nan_policy = _contains_nan(a, nan_policy)
    # We are going to modify a: better make a copy
    a = ma.array(a, copy=np.logical_not(inplace))

    if limits is None:
        return a
    if (not isinstance(limits, tuple)) and isinstance(limits, float):
        limits = (limits, limits)

    # Check the limits
    (lolim, uplim) = limits
    errmsg = "The proportion to cut from the %s should be between 0. and 1."
    if lolim is not None:
        if lolim > 1. or lolim < 0:
            raise ValueError(errmsg % 'beginning' + f"(got {lolim})")
    if uplim is not None:
        if uplim > 1. or uplim < 0:
            raise ValueError(errmsg % 'end' + f"(got {uplim})")

    (loinc, upinc) = inclusive

    if axis is None:
        shp = a.shape
        return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc,
                            contains_nan, nan_policy).reshape(shp)
    else:
        return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc,
                                   upinc, contains_nan, nan_policy)


def moment(a, moment=1, axis=0):
    """
    Calculates the nth moment about the mean for a sample.

    Parameters
    ----------
    a : array_like
       data
    moment : int, optional
       order of central moment that is returned
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    Notes
    -----
    For more details about `moment`, see `scipy.stats.moment`.

    """
    a, axis = _chk_asarray(a, axis)
    if a.size == 0:
        moment_shape = list(a.shape)
        del moment_shape[axis]
        dtype = a.dtype.type if a.dtype.kind in 'fc' else np.float64
        # empty array, return nan(s) with shape matching `moment`
        out_shape = (moment_shape if np.isscalar(moment)
                     else [len(moment)] + moment_shape)
        if len(out_shape) == 0:
            return dtype(np.nan)
        else:
            return ma.array(np.full(out_shape, np.nan, dtype=dtype))

    # for array_like moment input, return a value for each.
    if not np.isscalar(moment):
        mean = a.mean(axis, keepdims=True)
        mmnt = [_moment(a, i, axis, mean=mean) for i in moment]
        return ma.array(mmnt)
    else:
        return _moment(a, moment, axis)


# Moment with optional pre-computed mean, equal to a.mean(axis, keepdims=True)
def _moment(a, moment, axis, *, mean=None):
    if np.abs(moment - np.round(moment)) > 0:
        raise ValueError("All moment parameters must be integers")

    if moment == 0 or moment == 1:
        # By definition the zeroth moment about the mean is 1, and the first
        # moment is 0.
        shape = list(a.shape)
        del shape[axis]
        dtype = a.dtype.type if a.dtype.kind in 'fc' else np.float64

        if len(shape) == 0:
            return dtype(1.0 if moment == 0 else 0.0)
        else:
            return (ma.ones(shape, dtype=dtype) if moment == 0
                    else ma.zeros(shape, dtype=dtype))
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n-1)/2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        mean = a.mean(axis, keepdims=True) if mean is None else mean
        a_zero_mean = a - mean
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return s.mean(axis)


def variation(a, axis=0, ddof=0):
    """
    Compute the coefficient of variation.

    The coefficient of variation is the standard deviation divided by the
    mean.  This function is equivalent to::

        np.std(x, axis=axis, ddof=ddof) / np.mean(x)

    The default for ``ddof`` is 0, but many definitions of the coefficient
    of variation use the square root of the unbiased sample variance
    for the sample standard deviation, which corresponds to ``ddof=1``.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate the coefficient of variation. Default
        is 0. If None, compute over the whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 0.

    Returns
    -------
    variation : ndarray
        The calculated variation along the requested axis.

    Notes
    -----
    For more details about `variation`, see `scipy.stats.variation`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats.mstats import variation
    >>> a = np.array([2,8,4])
    >>> variation(a)
    0.5345224838248487
    >>> b = np.array([2,8,3,4])
    >>> c = np.ma.masked_array(b, mask=[0,0,1,0])
    >>> variation(c)
    0.5345224838248487

    In the example above, it can be seen that this works the same as
    `scipy.stats.variation` except 'stats.mstats.variation' ignores masked
    array elements.

