File size: 104,295 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 |
import warnings
import numpy as np
from itertools import combinations, permutations, product
from collections.abc import Sequence
from dataclasses import dataclass, field
import inspect
from scipy._lib._util import (check_random_state, _rename_parameter, rng_integers,
_transition_to_rng)
from scipy._lib._array_api import array_namespace, is_numpy, xp_moveaxis_to_end
from scipy.special import ndtr, ndtri, comb, factorial
from ._common import ConfidenceInterval
from ._axis_nan_policy import _broadcast_concatenate, _broadcast_arrays
from ._warnings_errors import DegenerateDataWarning
__all__ = ['bootstrap', 'monte_carlo_test', 'permutation_test']
def _vectorize_statistic(statistic):
"""Vectorize an n-sample statistic"""
# This is a little cleaner than np.nditer at the expense of some data
# copying: concatenate samples together, then use np.apply_along_axis
def stat_nd(*data, axis=0):
lengths = [sample.shape[axis] for sample in data]
split_indices = np.cumsum(lengths)[:-1]
z = _broadcast_concatenate(data, axis)
# move working axis to position 0 so that new dimensions in the output
# of `statistic` are _prepended_. ("This axis is removed, and replaced
# with new dimensions...")
z = np.moveaxis(z, axis, 0)
def stat_1d(z):
data = np.split(z, split_indices)
return statistic(*data)
return np.apply_along_axis(stat_1d, 0, z)[()]
return stat_nd
def _jackknife_resample(sample, batch=None):
"""Jackknife resample the sample. Only one-sample stats for now."""
n = sample.shape[-1]
batch_nominal = batch or n
for k in range(0, n, batch_nominal):
# col_start:col_end are the observations to remove
batch_actual = min(batch_nominal, n-k)
# jackknife - each row leaves out one observation
j = np.ones((batch_actual, n), dtype=bool)
np.fill_diagonal(j[:, k:k+batch_actual], False)
i = np.arange(n)
i = np.broadcast_to(i, (batch_actual, n))
i = i[j].reshape((batch_actual, n-1))
resamples = sample[..., i]
yield resamples
def _bootstrap_resample(sample, n_resamples=None, rng=None):
"""Bootstrap resample the sample."""
n = sample.shape[-1]
# bootstrap - each row is a random resample of original observations
i = rng_integers(rng, 0, n, (n_resamples, n))
resamples = sample[..., i]
return resamples
def _percentile_of_score(a, score, axis):
"""Vectorized, simplified `scipy.stats.percentileofscore`.
Uses logic of the 'mean' value of percentileofscore's kind parameter.
Unlike `stats.percentileofscore`, the percentile returned is a fraction
in [0, 1].
"""
B = a.shape[axis]
return ((a < score).sum(axis=axis) + (a <= score).sum(axis=axis)) / (2 * B)
def _percentile_along_axis(theta_hat_b, alpha):
"""`np.percentile` with different percentile for each slice."""
# the difference between _percentile_along_axis and np.percentile is that
# np.percentile gets _all_ the qs for each axis slice, whereas
# _percentile_along_axis gets the q corresponding with each axis slice
shape = theta_hat_b.shape[:-1]
alpha = np.broadcast_to(alpha, shape)
percentiles = np.zeros_like(alpha, dtype=np.float64)
for indices, alpha_i in np.ndenumerate(alpha):
if np.isnan(alpha_i):
# e.g. when bootstrap distribution has only one unique element
msg = (
"The BCa confidence interval cannot be calculated."
" This problem is known to occur when the distribution"
" is degenerate or the statistic is np.min."
)
warnings.warn(DegenerateDataWarning(msg), stacklevel=3)
percentiles[indices] = np.nan
else:
theta_hat_b_i = theta_hat_b[indices]
percentiles[indices] = np.percentile(theta_hat_b_i, alpha_i)
return percentiles[()] # return scalar instead of 0d array
def _bca_interval(data, statistic, axis, alpha, theta_hat_b, batch):
"""Bias-corrected and accelerated interval."""
# closely follows [1] 14.3 and 15.4 (Eq. 15.36)
# calculate z0_hat
theta_hat = np.asarray(statistic(*data, axis=axis))[..., None]
percentile = _percentile_of_score(theta_hat_b, theta_hat, axis=-1)
z0_hat = ndtri(percentile)
# calculate a_hat
theta_hat_ji = [] # j is for sample of data, i is for jackknife resample
for j, sample in enumerate(data):
# _jackknife_resample will add an axis prior to the last axis that
# corresponds with the different jackknife resamples. Do the same for
# each sample of the data to ensure broadcastability. We need to
# create a copy of the list containing the samples anyway, so do this
# in the loop to simplify the code. This is not the bottleneck...
samples = [np.expand_dims(sample, -2) for sample in data]
theta_hat_i = []
for jackknife_sample in _jackknife_resample(sample, batch):
samples[j] = jackknife_sample
broadcasted = _broadcast_arrays(samples, axis=-1)
theta_hat_i.append(statistic(*broadcasted, axis=-1))
theta_hat_ji.append(theta_hat_i)
theta_hat_ji = [np.concatenate(theta_hat_i, axis=-1)
for theta_hat_i in theta_hat_ji]
n_j = [theta_hat_i.shape[-1] for theta_hat_i in theta_hat_ji]
theta_hat_j_dot = [theta_hat_i.mean(axis=-1, keepdims=True)
for theta_hat_i in theta_hat_ji]
U_ji = [(n - 1) * (theta_hat_dot - theta_hat_i)
for theta_hat_dot, theta_hat_i, n
in zip(theta_hat_j_dot, theta_hat_ji, n_j)]
nums = [(U_i**3).sum(axis=-1)/n**3 for U_i, n in zip(U_ji, n_j)]
dens = [(U_i**2).sum(axis=-1)/n**2 for U_i, n in zip(U_ji, n_j)]
a_hat = 1/6 * sum(nums) / sum(dens)**(3/2)
# calculate alpha_1, alpha_2
z_alpha = ndtri(alpha)
z_1alpha = -z_alpha
num1 = z0_hat + z_alpha
alpha_1 = ndtr(z0_hat + num1/(1 - a_hat*num1))
num2 = z0_hat + z_1alpha
alpha_2 = ndtr(z0_hat + num2/(1 - a_hat*num2))
return alpha_1, alpha_2, a_hat # return a_hat for testing
def _bootstrap_iv(data, statistic, vectorized, paired, axis, confidence_level,
alternative, n_resamples, batch, method, bootstrap_result,
rng):
"""Input validation and standardization for `bootstrap`."""
if vectorized not in {True, False, None}:
raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
if vectorized is None:
vectorized = 'axis' in inspect.signature(statistic).parameters
if not vectorized:
statistic = _vectorize_statistic(statistic)
axis_int = int(axis)
if axis != axis_int:
raise ValueError("`axis` must be an integer.")
n_samples = 0
try:
n_samples = len(data)
except TypeError:
raise ValueError("`data` must be a sequence of samples.")
if n_samples == 0:
raise ValueError("`data` must contain at least one sample.")
message = ("Ignoring the dimension specified by `axis`, arrays in `data` do not "
"have the same shape. Beginning in SciPy 1.16.0, `bootstrap` will "
"explicitly broadcast elements of `data` to the same shape (ignoring "
"`axis`) before performing the calculation. To avoid this warning in "
"the meantime, ensure that all samples have the same shape (except "
"potentially along `axis`).")
data = [np.atleast_1d(sample) for sample in data]
reduced_shapes = set()
for sample in data:
reduced_shape = list(sample.shape)
reduced_shape.pop(axis)
reduced_shapes.add(tuple(reduced_shape))
if len(reduced_shapes) != 1:
warnings.warn(message, FutureWarning, stacklevel=3)
data_iv = []
for sample in data:
if sample.shape[axis_int] <= 1:
raise ValueError("each sample in `data` must contain two or more "
"observations along `axis`.")
sample = np.moveaxis(sample, axis_int, -1)
data_iv.append(sample)
if paired not in {True, False}:
raise ValueError("`paired` must be `True` or `False`.")
if paired:
n = data_iv[0].shape[-1]
for sample in data_iv[1:]:
if sample.shape[-1] != n:
message = ("When `paired is True`, all samples must have the "
"same length along `axis`")
raise ValueError(message)
# to generate the bootstrap distribution for paired-sample statistics,
# resample the indices of the observations
def statistic(i, axis=-1, data=data_iv, unpaired_statistic=statistic):
data = [sample[..., i] for sample in data]
return unpaired_statistic(*data, axis=axis)
data_iv = [np.arange(n)]
confidence_level_float = float(confidence_level)
alternative = alternative.lower()
alternatives = {'two-sided', 'less', 'greater'}
if alternative not in alternatives:
raise ValueError(f"`alternative` must be one of {alternatives}")
n_resamples_int = int(n_resamples)
if n_resamples != n_resamples_int or n_resamples_int < 0:
raise ValueError("`n_resamples` must be a non-negative integer.")
if batch is None:
batch_iv = batch
else:
batch_iv = int(batch)
if batch != batch_iv or batch_iv <= 0:
raise ValueError("`batch` must be a positive integer or None.")
methods = {'percentile', 'basic', 'bca'}
method = method.lower()
if method not in methods:
raise ValueError(f"`method` must be in {methods}")
message = "`bootstrap_result` must have attribute `bootstrap_distribution'"
if (bootstrap_result is not None
and not hasattr(bootstrap_result, "bootstrap_distribution")):
raise ValueError(message)
message = ("Either `bootstrap_result.bootstrap_distribution.size` or "
"`n_resamples` must be positive.")
if ((not bootstrap_result or
not bootstrap_result.bootstrap_distribution.size)
and n_resamples_int == 0):
raise ValueError(message)
rng = check_random_state(rng)
return (data_iv, statistic, vectorized, paired, axis_int,
confidence_level_float, alternative, n_resamples_int, batch_iv,
method, bootstrap_result, rng)
@dataclass
class BootstrapResult:
"""Result object returned by `scipy.stats.bootstrap`.
Attributes
----------
confidence_interval : ConfidenceInterval
The bootstrap confidence interval as an instance of
`collections.namedtuple` with attributes `low` and `high`.
bootstrap_distribution : ndarray
The bootstrap distribution, that is, the value of `statistic` for
each resample. The last dimension corresponds with the resamples
(e.g. ``res.bootstrap_distribution.shape[-1] == n_resamples``).
standard_error : float or ndarray
The bootstrap standard error, that is, the sample standard
deviation of the bootstrap distribution.
"""
confidence_interval: ConfidenceInterval
bootstrap_distribution: np.ndarray
standard_error: float | np.ndarray
@_transition_to_rng('random_state')
def bootstrap(data, statistic, *, n_resamples=9999, batch=None,
vectorized=None, paired=False, axis=0, confidence_level=0.95,
alternative='two-sided', method='BCa', bootstrap_result=None,
rng=None):
r"""
Compute a two-sided bootstrap confidence interval of a statistic.
When `method` is ``'percentile'`` and `alternative` is ``'two-sided'``,
a bootstrap confidence interval is computed according to the following
procedure.
1. Resample the data: for each sample in `data` and for each of
`n_resamples`, take a random sample of the original sample
(with replacement) of the same size as the original sample.
2. Compute the bootstrap distribution of the statistic: for each set of
resamples, compute the test statistic.
3. Determine the confidence interval: find the interval of the bootstrap
distribution that is
- symmetric about the median and
- contains `confidence_level` of the resampled statistic values.
While the ``'percentile'`` method is the most intuitive, it is rarely
used in practice. Two more common methods are available, ``'basic'``
('reverse percentile') and ``'BCa'`` ('bias-corrected and accelerated');
they differ in how step 3 is performed.
If the samples in `data` are taken at random from their respective
distributions :math:`n` times, the confidence interval returned by
`bootstrap` will contain the true value of the statistic for those
distributions approximately `confidence_level`:math:`\, \times \, n` times.
Parameters
----------
data : sequence of array-like
Each element of `data` is a sample containing scalar observations from an
underlying distribution. Elements of `data` must be broadcastable to the
same shape (with the possible exception of the dimension specified by `axis`).
.. versionchanged:: 1.14.0
`bootstrap` will now emit a ``FutureWarning`` if the shapes of the
elements of `data` are not the same (with the exception of the dimension
specified by `axis`).
Beginning in SciPy 1.16.0, `bootstrap` will explicitly broadcast the
elements to the same shape (except along `axis`) before performing
the calculation.
statistic : callable
Statistic for which the confidence interval is to be calculated.
`statistic` must be a callable that accepts ``len(data)`` samples
as separate arguments and returns the resulting statistic.
If `vectorized` is set ``True``,
`statistic` must also accept a keyword argument `axis` and be
vectorized to compute the statistic along the provided `axis`.
n_resamples : int, default: ``9999``
The number of resamples performed to form the bootstrap distribution
of the statistic.
batch : int, optional
The number of resamples to process in each vectorized call to
`statistic`. Memory usage is O( `batch` * ``n`` ), where ``n`` is the
sample size. Default is ``None``, in which case ``batch = n_resamples``
(or ``batch = max(n_resamples, n)`` for ``method='BCa'``).
vectorized : bool, optional
If `vectorized` is set ``False``, `statistic` will not be passed
keyword argument `axis` and is expected to calculate the statistic
only for 1D samples. If ``True``, `statistic` will be passed keyword
argument `axis` and is expected to calculate the statistic along `axis`
when passed an ND sample array. If ``None`` (default), `vectorized`
will be set ``True`` if ``axis`` is a parameter of `statistic`. Use of
a vectorized statistic typically reduces computation time.
paired : bool, default: ``False``
Whether the statistic treats corresponding elements of the samples
in `data` as paired. If True, `bootstrap` resamples an array of
*indices* and uses the same indices for all arrays in `data`; otherwise,
`bootstrap` independently resamples the elements of each array.
axis : int, default: ``0``
The axis of the samples in `data` along which the `statistic` is
calculated.
confidence_level : float, default: ``0.95``
The confidence level of the confidence interval.
alternative : {'two-sided', 'less', 'greater'}, default: ``'two-sided'``
Choose ``'two-sided'`` (default) for a two-sided confidence interval,
``'less'`` for a one-sided confidence interval with the lower bound
at ``-np.inf``, and ``'greater'`` for a one-sided confidence interval
with the upper bound at ``np.inf``. The other bound of the one-sided
confidence intervals is the same as that of a two-sided confidence
interval with `confidence_level` twice as far from 1.0; e.g. the upper
bound of a 95% ``'less'`` confidence interval is the same as the upper
bound of a 90% ``'two-sided'`` confidence interval.
method : {'percentile', 'basic', 'bca'}, default: ``'BCa'``
Whether to return the 'percentile' bootstrap confidence interval
(``'percentile'``), the 'basic' (AKA 'reverse') bootstrap confidence
interval (``'basic'``), or the bias-corrected and accelerated bootstrap
confidence interval (``'BCa'``).
bootstrap_result : BootstrapResult, optional
Provide the result object returned by a previous call to `bootstrap`
to include the previous bootstrap distribution in the new bootstrap
distribution. This can be used, for example, to change
`confidence_level`, change `method`, or see the effect of performing
additional resampling without repeating computations.
rng : `numpy.random.Generator`, optional
Pseudorandom number generator state. When `rng` is None, a new
`numpy.random.Generator` is created using entropy from the
operating system. Types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
Returns
-------
res : BootstrapResult
An object with attributes:
confidence_interval : ConfidenceInterval
The bootstrap confidence interval as an instance of
`collections.namedtuple` with attributes `low` and `high`.
bootstrap_distribution : ndarray
The bootstrap distribution, that is, the value of `statistic` for
each resample. The last dimension corresponds with the resamples
(e.g. ``res.bootstrap_distribution.shape[-1] == n_resamples``).
standard_error : float or ndarray
The bootstrap standard error, that is, the sample standard
deviation of the bootstrap distribution.
Warns
-----
`~scipy.stats.DegenerateDataWarning`
Generated when ``method='BCa'`` and the bootstrap distribution is
degenerate (e.g. all elements are identical).
Notes
-----
Elements of the confidence interval may be NaN for ``method='BCa'`` if
the bootstrap distribution is degenerate (e.g. all elements are identical).
In this case, consider using another `method` or inspecting `data` for
indications that other analysis may be more appropriate (e.g. all
observations are identical).
References
----------
.. [1] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
Chapman & Hall/CRC, Boca Raton, FL, USA (1993)
.. [2] Nathaniel E. Helwig, "Bootstrap Confidence Intervals",
http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf
.. [3] Bootstrapping (statistics), Wikipedia,
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Examples
--------
Suppose we have sampled data from an unknown distribution.
>>> import numpy as np
>>> rng = np.random.default_rng()
>>> from scipy.stats import norm
>>> dist = norm(loc=2, scale=4) # our "unknown" distribution
>>> data = dist.rvs(size=100, random_state=rng)
We are interested in the standard deviation of the distribution.
>>> std_true = dist.std() # the true value of the statistic
>>> print(std_true)
4.0
>>> std_sample = np.std(data) # the sample statistic
>>> print(std_sample)
3.9460644295563863
The bootstrap is used to approximate the variability we would expect if we
were to repeatedly sample from the unknown distribution and calculate the
statistic of the sample each time. It does this by repeatedly resampling
values *from the original sample* with replacement and calculating the
statistic of each resample. This results in a "bootstrap distribution" of
the statistic.
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import bootstrap
>>> data = (data,) # samples must be in a sequence
>>> res = bootstrap(data, np.std, confidence_level=0.9, rng=rng)
>>> fig, ax = plt.subplots()
>>> ax.hist(res.bootstrap_distribution, bins=25)
>>> ax.set_title('Bootstrap Distribution')
>>> ax.set_xlabel('statistic value')
>>> ax.set_ylabel('frequency')
>>> plt.show()
The standard error quantifies this variability. It is calculated as the
standard deviation of the bootstrap distribution.
>>> res.standard_error
0.24427002125829136
>>> res.standard_error == np.std(res.bootstrap_distribution, ddof=1)
True
The bootstrap distribution of the statistic is often approximately normal
with scale equal to the standard error.