    """
    a, axis = _chk_asarray(a, axis)
    return a.std(axis, ddof=ddof)/a.mean(axis)


def skew(a, axis=0, bias=True):
    """
    Computes the skewness of a data set.

    Parameters
    ----------
    a : ndarray
        data
    axis : int or None, optional
        Axis along which skewness is calculated. Default is 0.
        If None, compute over the whole array `a`.
    bias : bool, optional
        If False, then the calculations are corrected for statistical bias.

    Returns
    -------
    skewness : ndarray
        The skewness of values along an axis, returning 0 where all values are
        equal.

    Notes
    -----
    For more details about `skew`, see `scipy.stats.skew`.

    """
    a, axis = _chk_asarray(a,axis)
    mean = a.mean(axis, keepdims=True)
    m2 = _moment(a, 2, axis, mean=mean)
    m3 = _moment(a, 3, axis, mean=mean)
    zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
    with np.errstate(all='ignore'):
        vals = ma.where(zero, 0, m3 / m2**1.5)

    if not bias and zero is not ma.masked and m2 is not ma.masked:
        n = a.count(axis)
        can_correct = ~zero & (n > 2)
        if can_correct.any():
            n = np.extract(can_correct, n)
            m2 = np.extract(can_correct, m2)
            m3 = np.extract(can_correct, m3)
            nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
            np.place(vals, can_correct, nval)
    return vals


def kurtosis(a, axis=0, fisher=True, bias=True):
    """
    Computes the kurtosis (Fisher or Pearson) of a dataset.

    Kurtosis is the fourth central moment divided by the square of the
    variance. If Fisher's definition is used, then 3.0 is subtracted from
    the result to give 0.0 for a normal distribution.

    If bias is False then the kurtosis is calculated using k statistics to
    eliminate bias coming from biased moment estimators

    Use `kurtosistest` to see if result is close enough to normal.

    Parameters
    ----------
    a : array
        data for which the kurtosis is calculated
    axis : int or None, optional
        Axis along which the kurtosis is calculated. Default is 0.
        If None, compute over the whole array `a`.
    fisher : bool, optional
        If True, Fisher's definition is used (normal ==> 0.0). If False,
        Pearson's definition is used (normal ==> 3.0).
    bias : bool, optional
        If False, then the calculations are corrected for statistical bias.

    Returns
    -------
    kurtosis : array
        The kurtosis of values along an axis. If all values are equal,
        return -3 for Fisher's definition and 0 for Pearson's definition.

    Notes
    -----
    For more details about `kurtosis`, see `scipy.stats.kurtosis`.

    """
    a, axis = _chk_asarray(a, axis)
    mean = a.mean(axis, keepdims=True)
    m2 = _moment(a, 2, axis, mean=mean)
    m4 = _moment(a, 4, axis, mean=mean)
    zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
    with np.errstate(all='ignore'):
        vals = ma.where(zero, 0, m4 / m2**2.0)

    if not bias and zero is not ma.masked and m2 is not ma.masked:
        n = a.count(axis)
        can_correct = ~zero & (n > 3)
        if can_correct.any():
            n = np.extract(can_correct, n)
            m2 = np.extract(can_correct, m2)
            m4 = np.extract(can_correct, m4)
            nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
            np.place(vals, can_correct, nval+3.0)
    if fisher:
        return vals - 3
    else:
        return vals


DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean',
                                               'variance', 'skewness',
                                               'kurtosis'))


def describe(a, axis=0, ddof=0, bias=True):
    """
    Computes several descriptive statistics of the passed array.

    Parameters
    ----------
    a : array_like
        Data array
    axis : int or None, optional
        Axis along which to calculate statistics. Default 0. If None,
        compute over the whole array `a`.
    ddof : int, optional
        degree of freedom (default 0); note that default ddof is different
        from the same routine in stats.describe
    bias : bool, optional
        If False, then the skewness and kurtosis calculations are corrected for
        statistical bias.