>>> x = np.linspace(3, 5)
>>> pdf = norm.pdf(x, loc=std_sample, scale=res.standard_error)
>>> fig, ax = plt.subplots()
>>> ax.hist(res.bootstrap_distribution, bins=25, density=True)
>>> ax.plot(x, pdf)
>>> ax.set_title('Normal Approximation of the Bootstrap Distribution')
>>> ax.set_xlabel('statistic value')
>>> ax.set_ylabel('pdf')
>>> plt.show()
This suggests that we could construct a 90% confidence interval on the
statistic based on quantiles of this normal distribution.
>>> norm.interval(0.9, loc=std_sample, scale=res.standard_error)
(3.5442759991341726, 4.3478528599786)
Due to central limit theorem, this normal approximation is accurate for a
variety of statistics and distributions underlying the samples; however,
the approximation is not reliable in all cases. Because `bootstrap` is
designed to work with arbitrary underlying distributions and statistics,
it uses more advanced techniques to generate an accurate confidence
interval.
>>> print(res.confidence_interval)
ConfidenceInterval(low=3.57655333533867, high=4.382043696342881)
If we sample from the original distribution 100 times and form a bootstrap
confidence interval for each sample, the confidence interval
contains the true value of the statistic approximately 90% of the time.
>>> n_trials = 100
>>> ci_contains_true_std = 0
>>> for i in range(n_trials):
... data = (dist.rvs(size=100, random_state=rng),)
... res = bootstrap(data, np.std, confidence_level=0.9,
... n_resamples=999, rng=rng)
... ci = res.confidence_interval
... if ci[0] < std_true < ci[1]:
... ci_contains_true_std += 1
>>> print(ci_contains_true_std)
88
Rather than writing a loop, we can also determine the confidence intervals
for all 100 samples at once.
>>> data = (dist.rvs(size=(n_trials, 100), random_state=rng),)
>>> res = bootstrap(data, np.std, axis=-1, confidence_level=0.9,
... n_resamples=999, rng=rng)
>>> ci_l, ci_u = res.confidence_interval
Here, `ci_l` and `ci_u` contain the confidence interval for each of the
``n_trials = 100`` samples.
>>> print(ci_l[:5])
[3.86401283 3.33304394 3.52474647 3.54160981 3.80569252]
>>> print(ci_u[:5])
[4.80217409 4.18143252 4.39734707 4.37549713 4.72843584]
And again, approximately 90% contain the true value, ``std_true = 4``.
>>> print(np.sum((ci_l < std_true) & (std_true < ci_u)))
93
`bootstrap` can also be used to estimate confidence intervals of
multi-sample statistics. For example, to get a confidence interval
for the difference between means, we write a function that accepts
two sample arguments and returns only the statistic. The use of the
``axis`` argument ensures that all mean calculations are perform in
a single vectorized call, which is faster than looping over pairs
of resamples in Python.
>>> def my_statistic(sample1, sample2, axis=-1):
... mean1 = np.mean(sample1, axis=axis)
... mean2 = np.mean(sample2, axis=axis)
... return mean1 - mean2
Here, we use the 'percentile' method with the default 95% confidence level.
>>> sample1 = norm.rvs(scale=1, size=100, random_state=rng)
>>> sample2 = norm.rvs(scale=2, size=100, random_state=rng)
>>> data = (sample1, sample2)
>>> res = bootstrap(data, my_statistic, method='basic', rng=rng)
>>> print(my_statistic(sample1, sample2))
0.16661030792089523
>>> print(res.confidence_interval)
ConfidenceInterval(low=-0.29087973240818693, high=0.6371338699912273)
The bootstrap estimate of the standard error is also available.
>>> print(res.standard_error)
0.238323948262459
Paired-sample statistics work, too. For example, consider the Pearson
correlation coefficient.
>>> from scipy.stats import pearsonr
>>> n = 100
>>> x = np.linspace(0, 10, n)
>>> y = x + rng.uniform(size=n)
>>> print(pearsonr(x, y)[0]) # element 0 is the statistic
0.9954306665125647
We wrap `pearsonr` so that it returns only the statistic, ensuring
that we use the `axis` argument because it is available.
>>> def my_statistic(x, y, axis=-1):
... return pearsonr(x, y, axis=axis)[0]
We call `bootstrap` using ``paired=True``.
>>> res = bootstrap((x, y), my_statistic, paired=True, rng=rng)
>>> print(res.confidence_interval)
ConfidenceInterval(low=0.9941504301315878, high=0.996377412215445)
The result object can be passed back into `bootstrap` to perform additional
resampling:
>>> len(res.bootstrap_distribution)
9999
>>> res = bootstrap((x, y), my_statistic, paired=True,
... n_resamples=1000, rng=rng,
... bootstrap_result=res)
>>> len(res.bootstrap_distribution)
10999
or to change the confidence interval options:
>>> res2 = bootstrap((x, y), my_statistic, paired=True,
... n_resamples=0, rng=rng, bootstrap_result=res,
... method='percentile', confidence_level=0.9)
>>> np.testing.assert_equal(res2.bootstrap_distribution,
... res.bootstrap_distribution)
>>> res.confidence_interval
ConfidenceInterval(low=0.9941574828235082, high=0.9963781698210212)
without repeating computation of the original bootstrap distribution.
"""
# Input validation
args = _bootstrap_iv(data, statistic, vectorized, paired, axis,
confidence_level, alternative, n_resamples, batch,
method, bootstrap_result, rng)
(data, statistic, vectorized, paired, axis, confidence_level,
alternative, n_resamples, batch, method, bootstrap_result,
rng) = args
theta_hat_b = ([] if bootstrap_result is None
else [bootstrap_result.bootstrap_distribution])
batch_nominal = batch or n_resamples or 1
for k in range(0, n_resamples, batch_nominal):
batch_actual = min(batch_nominal, n_resamples-k)
# Generate resamples
resampled_data = []
for sample in data:
resample = _bootstrap_resample(sample, n_resamples=batch_actual,
rng=rng)
resampled_data.append(resample)
# Compute bootstrap distribution of statistic
theta_hat_b.append(statistic(*resampled_data, axis=-1))
theta_hat_b = np.concatenate(theta_hat_b, axis=-1)
# Calculate percentile interval
alpha = ((1 - confidence_level)/2 if alternative == 'two-sided'
else (1 - confidence_level))
if method == 'bca':
interval = _bca_interval(data, statistic, axis=-1, alpha=alpha,
theta_hat_b=theta_hat_b, batch=batch)[:2]
percentile_fun = _percentile_along_axis
else:
interval = alpha, 1-alpha
def percentile_fun(a, q):
return np.percentile(a=a, q=q, axis=-1)
# Calculate confidence interval of statistic
ci_l = percentile_fun(theta_hat_b, interval[0]*100)
ci_u = percentile_fun(theta_hat_b, interval[1]*100)
if method == 'basic': # see [3]
theta_hat = statistic(*data, axis=-1)
ci_l, ci_u = 2*theta_hat - ci_u, 2*theta_hat - ci_l
if alternative == 'less':
ci_l = np.full_like(ci_l, -np.inf)
elif alternative == 'greater':
ci_u = np.full_like(ci_u, np.inf)
return BootstrapResult(confidence_interval=ConfidenceInterval(ci_l, ci_u),
bootstrap_distribution=theta_hat_b,
standard_error=np.std(theta_hat_b, ddof=1, axis=-1))
def _monte_carlo_test_iv(data, rvs, statistic, vectorized, n_resamples,
batch, alternative, axis):
"""Input validation for `monte_carlo_test`."""
axis_int = int(axis)
if axis != axis_int:
raise ValueError("`axis` must be an integer.")
if vectorized not in {True, False, None}:
raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
if not isinstance(rvs, Sequence):
rvs = (rvs,)
data = (data,)
for rvs_i in rvs:
if not callable(rvs_i):
raise TypeError("`rvs` must be callable or sequence of callables.")
# At this point, `data` should be a sequence
# If it isn't, the user passed a sequence for `rvs` but not `data`
message = "If `rvs` is a sequence, `len(rvs)` must equal `len(data)`."
try:
len(data)
except TypeError as e:
raise ValueError(message) from e
if not len(rvs) == len(data):
raise ValueError(message)
if not callable(statistic):
raise TypeError("`statistic` must be callable.")
if vectorized is None:
try:
signature = inspect.signature(statistic).parameters
except ValueError as e:
message = (f"Signature inspection of {statistic=} failed; "
"pass `vectorize` explicitly.")
raise ValueError(message) from e
vectorized = 'axis' in signature
xp = array_namespace(*data)
if not vectorized:
if is_numpy(xp):
statistic_vectorized = _vectorize_statistic(statistic)
else:
message = ("`statistic` must be vectorized (i.e. support an `axis` "
f"argument) when `data` contains {xp.__name__} arrays.")
raise ValueError(message)
else:
statistic_vectorized = statistic
data = _broadcast_arrays(data, axis, xp=xp)
data_iv = []
for sample in data:
sample = xp.broadcast_to(sample, (1,)) if sample.ndim == 0 else sample
sample = xp_moveaxis_to_end(sample, axis_int, xp=xp)
data_iv.append(sample)
n_resamples_int = int(n_resamples)
if n_resamples != n_resamples_int or n_resamples_int <= 0:
raise ValueError("`n_resamples` must be a positive integer.")
if batch is None:
batch_iv = batch
else:
batch_iv = int(batch)
if batch != batch_iv or batch_iv <= 0:
raise ValueError("`batch` must be a positive integer or None.")
alternatives = {'two-sided', 'greater', 'less'}
alternative = alternative.lower()
if alternative not in alternatives:
raise ValueError(f"`alternative` must be in {alternatives}")
# Infer the desired p-value dtype based on the input types
min_float = getattr(xp, 'float16', xp.float32)
dtype = xp.result_type(*data_iv, min_float)
return (data_iv, rvs, statistic_vectorized, vectorized, n_resamples_int,
batch_iv, alternative, axis_int, dtype, xp)
@dataclass
class MonteCarloTestResult:
"""Result object returned by `scipy.stats.monte_carlo_test`.