    Returns
    -------
    nobs : int
        (size of the data (discarding missing values)

    minmax : (int, int)
        min, max

    mean : float
        arithmetic mean

    variance : float
        unbiased variance

    skewness : float
        biased skewness

    kurtosis : float
        biased kurtosis

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats.mstats import describe
    >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
    >>> describe(ma)
    DescribeResult(nobs=np.int64(3), minmax=(masked_array(data=0,
                 mask=False,
           fill_value=999999), masked_array(data=2,
                 mask=False,
           fill_value=999999)), mean=np.float64(1.0),
           variance=np.float64(0.6666666666666666),
           skewness=masked_array(data=0., mask=False, fill_value=1e+20),
            kurtosis=np.float64(-1.5))

    """
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis)
    mm = (ma.minimum.reduce(a, axis=axis), ma.maximum.reduce(a, axis=axis))
    m = a.mean(axis)
    v = a.var(axis, ddof=ddof)
    sk = skew(a, axis, bias=bias)
    kurt = kurtosis(a, axis, bias=bias)

    return DescribeResult(n, mm, m, v, sk, kurt)


def stde_median(data, axis=None):
    """Returns the McKean-Schrader estimate of the standard error of the sample
    median along the given axis. masked values are discarded.

    Parameters
    ----------
    data : ndarray
        Data to trim.
    axis : {None,int}, optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.

    """
    def _stdemed_1D(data):
        data = np.sort(data.compressed())
        n = len(data)
        z = 2.5758293035489004
        k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
        return ((data[n-k] - data[k-1])/(2.*z))

    data = ma.array(data, copy=False, subok=True)
    if (axis is None):
        return _stdemed_1D(data)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, "
                             "but got data.ndim = %d" % data.ndim)
        return ma.apply_along_axis(_stdemed_1D, axis, data)


SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))


def skewtest(a, axis=0, alternative='two-sided'):
    """
    Tests whether the skew is different from the normal distribution.

    Parameters
    ----------
    a : array_like
        The data to be tested
    axis : int or None, optional
       Axis along which statistics are calculated. Default is 0.
       If None, compute over the whole array `a`.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis. Default is 'two-sided'.
        The following options are available:

        * 'two-sided': the skewness of the distribution underlying the sample
          is different from that of the normal distribution (i.e. 0)
        * 'less': the skewness of the distribution underlying the sample
          is less than that of the normal distribution
        * 'greater': the skewness of the distribution underlying the sample
          is greater than that of the normal distribution

        .. versionadded:: 1.7.0

    Returns
    -------
    statistic : array_like
        The computed z-score for this test.
    pvalue : array_like
        A p-value for the hypothesis test

    Notes
    -----
    For more details about `skewtest`, see `scipy.stats.skewtest`.

    """
    a, axis = _chk_asarray(a, axis)
    if axis is None:
        a = a.ravel()
        axis = 0
    b2 = skew(a,axis)
    n = a.count(axis)
    if np.min(n) < 8:
        raise ValueError(
            "skewtest is not valid with less than 8 samples; %i samples"
            " were given." % np.min(n))

    y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)))
    beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9))
    W2 = -1 + ma.sqrt(2*(beta2-1))
    delta = 1/ma.sqrt(0.5*ma.log(W2))
    alpha = ma.sqrt(2.0/(W2-1))
    y = ma.where(y == 0, 1, y)
    Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1))
    pvalue = scipy.stats._stats_py._get_pvalue(Z, distributions.norm, alternative)

    return SkewtestResult(Z[()], pvalue[()])


KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))


def kurtosistest(a, axis=0, alternative='two-sided'):
    """
    Tests whether a dataset has normal kurtosis

    Parameters
    ----------
    a : array_like
        array of the sample data
    axis : int or None, optional
       Axis along which to compute test. Default is 0. If None,
       compute over the whole array `a`.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

        * 'two-sided': the kurtosis of the distribution underlying the sample
          is different from that of the normal distribution
        * 'less': the kurtosis of the distribution underlying the sample
          is less than that of the normal distribution
        * 'greater': the kurtosis of the distribution underlying the sample
          is greater than that of the normal distribution

        .. versionadded:: 1.7.0

    Returns
    -------
    statistic : array_like
        The computed z-score for this test.
    pvalue : array_like
        The p-value for the hypothesis test

    Notes
    -----
    For more details about `kurtosistest`, see `scipy.stats.kurtosistest`.