Attributes
----------
statistic : float or ndarray
The observed test statistic of the sample.
pvalue : float or ndarray
The p-value for the given alternative.
null_distribution : ndarray
The values of the test statistic generated under the null
hypothesis.
"""
statistic: float | np.ndarray
pvalue: float | np.ndarray
null_distribution: np.ndarray
@_rename_parameter('sample', 'data')
def monte_carlo_test(data, rvs, statistic, *, vectorized=None,
n_resamples=9999, batch=None, alternative="two-sided",
axis=0):
r"""Perform a Monte Carlo hypothesis test.
`data` contains a sample or a sequence of one or more samples. `rvs`
specifies the distribution(s) of the sample(s) in `data` under the null
hypothesis. The value of `statistic` for the given `data` is compared
against a Monte Carlo null distribution: the value of the statistic for
each of `n_resamples` sets of samples generated using `rvs`. This gives
the p-value, the probability of observing such an extreme value of the
test statistic under the null hypothesis.
Parameters
----------
data : array-like or sequence of array-like
An array or sequence of arrays of observations.
rvs : callable or tuple of callables
A callable or sequence of callables that generates random variates
under the null hypothesis. Each element of `rvs` must be a callable
that accepts keyword argument ``size`` (e.g. ``rvs(size=(m, n))``) and
returns an N-d array sample of that shape. If `rvs` is a sequence, the
number of callables in `rvs` must match the number of samples in
`data`, i.e. ``len(rvs) == len(data)``. If `rvs` is a single callable,
`data` is treated as a single sample.
statistic : callable
Statistic for which the p-value of the hypothesis test is to be
calculated. `statistic` must be a callable that accepts a sample
(e.g. ``statistic(sample)``) or ``len(rvs)`` separate samples (e.g.
``statistic(samples1, sample2)`` if `rvs` contains two callables and
`data` contains two samples) and returns the resulting statistic.
If `vectorized` is set ``True``, `statistic` must also accept a keyword
argument `axis` and be vectorized to compute the statistic along the
provided `axis` of the samples in `data`.
vectorized : bool, optional
If `vectorized` is set ``False``, `statistic` will not be passed
keyword argument `axis` and is expected to calculate the statistic
only for 1D samples. If ``True``, `statistic` will be passed keyword
argument `axis` and is expected to calculate the statistic along `axis`
when passed ND sample arrays. If ``None`` (default), `vectorized`
will be set ``True`` if ``axis`` is a parameter of `statistic`. Use of
a vectorized statistic typically reduces computation time.
n_resamples : int, default: 9999
Number of samples drawn from each of the callables of `rvs`.
Equivalently, the number statistic values under the null hypothesis
used as the Monte Carlo null distribution.
batch : int, optional
The number of Monte Carlo samples to process in each call to
`statistic`. Memory usage is O( `batch` * ``sample.size[axis]`` ). Default
is ``None``, in which case `batch` equals `n_resamples`.
alternative : {'two-sided', 'less', 'greater'}
The alternative hypothesis for which the p-value is calculated.
For each alternative, the p-value is defined as follows.
- ``'greater'`` : the percentage of the null distribution that is
greater than or equal to the observed value of the test statistic.
- ``'less'`` : the percentage of the null distribution that is
less than or equal to the observed value of the test statistic.
- ``'two-sided'`` : twice the smaller of the p-values above.
axis : int, default: 0
The axis of `data` (or each sample within `data`) over which to
calculate the statistic.
Returns
-------
res : MonteCarloTestResult
An object with attributes:
statistic : float or ndarray
The test statistic of the observed `data`.
pvalue : float or ndarray
The p-value for the given alternative.
null_distribution : ndarray
The values of the test statistic generated under the null
hypothesis.
.. warning::
The p-value is calculated by counting the elements of the null
distribution that are as extreme or more extreme than the observed
value of the statistic. Due to the use of finite precision arithmetic,
some statistic functions return numerically distinct values when the
theoretical values would be exactly equal. In some cases, this could
lead to a large error in the calculated p-value. `monte_carlo_test`
guards against this by considering elements in the null distribution
that are "close" (within a relative tolerance of 100 times the
floating point epsilon of inexact dtypes) to the observed
value of the test statistic as equal to the observed value of the
test statistic. However, the user is advised to inspect the null
distribution to assess whether this method of comparison is
appropriate, and if not, calculate the p-value manually.
References
----------
.. [1] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly Drawn."
Statistical Applications in Genetics and Molecular Biology 9.1 (2010).
Examples
--------
Suppose we wish to test whether a small sample has been drawn from a normal
distribution. We decide that we will use the skew of the sample as a
test statistic, and we will consider a p-value of 0.05 to be statistically
significant.
>>> import numpy as np
>>> from scipy import stats
>>> def statistic(x, axis):
... return stats.skew(x, axis)
After collecting our data, we calculate the observed value of the test
statistic.
>>> rng = np.random.default_rng()
>>> x = stats.skewnorm.rvs(a=1, size=50, random_state=rng)
>>> statistic(x, axis=0)
0.12457412450240658
To determine the probability of observing such an extreme value of the
skewness by chance if the sample were drawn from the normal distribution,
we can perform a Monte Carlo hypothesis test. The test will draw many
samples at random from their normal distribution, calculate the skewness
of each sample, and compare our original skewness against this
distribution to determine an approximate p-value.
>>> from scipy.stats import monte_carlo_test
>>> # because our statistic is vectorized, we pass `vectorized=True`
>>> rvs = lambda size: stats.norm.rvs(size=size, random_state=rng)
>>> res = monte_carlo_test(x, rvs, statistic, vectorized=True)
>>> print(res.statistic)
0.12457412450240658
>>> print(res.pvalue)
0.7012
The probability of obtaining a test statistic less than or equal to the
observed value under the null hypothesis is ~70%. This is greater than
our chosen threshold of 5%, so we cannot consider this to be significant
evidence against the null hypothesis.
Note that this p-value essentially matches that of
`scipy.stats.skewtest`, which relies on an asymptotic distribution of a
test statistic based on the sample skewness.
>>> stats.skewtest(x).pvalue
0.6892046027110614
This asymptotic approximation is not valid for small sample sizes, but
`monte_carlo_test` can be used with samples of any size.
>>> x = stats.skewnorm.rvs(a=1, size=7, random_state=rng)
>>> # stats.skewtest(x) would produce an error due to small sample
>>> res = monte_carlo_test(x, rvs, statistic, vectorized=True)
The Monte Carlo distribution of the test statistic is provided for
further investigation.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.hist(res.null_distribution, bins=50)
>>> ax.set_title("Monte Carlo distribution of test statistic")
>>> ax.set_xlabel("Value of Statistic")
>>> ax.set_ylabel("Frequency")
>>> plt.show()
"""
args = _monte_carlo_test_iv(data, rvs, statistic, vectorized,
n_resamples, batch, alternative, axis)
(data, rvs, statistic, vectorized, n_resamples,
batch, alternative, axis, dtype, xp) = args
# Some statistics return plain floats; ensure they're at least a NumPy float
observed = xp.asarray(statistic(*data, axis=-1))
observed = observed[()] if observed.ndim == 0 else observed
n_observations = [sample.shape[-1] for sample in data]
batch_nominal = batch or n_resamples
null_distribution = []
for k in range(0, n_resamples, batch_nominal):
batch_actual = min(batch_nominal, n_resamples - k)
resamples = [rvs_i(size=(batch_actual, n_observations_i))
for rvs_i, n_observations_i in zip(rvs, n_observations)]
null_distribution.append(statistic(*resamples, axis=-1))
null_distribution = xp.concat(null_distribution)
null_distribution = xp.reshape(null_distribution, [-1] + [1]*observed.ndim)
# relative tolerance for detecting numerically distinct but
# theoretically equal values in the null distribution
eps = (0 if not xp.isdtype(observed.dtype, ('real floating'))
else xp.finfo(observed.dtype).eps*100)
gamma = xp.abs(eps * observed)
def less(null_distribution, observed):
cmps = null_distribution <= observed + gamma
cmps = xp.asarray(cmps, dtype=dtype)
pvalues = (xp.sum(cmps, axis=0, dtype=dtype) + 1.) / (n_resamples + 1.)
return pvalues
def greater(null_distribution, observed):
cmps = null_distribution >= observed - gamma
cmps = xp.asarray(cmps, dtype=dtype)
pvalues = (xp.sum(cmps, axis=0, dtype=dtype) + 1.) / (n_resamples + 1.)
return pvalues
def two_sided(null_distribution, observed):
pvalues_less = less(null_distribution, observed)
pvalues_greater = greater(null_distribution, observed)
pvalues = xp.minimum(pvalues_less, pvalues_greater) * 2
return pvalues
compare = {"less": less,
"greater": greater,
"two-sided": two_sided}
pvalues = compare[alternative](null_distribution, observed)
pvalues = xp.clip(pvalues, 0., 1.)
return MonteCarloTestResult(observed, pvalues, null_distribution)
@dataclass
class PowerResult:
"""Result object returned by `scipy.stats.power`.
Attributes
----------
power : float or ndarray
The estimated power.
pvalues : float or ndarray
The simulated p-values.
"""
power: float | np.ndarray
pvalues: float | np.ndarray
def _wrap_kwargs(fun):
"""Wrap callable to accept arbitrary kwargs and ignore unused ones"""
try:
keys = set(inspect.signature(fun).parameters.keys())
except ValueError:
# NumPy Generator methods can't be inspected
keys = {'size'}
# Set keys=keys/fun=fun to avoid late binding gotcha
def wrapped_rvs_i(*args, keys=keys, fun=fun, **all_kwargs):
kwargs = {key: val for key, val in all_kwargs.items()
if key in keys}
return fun(*args, **kwargs)
return wrapped_rvs_i
def _power_iv(rvs, test, n_observations, significance, vectorized,
n_resamples, batch, kwargs):
"""Input validation for `monte_carlo_test`."""
if vectorized not in {True, False, None}:
raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
if not isinstance(rvs, Sequence):
rvs = (rvs,)
n_observations = (n_observations,)
for rvs_i in rvs:
if not callable(rvs_i):
raise TypeError("`rvs` must be callable or sequence of callables.")
if not len(rvs) == len(n_observations):
message = ("If `rvs` is a sequence, `len(rvs)` "
"must equal `len(n_observations)`.")
raise ValueError(message)
significance = np.asarray(significance)[()]
if (not np.issubdtype(significance.dtype, np.floating)
or np.min(significance) < 0 or np.max(significance) > 1):
raise ValueError("`significance` must contain floats between 0 and 1.")
kwargs = dict() if kwargs is None else kwargs
if not isinstance(kwargs, dict):
raise TypeError("`kwargs` must be a dictionary that maps keywords to arrays.")
vals = kwargs.values()
keys = kwargs.keys()
# Wrap callables to ignore unused keyword arguments
wrapped_rvs = [_wrap_kwargs(rvs_i) for rvs_i in rvs]
# Broadcast, then ravel nobs/kwarg combinations. In the end,
# `nobs` and `vals` have shape (# of combinations, number of variables)
tmp = np.asarray(np.broadcast_arrays(*n_observations, *vals))
shape = tmp.shape
if tmp.ndim == 1:
tmp = tmp[np.newaxis, :]
else:
tmp = tmp.reshape((shape[0], -1)).T
nobs, vals = tmp[:, :len(rvs)], tmp[:, len(rvs):]
nobs = nobs.astype(int)
if not callable(test):
raise TypeError("`test` must be callable.")
if vectorized is None:
vectorized = 'axis' in inspect.signature(test).parameters
if not vectorized:
test_vectorized = _vectorize_statistic(test)
else:
test_vectorized = test
# Wrap `test` function to ignore unused kwargs
test_vectorized = _wrap_kwargs(test_vectorized)
n_resamples_int = int(n_resamples)
if n_resamples != n_resamples_int or n_resamples_int <= 0:
raise ValueError("`n_resamples` must be a positive integer.")
if batch is None:
batch_iv = batch
else:
batch_iv = int(batch)
if batch != batch_iv or batch_iv <= 0:
raise ValueError("`batch` must be a positive integer or None.")
return (wrapped_rvs, test_vectorized, nobs, significance, vectorized,
n_resamples_int, batch_iv, vals, keys, shape[1:])
def power(test, rvs, n_observations, *, significance=0.01, vectorized=None,
n_resamples=10000, batch=None, kwargs=None):
r"""Simulate the power of a hypothesis test under an alternative hypothesis.
Parameters
----------
test : callable
Hypothesis test for which the power is to be simulated.
`test` must be a callable that accepts a sample (e.g. ``test(sample)``)
or ``len(rvs)`` separate samples (e.g. ``test(samples1, sample2)`` if
`rvs` contains two callables and `n_observations` contains two values)
and returns the p-value of the test.
If `vectorized` is set to ``True``, `test` must also accept a keyword
argument `axis` and be vectorized to perform the test along the
provided `axis` of the samples.
Any callable from `scipy.stats` with an `axis` argument that returns an
object with a `pvalue` attribute is also acceptable.
rvs : callable or tuple of callables
A callable or sequence of callables that generate(s) random variates
under the alternative hypothesis. Each element of `rvs` must accept
keyword argument ``size`` (e.g. ``rvs(size=(m, n))``) and return an
N-d array of that shape. If `rvs` is a sequence, the number of callables
in `rvs` must match the number of elements of `n_observations`, i.e.
``len(rvs) == len(n_observations)``. If `rvs` is a single callable,
`n_observations` is treated as a single element.
n_observations : tuple of ints or tuple of integer arrays
If a sequence of ints, each is the sizes of a sample to be passed to `test`.
If a sequence of integer arrays, the power is simulated for each
set of corresponding sample sizes. See Examples.
significance : float or array_like of floats, default: 0.01
The threshold for significance; i.e., the p-value below which the
hypothesis test results will be considered as evidence against the null
hypothesis. Equivalently, the acceptable rate of Type I error under
the null hypothesis. If an array, the power is simulated for each
significance threshold.
kwargs : dict, optional
Keyword arguments to be passed to `rvs` and/or `test` callables.
Introspection is used to determine which keyword arguments may be
passed to each callable.
The value corresponding with each keyword must be an array.
Arrays must be broadcastable with one another and with each array in
`n_observations`. The power is simulated for each set of corresponding
sample sizes and arguments. See Examples.
vectorized : bool, optional
If `vectorized` is set to ``False``, `test` will not be passed keyword
argument `axis` and is expected to perform the test only for 1D samples.
If ``True``, `test` will be passed keyword argument `axis` and is
expected to perform the test along `axis` when passed N-D sample arrays.
If ``None`` (default), `vectorized` will be set ``True`` if ``axis`` is
a parameter of `test`. Use of a vectorized test typically reduces
computation time.
n_resamples : int, default: 10000
Number of samples drawn from each of the callables of `rvs`.
Equivalently, the number tests performed under the alternative
hypothesis to approximate the power.
batch : int, optional
The number of samples to process in each call to `test`. Memory usage is
proportional to the product of `batch` and the largest sample size. Default
is ``None``, in which case `batch` equals `n_resamples`.
Returns
-------
res : PowerResult
An object with attributes:
power : float or ndarray
The estimated power against the alternative.
pvalues : ndarray
The p-values observed under the alternative hypothesis.
Notes
-----
The power is simulated as follows:
- Draw many random samples (or sets of samples), each of the size(s)
specified by `n_observations`, under the alternative specified by
`rvs`.
- For each sample (or set of samples), compute the p-value according to
`test`. These p-values are recorded in the ``pvalues`` attribute of
the result object.
- Compute the proportion of p-values that are less than the `significance`
level. This is the power recorded in the ``power`` attribute of the
result object.
Suppose that `significance` is an array with shape ``shape1``, the elements
of `kwargs` and `n_observations` are mutually broadcastable to shape ``shape2``,
and `test` returns an array of p-values of shape ``shape3``. Then the result
object ``power`` attribute will be of shape ``shape1 + shape2 + shape3``, and
the ``pvalues`` attribute will be of shape ``shape2 + shape3 + (n_resamples,)``.
Examples
--------
Suppose we wish to simulate the power of the independent sample t-test
under the following conditions:
- The first sample has 10 observations drawn from a normal distribution
with mean 0.
- The second sample has 12 observations drawn from a normal distribution
with mean 1.0.
- The threshold on p-values for significance is 0.05.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng(2549598345528)
>>>
>>> test = stats.ttest_ind
>>> n_observations = (10, 12)
>>> rvs1 = rng.normal
>>> rvs2 = lambda size: rng.normal(loc=1, size=size)
>>> rvs = (rvs1, rvs2)
>>> res = stats.power(test, rvs, n_observations, significance=0.05)
>>> res.power
0.6116
With samples of size 10 and 12, respectively, the power of the t-test
with a significance threshold of 0.05 is approximately 60% under the chosen
alternative. We can investigate the effect of sample size on the power
by passing sample size arrays.
>>> import matplotlib.pyplot as plt
>>> nobs_x = np.arange(5, 21)
>>> nobs_y = nobs_x
>>> n_observations = (nobs_x, nobs_y)
>>> res = stats.power(test, rvs, n_observations, significance=0.05)
>>> ax = plt.subplot()
>>> ax.plot(nobs_x, res.power)
>>> ax.set_xlabel('Sample Size')
>>> ax.set_ylabel('Simulated Power')
>>> ax.set_title('Simulated Power of `ttest_ind` with Equal Sample Sizes')
>>> plt.show()
Alternatively, we can investigate the impact that effect size has on the power.
In this case, the effect size is the location of the distribution underlying
the second sample.