    """
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis=axis)
    if np.min(n) < 5:
        raise ValueError(
            "kurtosistest requires at least 5 observations; %i observations"
            " were given." % np.min(n))
    if np.min(n) < 20:
        warnings.warn(
            "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n),
            stacklevel=2,
        )

    b2 = kurtosis(a, axis, fisher=False)
    E = 3.0*(n-1) / (n+1)
    varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))
    x = (b2-E)/ma.sqrt(varb2)
    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
                                                        (n*(n-2)*(n-3)))
    A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
    term1 = 1 - 2./(9.0*A)
    denom = 1 + x*ma.sqrt(2/(A-4.0))
    if np.ma.isMaskedArray(denom):
        # For multi-dimensional array input
        denom[denom == 0.0] = masked
    elif denom == 0.0:
        denom = masked

    term2 = np.ma.where(denom > 0, ma.power((1-2.0/A)/denom, 1/3.0),
                        -ma.power(-(1-2.0/A)/denom, 1/3.0))
    Z = (term1 - term2) / np.sqrt(2/(9.0*A))
    pvalue = scipy.stats._stats_py._get_pvalue(Z, distributions.norm, alternative)

    return KurtosistestResult(Z[()], pvalue[()])


NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))


def normaltest(a, axis=0):
    """
    Tests whether a sample differs from a normal distribution.

    Parameters
    ----------
    a : array_like
        The array containing the data to be tested.
    axis : int or None, optional
        Axis along which to compute test. Default is 0. If None,
        compute over the whole array `a`.

    Returns
    -------
    statistic : float or array
        ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
        ``k`` is the z-score returned by `kurtosistest`.
    pvalue : float or array
       A 2-sided chi squared probability for the hypothesis test.

    Notes
    -----
    For more details about `normaltest`, see `scipy.stats.normaltest`.

    """
    a, axis = _chk_asarray(a, axis)
    s, _ = skewtest(a, axis)
    k, _ = kurtosistest(a, axis)
    k2 = s*s + k*k

    return NormaltestResult(k2, distributions.chi2.sf(k2, 2))


def mquantiles(a, prob=(.25, .5, .75), alphap=.4, betap=.4, axis=None,
               limit=()):
    """
    Computes empirical quantiles for a data array.

    Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``,
    where ``x[j]`` is the j-th order statistic, and gamma is a function of
    ``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and
    ``g = n*p + m - j``.

    Reinterpreting the above equations to compare to **R** lead to the
    equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)``

    Typical values of (alphap,betap) are:
        - (0,1)    : ``p(k) = k/n`` : linear interpolation of cdf
          (**R** type 4)
        - (.5,.5)  : ``p(k) = (k - 1/2.)/n`` : piecewise linear function
          (**R** type 5)
        - (0,0)    : ``p(k) = k/(n+1)`` :
          (**R** type 6)
        - (1,1)    : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])].
          (**R** type 7, **R** default)
        - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])].
          The resulting quantile estimates are approximately median-unbiased
          regardless of the distribution of x.
          (**R** type 8)
        - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom.
          The resulting quantile estimates are approximately unbiased
          if x is normally distributed
          (**R** type 9)
        - (.4,.4)  : approximately quantile unbiased (Cunnane)
        - (.35,.35): APL, used with PWM

    Parameters
    ----------
    a : array_like
        Input data, as a sequence or array of dimension at most 2.
    prob : array_like, optional
        List of quantiles to compute.
    alphap : float, optional
        Plotting positions parameter, default is 0.4.
    betap : float, optional
        Plotting positions parameter, default is 0.4.
    axis : int, optional
        Axis along which to perform the trimming.
        If None (default), the input array is first flattened.
    limit : tuple, optional
        Tuple of (lower, upper) values.
        Values of `a` outside this open interval are ignored.

    Returns
    -------
    mquantiles : MaskedArray
        An array containing the calculated quantiles.

    Notes
    -----
    This formulation is very similar to **R** except the calculation of
    ``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined
    with each type.