>>> n_observations = (10, 12)
>>> loc = np.linspace(0, 1, 20)
>>> rvs2 = lambda size, loc: rng.normal(loc=loc, size=size)
>>> rvs = (rvs1, rvs2)
>>> res = stats.power(test, rvs, n_observations, significance=0.05,
... kwargs={'loc': loc})
>>> ax = plt.subplot()
>>> ax.plot(loc, res.power)
>>> ax.set_xlabel('Effect Size')
>>> ax.set_ylabel('Simulated Power')
>>> ax.set_title('Simulated Power of `ttest_ind`, Varying Effect Size')
>>> plt.show()
We can also use `power` to estimate the Type I error rate (also referred to by the
ambiguous term "size") of a test and assess whether it matches the nominal level.
For example, the null hypothesis of `jarque_bera` is that the sample was drawn from
a distribution with the same skewness and kurtosis as the normal distribution. To
estimate the Type I error rate, we can consider the null hypothesis to be a true
*alternative* hypothesis and calculate the power.
>>> test = stats.jarque_bera
>>> n_observations = 10
>>> rvs = rng.normal
>>> significance = np.linspace(0.0001, 0.1, 1000)
>>> res = stats.power(test, rvs, n_observations, significance=significance)
>>> size = res.power
As shown below, the Type I error rate of the test is far below the nominal level
for such a small sample, as mentioned in its documentation.
>>> ax = plt.subplot()
>>> ax.plot(significance, size)
>>> ax.plot([0, 0.1], [0, 0.1], '--')
>>> ax.set_xlabel('nominal significance level')
>>> ax.set_ylabel('estimated test size (Type I error rate)')
>>> ax.set_title('Estimated test size vs nominal significance level')
>>> ax.set_aspect('equal', 'box')
>>> ax.legend(('`ttest_1samp`', 'ideal test'))
>>> plt.show()
As one might expect from such a conservative test, the power is quite low with
respect to some alternatives. For example, the power of the test under the
alternative that the sample was drawn from the Laplace distribution may not
be much greater than the Type I error rate.
>>> rvs = rng.laplace
>>> significance = np.linspace(0.0001, 0.1, 1000)
>>> res = stats.power(test, rvs, n_observations, significance=0.05)
>>> print(res.power)
0.0587
This is not a mistake in SciPy's implementation; it is simply due to the fact
that the null distribution of the test statistic is derived under the assumption
that the sample size is large (i.e. approaches infinity), and this asymptotic
approximation is not accurate for small samples. In such cases, resampling
and Monte Carlo methods (e.g. `permutation_test`, `goodness_of_fit`,
`monte_carlo_test`) may be more appropriate.
"""
tmp = _power_iv(rvs, test, n_observations, significance,
vectorized, n_resamples, batch, kwargs)
(rvs, test, nobs, significance,
vectorized, n_resamples, batch, args, kwds, shape)= tmp
batch_nominal = batch or n_resamples
pvalues = [] # results of various nobs/kwargs combinations
for nobs_i, args_i in zip(nobs, args):
kwargs_i = dict(zip(kwds, args_i))
pvalues_i = [] # results of batches; fixed nobs/kwargs combination
for k in range(0, n_resamples, batch_nominal):
batch_actual = min(batch_nominal, n_resamples - k)
resamples = [rvs_j(size=(batch_actual, nobs_ij), **kwargs_i)
for rvs_j, nobs_ij in zip(rvs, nobs_i)]
res = test(*resamples, **kwargs_i, axis=-1)
p = getattr(res, 'pvalue', res)
pvalues_i.append(p)
# Concatenate results from batches
pvalues_i = np.concatenate(pvalues_i, axis=-1)
pvalues.append(pvalues_i)
# `test` can return result with array of p-values
shape += pvalues_i.shape[:-1]
# Concatenate results from various nobs/kwargs combinations
pvalues = np.concatenate(pvalues, axis=0)
# nobs/kwargs arrays were raveled to single axis; unravel
pvalues = pvalues.reshape(shape + (-1,))
if significance.ndim > 0:
newdims = tuple(range(significance.ndim, pvalues.ndim + significance.ndim))
significance = np.expand_dims(significance, newdims)
powers = np.mean(pvalues < significance, axis=-1)
return PowerResult(power=powers, pvalues=pvalues)
@dataclass
class PermutationTestResult:
"""Result object returned by `scipy.stats.permutation_test`.
Attributes
----------
statistic : float or ndarray
The observed test statistic of the data.
pvalue : float or ndarray
The p-value for the given alternative.
null_distribution : ndarray
The values of the test statistic generated under the null
hypothesis.
"""
statistic: float | np.ndarray
pvalue: float | np.ndarray
null_distribution: np.ndarray
def _all_partitions_concatenated(ns):
"""
Generate all partitions of indices of groups of given sizes, concatenated
`ns` is an iterable of ints.
"""
def all_partitions(z, n):
for c in combinations(z, n):
x0 = set(c)
x1 = z - x0
yield [x0, x1]
def all_partitions_n(z, ns):
if len(ns) == 0:
yield [z]
return
for c in all_partitions(z, ns[0]):
for d in all_partitions_n(c[1], ns[1:]):
yield c[0:1] + d
z = set(range(np.sum(ns)))
for partitioning in all_partitions_n(z, ns[:]):
x = np.concatenate([list(partition)
for partition in partitioning]).astype(int)
yield x
def _batch_generator(iterable, batch):
"""A generator that yields batches of elements from an iterable"""
iterator = iter(iterable)
if batch <= 0:
raise ValueError("`batch` must be positive.")
z = [item for i, item in zip(range(batch), iterator)]
while z: # we don't want StopIteration without yielding an empty list
yield z
z = [item for i, item in zip(range(batch), iterator)]
def _pairings_permutations_gen(n_permutations, n_samples, n_obs_sample, batch,
rng):
# Returns a generator that yields arrays of size
# `(batch, n_samples, n_obs_sample)`.
# Each row is an independent permutation of indices 0 to `n_obs_sample`.
batch = min(batch, n_permutations)
if hasattr(rng, 'permuted'):
def batched_perm_generator():
indices = np.arange(n_obs_sample)
indices = np.tile(indices, (batch, n_samples, 1))
for k in range(0, n_permutations, batch):
batch_actual = min(batch, n_permutations-k)
# Don't permute in place, otherwise results depend on `batch`
permuted_indices = rng.permuted(indices, axis=-1)
yield permuted_indices[:batch_actual]
else: # RandomState and early Generators don't have `permuted`
def batched_perm_generator():
for k in range(0, n_permutations, batch):
batch_actual = min(batch, n_permutations-k)
size = (batch_actual, n_samples, n_obs_sample)
x = rng.random(size=size)
yield np.argsort(x, axis=-1)[:batch_actual]
return batched_perm_generator()
def _calculate_null_both(data, statistic, n_permutations, batch,
rng=None):
"""
Calculate null distribution for independent sample tests.
"""
n_samples = len(data)
# compute number of permutations
# (distinct partitions of data into samples of these sizes)
n_obs_i = [sample.shape[-1] for sample in data] # observations per sample
n_obs_ic = np.cumsum(n_obs_i)
n_obs = n_obs_ic[-1] # total number of observations
n_max = np.prod([comb(n_obs_ic[i], n_obs_ic[i-1])
for i in range(n_samples-1, 0, -1)])
# perm_generator is an iterator that produces permutations of indices
# from 0 to n_obs. We'll concatenate the samples, use these indices to
# permute the data, then split the samples apart again.
if n_permutations >= n_max:
exact_test = True
n_permutations = n_max
perm_generator = _all_partitions_concatenated(n_obs_i)
else:
exact_test = False
# Neither RandomState.permutation nor Generator.permutation
# can permute axis-slices independently. If this feature is
# added in the future, batches of the desired size should be
# generated in a single call.
perm_generator = (rng.permutation(n_obs)
for i in range(n_permutations))
batch = batch or int(n_permutations)
null_distribution = []
# First, concatenate all the samples. In batches, permute samples with
# indices produced by the `perm_generator`, split them into new samples of
# the original sizes, compute the statistic for each batch, and add these
# statistic values to the null distribution.
data = np.concatenate(data, axis=-1)
for indices in _batch_generator(perm_generator, batch=batch):
indices = np.array(indices)
# `indices` is 2D: each row is a permutation of the indices.
# We use it to index `data` along its last axis, which corresponds
# with observations.
# After indexing, the second to last axis of `data_batch` corresponds
# with permutations, and the last axis corresponds with observations.
data_batch = data[..., indices]
# Move the permutation axis to the front: we'll concatenate a list
# of batched statistic values along this zeroth axis to form the
# null distribution.
data_batch = np.moveaxis(data_batch, -2, 0)
data_batch = np.split(data_batch, n_obs_ic[:-1], axis=-1)
null_distribution.append(statistic(*data_batch, axis=-1))
null_distribution = np.concatenate(null_distribution, axis=0)
return null_distribution, n_permutations, exact_test
def _calculate_null_pairings(data, statistic, n_permutations, batch,
rng=None):
"""
Calculate null distribution for association tests.