    References
    ----------
    .. [1] *R* statistical software: https://www.r-project.org/
    .. [2] *R* ``quantile`` function:
            http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats.mstats import mquantiles
    >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
    >>> mquantiles(a)
    array([ 19.2,  40. ,  42.8])

    Using a 2D array, specifying axis and limit.

    >>> data = np.array([[   6.,    7.,    1.],
    ...                  [  47.,   15.,    2.],
    ...                  [  49.,   36.,    3.],
    ...                  [  15.,   39.,    4.],
    ...                  [  42.,   40., -999.],
    ...                  [  41.,   41., -999.],
    ...                  [   7., -999., -999.],
    ...                  [  39., -999., -999.],
    ...                  [  43., -999., -999.],
    ...                  [  40., -999., -999.],
    ...                  [  36., -999., -999.]])
    >>> print(mquantiles(data, axis=0, limit=(0, 50)))
    [[19.2  14.6   1.45]
     [40.   37.5   2.5 ]
     [42.8  40.05  3.55]]

    >>> data[:, 2] = -999.
    >>> print(mquantiles(data, axis=0, limit=(0, 50)))
    [[19.200000000000003 14.6 --]
     [40.0 37.5 --]
     [42.800000000000004 40.05 --]]

    """
    def _quantiles1D(data,m,p):
        x = np.sort(data.compressed())
        n = len(x)
        if n == 0:
            return ma.array(np.empty(len(p), dtype=float), mask=True)
        elif n == 1:
            return ma.array(np.resize(x, p.shape), mask=nomask)
        aleph = (n*p + m)
        k = np.floor(aleph.clip(1, n-1)).astype(int)
        gamma = (aleph-k).clip(0,1)
        return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]

    data = ma.array(a, copy=False)
    if data.ndim > 2:
        raise TypeError("Array should be 2D at most !")

    if limit:
        condition = (limit[0] < data) & (data < limit[1])
        data[~condition.filled(True)] = masked

    p = np.atleast_1d(np.asarray(prob))
    m = alphap + p*(1.-alphap-betap)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        return _quantiles1D(data, m, p)

    return ma.apply_along_axis(_quantiles1D, axis, data, m, p)


def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4):
    """Calculate the score at the given 'per' percentile of the
    sequence a.  For example, the score at per=50 is the median.

    This function is a shortcut to mquantile

    """
    if (per < 0) or (per > 100.):
        raise ValueError(f"The percentile should be between 0. and 100. ! (got {per})")

    return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap,
                      limit=limit, axis=0).squeeze()


def plotting_positions(data, alpha=0.4, beta=0.4):
    """
    Returns plotting positions (or empirical percentile points) for the data.

    Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where:
        - i is the rank order statistics
        - n is the number of unmasked values along the given axis
        - `alpha` and `beta` are two parameters.

    Typical values for `alpha` and `beta` are:
        - (0,1)    : ``p(k) = k/n``, linear interpolation of cdf (R, type 4)
        - (.5,.5)  : ``p(k) = (k-1/2.)/n``, piecewise linear function
          (R, type 5)
        - (0,0)    : ``p(k) = k/(n+1)``, Weibull (R type 6)
        - (1,1)    : ``p(k) = (k-1)/(n-1)``, in this case,
          ``p(k) = mode[F(x[k])]``. That's R default (R type 7)
        - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then
          ``p(k) ~ median[F(x[k])]``.
          The resulting quantile estimates are approximately median-unbiased
          regardless of the distribution of x. (R type 8)
        - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom.
          The resulting quantile estimates are approximately unbiased
          if x is normally distributed (R type 9)
        - (.4,.4)  : approximately quantile unbiased (Cunnane)
        - (.35,.35): APL, used with PWM
        - (.3175, .3175): used in scipy.stats.probplot

    Parameters
    ----------
    data : array_like
        Input data, as a sequence or array of dimension at most 2.
    alpha : float, optional
        Plotting positions parameter. Default is 0.4.
    beta : float, optional
        Plotting positions parameter. Default is 0.4.

    Returns
    -------
    positions : MaskedArray
        The calculated plotting positions.