"""
n_samples = len(data)
# compute number of permutations (factorial(n) permutations of each sample)
n_obs_sample = data[0].shape[-1] # observations per sample; same for each
n_max = factorial(n_obs_sample)**n_samples
# `perm_generator` is an iterator that produces a list of permutations of
# indices from 0 to n_obs_sample, one for each sample.
if n_permutations >= n_max:
exact_test = True
n_permutations = n_max
batch = batch or int(n_permutations)
# Cartesian product of the sets of all permutations of indices
perm_generator = product(*(permutations(range(n_obs_sample))
for i in range(n_samples)))
batched_perm_generator = _batch_generator(perm_generator, batch=batch)
else:
exact_test = False
batch = batch or int(n_permutations)
# Separate random permutations of indices for each sample.
# Again, it would be nice if RandomState/Generator.permutation
# could permute each axis-slice separately.
args = n_permutations, n_samples, n_obs_sample, batch, rng
batched_perm_generator = _pairings_permutations_gen(*args)
null_distribution = []
for indices in batched_perm_generator:
indices = np.array(indices)
# `indices` is 3D: the zeroth axis is for permutations, the next is
# for samples, and the last is for observations. Swap the first two
# to make the zeroth axis correspond with samples, as it does for
# `data`.
indices = np.swapaxes(indices, 0, 1)
# When we're done, `data_batch` will be a list of length `n_samples`.
# Each element will be a batch of random permutations of one sample.
# The zeroth axis of each batch will correspond with permutations,
# and the last will correspond with observations. (This makes it
# easy to pass into `statistic`.)
data_batch = [None]*n_samples
for i in range(n_samples):
data_batch[i] = data[i][..., indices[i]]
data_batch[i] = np.moveaxis(data_batch[i], -2, 0)
null_distribution.append(statistic(*data_batch, axis=-1))
null_distribution = np.concatenate(null_distribution, axis=0)
return null_distribution, n_permutations, exact_test
def _calculate_null_samples(data, statistic, n_permutations, batch,
rng=None):
"""
Calculate null distribution for paired-sample tests.
"""
n_samples = len(data)
# By convention, the meaning of the "samples" permutations type for
# data with only one sample is to flip the sign of the observations.
# Achieve this by adding a second sample - the negative of the original.
if n_samples == 1:
data = [data[0], -data[0]]
# The "samples" permutation strategy is the same as the "pairings"
# strategy except the roles of samples and observations are flipped.
# So swap these axes, then we'll use the function for the "pairings"
# strategy to do all the work!
data = np.swapaxes(data, 0, -1)
# (Of course, the user's statistic doesn't know what we've done here,
# so we need to pass it what it's expecting.)
def statistic_wrapped(*data, axis):
data = np.swapaxes(data, 0, -1)
if n_samples == 1:
data = data[0:1]
return statistic(*data, axis=axis)
return _calculate_null_pairings(data, statistic_wrapped, n_permutations,
batch, rng)
def _permutation_test_iv(data, statistic, permutation_type, vectorized,
n_resamples, batch, alternative, axis, rng):
"""Input validation for `permutation_test`."""
axis_int = int(axis)
if axis != axis_int:
raise ValueError("`axis` must be an integer.")
permutation_types = {'samples', 'pairings', 'independent'}
permutation_type = permutation_type.lower()
if permutation_type not in permutation_types:
raise ValueError(f"`permutation_type` must be in {permutation_types}.")
if vectorized not in {True, False, None}:
raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
if vectorized is None:
vectorized = 'axis' in inspect.signature(statistic).parameters
if not vectorized:
statistic = _vectorize_statistic(statistic)
message = "`data` must be a tuple containing at least two samples"
try:
if len(data) < 2 and permutation_type == 'independent':
raise ValueError(message)
except TypeError:
raise TypeError(message)
data = _broadcast_arrays(data, axis)
data_iv = []
for sample in data:
sample = np.atleast_1d(sample)
if sample.shape[axis] <= 1:
raise ValueError("each sample in `data` must contain two or more "
"observations along `axis`.")
sample = np.moveaxis(sample, axis_int, -1)
data_iv.append(sample)
n_resamples_int = (int(n_resamples) if not np.isinf(n_resamples)
else np.inf)
if n_resamples != n_resamples_int or n_resamples_int <= 0:
raise ValueError("`n_resamples` must be a positive integer.")
if batch is None:
batch_iv = batch
else:
batch_iv = int(batch)
if batch != batch_iv or batch_iv <= 0:
raise ValueError("`batch` must be a positive integer or None.")
alternatives = {'two-sided', 'greater', 'less'}
alternative = alternative.lower()
if alternative not in alternatives:
raise ValueError(f"`alternative` must be in {alternatives}")
rng = check_random_state(rng)
return (data_iv, statistic, permutation_type, vectorized, n_resamples_int,
batch_iv, alternative, axis_int, rng)
@_transition_to_rng('random_state')
def permutation_test(data, statistic, *, permutation_type='independent',
vectorized=None, n_resamples=9999, batch=None,
alternative="two-sided", axis=0, rng=None):
r"""
Performs a permutation test of a given statistic on provided data.
For independent sample statistics, the null hypothesis is that the data are
randomly sampled from the same distribution.
For paired sample statistics, two null hypothesis can be tested:
that the data are paired at random or that the data are assigned to samples
at random.
Parameters
----------
data : iterable of array-like
Contains the samples, each of which is an array of observations.
Dimensions of sample arrays must be compatible for broadcasting except
along `axis`.
statistic : callable
Statistic for which the p-value of the hypothesis test is to be
calculated. `statistic` must be a callable that accepts samples
as separate arguments (e.g. ``statistic(*data)``) and returns the
resulting statistic.
If `vectorized` is set ``True``, `statistic` must also accept a keyword
argument `axis` and be vectorized to compute the statistic along the
provided `axis` of the sample arrays.
permutation_type : {'independent', 'samples', 'pairings'}, optional
The type of permutations to be performed, in accordance with the
null hypothesis. The first two permutation types are for paired sample
statistics, in which all samples contain the same number of
observations and observations with corresponding indices along `axis`
are considered to be paired; the third is for independent sample
statistics.
- ``'samples'`` : observations are assigned to different samples
but remain paired with the same observations from other samples.
This permutation type is appropriate for paired sample hypothesis
tests such as the Wilcoxon signed-rank test and the paired t-test.
- ``'pairings'`` : observations are paired with different observations,
but they remain within the same sample. This permutation type is
appropriate for association/correlation tests with statistics such
as Spearman's :math:`\rho`, Kendall's :math:`\tau`, and Pearson's
:math:`r`.
- ``'independent'`` (default) : observations are assigned to different
samples. Samples may contain different numbers of observations. This
permutation type is appropriate for independent sample hypothesis
tests such as the Mann-Whitney :math:`U` test and the independent
sample t-test.
Please see the Notes section below for more detailed descriptions
of the permutation types.
vectorized : bool, optional
If `vectorized` is set ``False``, `statistic` will not be passed
keyword argument `axis` and is expected to calculate the statistic
only for 1D samples. If ``True``, `statistic` will be passed keyword
argument `axis` and is expected to calculate the statistic along `axis`
when passed an ND sample array. If ``None`` (default), `vectorized`
will be set ``True`` if ``axis`` is a parameter of `statistic`. Use
of a vectorized statistic typically reduces computation time.
n_resamples : int or np.inf, default: 9999
Number of random permutations (resamples) used to approximate the null
distribution. If greater than or equal to the number of distinct
permutations, the exact null distribution will be computed.
Note that the number of distinct permutations grows very rapidly with
the sizes of samples, so exact tests are feasible only for very small
data sets.
batch : int, optional
The number of permutations to process in each call to `statistic`.
Memory usage is O( `batch` * ``n`` ), where ``n`` is the total size
of all samples, regardless of the value of `vectorized`. Default is
``None``, in which case ``batch`` is the number of permutations.
alternative : {'two-sided', 'less', 'greater'}, optional
The alternative hypothesis for which the p-value is calculated.
For each alternative, the p-value is defined for exact tests as
follows.
- ``'greater'`` : the percentage of the null distribution that is
greater than or equal to the observed value of the test statistic.
- ``'less'`` : the percentage of the null distribution that is
less than or equal to the observed value of the test statistic.
- ``'two-sided'`` (default) : twice the smaller of the p-values above.
Note that p-values for randomized tests are calculated according to the
conservative (over-estimated) approximation suggested in [2]_ and [3]_
rather than the unbiased estimator suggested in [4]_. That is, when
calculating the proportion of the randomized null distribution that is
as extreme as the observed value of the test statistic, the values in
the numerator and denominator are both increased by one. An
interpretation of this adjustment is that the observed value of the
test statistic is always included as an element of the randomized
null distribution.
The convention used for two-sided p-values is not universal;
the observed test statistic and null distribution are returned in
case a different definition is preferred.
axis : int, default: 0
The axis of the (broadcasted) samples over which to calculate the
statistic. If samples have a different number of dimensions,
singleton dimensions are prepended to samples with fewer dimensions
before `axis` is considered.
rng : `numpy.random.Generator`, optional
Pseudorandom number generator state. When `rng` is None, a new
`numpy.random.Generator` is created using entropy from the
operating system. Types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
Returns
-------
res : PermutationTestResult
An object with attributes:
statistic : float or ndarray
The observed test statistic of the data.
pvalue : float or ndarray
The p-value for the given alternative.
null_distribution : ndarray
The values of the test statistic generated under the null
hypothesis.
Notes
-----
The three types of permutation tests supported by this function are
described below.
**Unpaired statistics** (``permutation_type='independent'``):
The null hypothesis associated with this permutation type is that all
observations are sampled from the same underlying distribution and that
they have been assigned to one of the samples at random.