    """
    data = ma.array(data, copy=False).reshape(1,-1)
    n = data.count()
    plpos = np.empty(data.size, dtype=float)
    plpos[n:] = 0
    plpos[data.argsort(axis=None)[:n]] = ((np.arange(1, n+1) - alpha) /
                                          (n + 1.0 - alpha - beta))
    return ma.array(plpos, mask=data._mask)


meppf = plotting_positions


def obrientransform(*args):
    """
    Computes a transform on input data (any number of columns).  Used to
    test for homogeneity of variance prior to running one-way stats.  Each
    array in ``*args`` is one level of a factor.  If an `f_oneway()` run on
    the transformed data and found significant, variances are unequal.   From
    Maxwell and Delaney, p.112.

    Returns: transformed data for use in an ANOVA
    """
    data = argstoarray(*args).T
    v = data.var(axis=0,ddof=1)
    m = data.mean(0)
    n = data.count(0).astype(float)
    # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2))
    data -= m
    data **= 2
    data *= (n-1.5)*n
    data -= 0.5*v*(n-1)
    data /= (n-1.)*(n-2.)
    if not ma.allclose(v,data.mean(0)):
        raise ValueError("Lack of convergence in obrientransform.")

    return data


def sem(a, axis=0, ddof=1):
    """
    Calculates the standard error of the mean of the input array.

    Also sometimes called standard error of measurement.

    Parameters
    ----------
    a : array_like
        An array containing the values for which the standard error is
        returned.
    axis : int or None, optional
        If axis is None, ravel `a` first. If axis is an integer, this will be
        the axis over which to operate. Defaults to 0.
    ddof : int, optional
        Delta degrees-of-freedom. How many degrees of freedom to adjust
        for bias in limited samples relative to the population estimate
        of variance. Defaults to 1.

    Returns
    -------
    s : ndarray or float
        The standard error of the mean in the sample(s), along the input axis.

    Notes
    -----
    The default value for `ddof` changed in scipy 0.15.0 to be consistent with
    `scipy.stats.sem` as well as with the most common definition used (like in
    the R documentation).

    Examples
    --------
    Find standard error along the first axis:

    >>> import numpy as np
    >>> from scipy import stats
    >>> a = np.arange(20).reshape(5,4)
    >>> print(stats.mstats.sem(a))
    [2.8284271247461903 2.8284271247461903 2.8284271247461903
     2.8284271247461903]

    Find standard error across the whole array, using n degrees of freedom:

    >>> print(stats.mstats.sem(a, axis=None, ddof=0))
    1.2893796958227628

    """
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis=axis)
    s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n)
    return s


F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))


def f_oneway(*args):
    """
    Performs a 1-way ANOVA, returning an F-value and probability given
    any number of groups.  From Heiman, pp.394-7.

    Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays,
    one per treatment group.

    Returns
    -------
    statistic : float
        The computed F-value of the test.
    pvalue : float
        The associated p-value from the F-distribution.

    """
    # Construct a single array of arguments: each row is a group
    data = argstoarray(*args)
    ngroups = len(data)
    ntot = data.count()
    sstot = (data**2).sum() - (data.sum())**2/float(ntot)
    ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum()
    sswg = sstot-ssbg
    dfbg = ngroups-1
    dfwg = ntot - ngroups
    msb = ssbg/float(dfbg)
    msw = sswg/float(dfwg)
    f = msb/msw
    prob = special.fdtrc(dfbg, dfwg, f)  # equivalent to stats.f.sf

    return F_onewayResult(f, prob)


FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
                                     ('statistic', 'pvalue'))


def friedmanchisquare(*args):
    """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
    This function calculates the Friedman Chi-square test for repeated measures
    and returns the result, along with the associated probability value.

    Each input is considered a given group. Ideally, the number of treatments
    among each group should be equal. If this is not the case, only the first
    n treatments are taken into account, where n is the number of treatments
    of the smallest group.
    If a group has some missing values, the corresponding treatments are masked
    in the other groups.
    The test statistic is corrected for ties.

    Masked values in one group are propagated to the other groups.

    Returns
    -------
    statistic : float
        the test statistic.
    pvalue : float
        the associated p-value.

    """
    data = argstoarray(*args).astype(float)
    k = len(data)
    if k < 3:
        raise ValueError("Less than 3 groups (%i): " % k +
                         "the Friedman test is NOT appropriate.")

    ranked = ma.masked_values(rankdata(data, axis=0), 0)
    if ranked._mask is not nomask:
        ranked = ma.mask_cols(ranked)
        ranked = ranked.compressed().reshape(k,-1).view(ndarray)
    else:
        ranked = ranked._data
    (k,n) = ranked.shape
    # Ties correction
    repeats = [find_repeats(row) for row in ranked.T]
    ties = np.array([y for x, y in repeats if x.size > 0])
    tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k))

    ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2)
    chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction

    return FriedmanchisquareResult(chisq,
                                   distributions.chi2.sf(chisq, k-1))


BrunnerMunzelResult = namedtuple('BrunnerMunzelResult', ('statistic', 'pvalue'))


def brunnermunzel(x, y, alternative="two-sided", distribution="t"):
    """
    Compute the Brunner-Munzel test on samples x and y.

    Any missing values in `x` and/or `y` are discarded.

    The Brunner-Munzel test is a nonparametric test of the null hypothesis that
    when values are taken one by one from each group, the probabilities of
    getting large values in both groups are equal.
    Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
    assumption of equivariance of two groups. Note that this does not assume
    the distributions are same. This test works on two independent samples,
    which may have different sizes.

    Parameters
    ----------
    x, y : array_like
        Array of samples, should be one-dimensional.
    alternative : 'less', 'two-sided', or 'greater', optional
        Whether to get the p-value for the one-sided hypothesis ('less'
        or 'greater') or for the two-sided hypothesis ('two-sided').
        Defaults value is 'two-sided' .
    distribution : 't' or 'normal', optional
        Whether to get the p-value by t-distribution or by standard normal
        distribution.
        Defaults value is 't' .

    Returns
    -------
    statistic : float
        The Brunner-Munzer W statistic.
    pvalue : float
        p-value assuming an t distribution. One-sided or
        two-sided, depending on the choice of `alternative` and `distribution`.

    See Also
    --------
    mannwhitneyu : Mann-Whitney rank test on two samples.

    Notes
    -----
    For more details on `brunnermunzel`, see `scipy.stats.brunnermunzel`.

    Examples
    --------
    >>> from scipy.stats.mstats import brunnermunzel
    >>> import numpy as np
    >>> x1 = [1, 2, np.nan, np.nan, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1]
    >>> x2 = [3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4]
    >>> brunnermunzel(x1, x2)
    BrunnerMunzelResult(statistic=1.4723186918922935, pvalue=0.15479415300426624)  # may vary

    """  # noqa: E501
    x = ma.asarray(x).compressed().view(ndarray)
    y = ma.asarray(y).compressed().view(ndarray)
    nx = len(x)
    ny = len(y)
    if nx == 0 or ny == 0:
        return BrunnerMunzelResult(np.nan, np.nan)
    rankc = rankdata(np.concatenate((x,y)))
    rankcx = rankc[0:nx]
    rankcy = rankc[nx:nx+ny]
    rankcx_mean = np.mean(rankcx)
    rankcy_mean = np.mean(rankcy)
    rankx = rankdata(x)
    ranky = rankdata(y)
    rankx_mean = np.mean(rankx)
    ranky_mean = np.mean(ranky)

    Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
    Sx /= nx - 1
    Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
    Sy /= ny - 1

    wbfn = nx * ny * (rankcy_mean - rankcx_mean)
    wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)

    if distribution == "t":
        df_numer = np.power(nx * Sx + ny * Sy, 2.0)
        df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
        df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
        df = df_numer / df_denom
        p = distributions.t.cdf(wbfn, df)
    elif distribution == "normal":
        p = distributions.norm.cdf(wbfn)
    else:
        raise ValueError(
            "distribution should be 't' or 'normal'")

    if alternative == "greater":
        pass
    elif alternative == "less":
        p = 1 - p
    elif alternative == "two-sided":
        p = 2 * np.min([p, 1-p])
    else:
        raise ValueError(
            "alternative should be 'less', 'greater' or 'two-sided'")

    return BrunnerMunzelResult(wbfn, p)