Suppose ``data`` contains two samples; e.g. ``a, b = data``.
When ``1 < n_resamples < binom(n, k)``, where
* ``k`` is the number of observations in ``a``,
* ``n`` is the total number of observations in ``a`` and ``b``, and
* ``binom(n, k)`` is the binomial coefficient (``n`` choose ``k``),
the data are pooled (concatenated), randomly assigned to either the first
or second sample, and the statistic is calculated. This process is
performed repeatedly, `permutation` times, generating a distribution of the
statistic under the null hypothesis. The statistic of the original
data is compared to this distribution to determine the p-value.
When ``n_resamples >= binom(n, k)``, an exact test is performed: the data
are *partitioned* between the samples in each distinct way exactly once,
and the exact null distribution is formed.
Note that for a given partitioning of the data between the samples,
only one ordering/permutation of the data *within* each sample is
considered. For statistics that do not depend on the order of the data
within samples, this dramatically reduces computational cost without
affecting the shape of the null distribution (because the frequency/count
of each value is affected by the same factor).
For ``a = [a1, a2, a3, a4]`` and ``b = [b1, b2, b3]``, an example of this
permutation type is ``x = [b3, a1, a2, b2]`` and ``y = [a4, b1, a3]``.
Because only one ordering/permutation of the data *within* each sample
is considered in an exact test, a resampling like ``x = [b3, a1, b2, a2]``
and ``y = [a4, a3, b1]`` would *not* be considered distinct from the
example above.
``permutation_type='independent'`` does not support one-sample statistics,
but it can be applied to statistics with more than two samples. In this
case, if ``n`` is an array of the number of observations within each
sample, the number of distinct partitions is::
np.prod([binom(sum(n[i:]), sum(n[i+1:])) for i in range(len(n)-1)])
**Paired statistics, permute pairings** (``permutation_type='pairings'``):
The null hypothesis associated with this permutation type is that
observations within each sample are drawn from the same underlying
distribution and that pairings with elements of other samples are
assigned at random.
Suppose ``data`` contains only one sample; e.g. ``a, = data``, and we
wish to consider all possible pairings of elements of ``a`` with elements
of a second sample, ``b``. Let ``n`` be the number of observations in
``a``, which must also equal the number of observations in ``b``.
When ``1 < n_resamples < factorial(n)``, the elements of ``a`` are
randomly permuted. The user-supplied statistic accepts one data argument,
say ``a_perm``, and calculates the statistic considering ``a_perm`` and
``b``. This process is performed repeatedly, `permutation` times,
generating a distribution of the statistic under the null hypothesis.
The statistic of the original data is compared to this distribution to
determine the p-value.
When ``n_resamples >= factorial(n)``, an exact test is performed:
``a`` is permuted in each distinct way exactly once. Therefore, the
`statistic` is computed for each unique pairing of samples between ``a``
and ``b`` exactly once.
For ``a = [a1, a2, a3]`` and ``b = [b1, b2, b3]``, an example of this
permutation type is ``a_perm = [a3, a1, a2]`` while ``b`` is left
in its original order.
``permutation_type='pairings'`` supports ``data`` containing any number
of samples, each of which must contain the same number of observations.
All samples provided in ``data`` are permuted *independently*. Therefore,
if ``m`` is the number of samples and ``n`` is the number of observations
within each sample, then the number of permutations in an exact test is::
factorial(n)**m
Note that if a two-sample statistic, for example, does not inherently
depend on the order in which observations are provided - only on the
*pairings* of observations - then only one of the two samples should be
provided in ``data``. This dramatically reduces computational cost without
affecting the shape of the null distribution (because the frequency/count
of each value is affected by the same factor).
**Paired statistics, permute samples** (``permutation_type='samples'``):
The null hypothesis associated with this permutation type is that
observations within each pair are drawn from the same underlying
distribution and that the sample to which they are assigned is random.
Suppose ``data`` contains two samples; e.g. ``a, b = data``.
Let ``n`` be the number of observations in ``a``, which must also equal
the number of observations in ``b``.
When ``1 < n_resamples < 2**n``, the elements of ``a`` are ``b`` are
randomly swapped between samples (maintaining their pairings) and the
statistic is calculated. This process is performed repeatedly,
`permutation` times, generating a distribution of the statistic under the
null hypothesis. The statistic of the original data is compared to this
distribution to determine the p-value.
When ``n_resamples >= 2**n``, an exact test is performed: the observations
are assigned to the two samples in each distinct way (while maintaining
pairings) exactly once.
For ``a = [a1, a2, a3]`` and ``b = [b1, b2, b3]``, an example of this
permutation type is ``x = [b1, a2, b3]`` and ``y = [a1, b2, a3]``.
``permutation_type='samples'`` supports ``data`` containing any number
of samples, each of which must contain the same number of observations.
If ``data`` contains more than one sample, paired observations within
``data`` are exchanged between samples *independently*. Therefore, if ``m``
is the number of samples and ``n`` is the number of observations within
each sample, then the number of permutations in an exact test is::
factorial(m)**n
Several paired-sample statistical tests, such as the Wilcoxon signed rank
test and paired-sample t-test, can be performed considering only the
*difference* between two paired elements. Accordingly, if ``data`` contains
only one sample, then the null distribution is formed by independently
changing the *sign* of each observation.
.. warning::
The p-value is calculated by counting the elements of the null
distribution that are as extreme or more extreme than the observed
value of the statistic. Due to the use of finite precision arithmetic,
some statistic functions return numerically distinct values when the
theoretical values would be exactly equal. In some cases, this could
lead to a large error in the calculated p-value. `permutation_test`
guards against this by considering elements in the null distribution
that are "close" (within a relative tolerance of 100 times the
floating point epsilon of inexact dtypes) to the observed
value of the test statistic as equal to the observed value of the
test statistic. However, the user is advised to inspect the null
distribution to assess whether this method of comparison is
appropriate, and if not, calculate the p-value manually. See example
below.
References
----------
.. [1] R. A. Fisher. The Design of Experiments, 6th Ed (1951).
.. [2] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly Drawn."
Statistical Applications in Genetics and Molecular Biology 9.1 (2010).
.. [3] M. D. Ernst. "Permutation Methods: A Basis for Exact Inference".
Statistical Science (2004).
.. [4] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap
(1993).
Examples
--------
Suppose we wish to test whether two samples are drawn from the same
distribution. Assume that the underlying distributions are unknown to us,
and that before observing the data, we hypothesized that the mean of the
first sample would be less than that of the second sample. We decide that
we will use the difference between the sample means as a test statistic,
and we will consider a p-value of 0.05 to be statistically significant.
For efficiency, we write the function defining the test statistic in a
vectorized fashion: the samples ``x`` and ``y`` can be ND arrays, and the
statistic will be calculated for each axis-slice along `axis`.
>>> import numpy as np
>>> def statistic(x, y, axis):
... return np.mean(x, axis=axis) - np.mean(y, axis=axis)
After collecting our data, we calculate the observed value of the test
statistic.
>>> from scipy.stats import norm
>>> rng = np.random.default_rng()
>>> x = norm.rvs(size=5, random_state=rng)
>>> y = norm.rvs(size=6, loc = 3, random_state=rng)
>>> statistic(x, y, 0)
-3.5411688580987266
Indeed, the test statistic is negative, suggesting that the true mean of
the distribution underlying ``x`` is less than that of the distribution
underlying ``y``. To determine the probability of this occurring by chance
if the two samples were drawn from the same distribution, we perform
a permutation test.
>>> from scipy.stats import permutation_test
>>> # because our statistic is vectorized, we pass `vectorized=True`
>>> # `n_resamples=np.inf` indicates that an exact test is to be performed
>>> res = permutation_test((x, y), statistic, vectorized=True,
... n_resamples=np.inf, alternative='less')
>>> print(res.statistic)
-3.5411688580987266
>>> print(res.pvalue)
0.004329004329004329
The probability of obtaining a test statistic less than or equal to the
observed value under the null hypothesis is 0.4329%. This is less than our
chosen threshold of 5%, so we consider this to be significant evidence
against the null hypothesis in favor of the alternative.
Because the size of the samples above was small, `permutation_test` could
perform an exact test. For larger samples, we resort to a randomized
permutation test.
>>> x = norm.rvs(size=100, random_state=rng)
>>> y = norm.rvs(size=120, loc=0.2, random_state=rng)
>>> res = permutation_test((x, y), statistic, n_resamples=9999,
... vectorized=True, alternative='less',
... rng=rng)
>>> print(res.statistic)
-0.4230459671240913
>>> print(res.pvalue)
0.0015
The approximate probability of obtaining a test statistic less than or
equal to the observed value under the null hypothesis is 0.0225%. This is
again less than our chosen threshold of 5%, so again we have significant
evidence to reject the null hypothesis in favor of the alternative.
For large samples and number of permutations, the result is comparable to
that of the corresponding asymptotic test, the independent sample t-test.
>>> from scipy.stats import ttest_ind
>>> res_asymptotic = ttest_ind(x, y, alternative='less')
>>> print(res_asymptotic.pvalue)
0.0014669545224902675
The permutation distribution of the test statistic is provided for
further investigation.
>>> import matplotlib.pyplot as plt
>>> plt.hist(res.null_distribution, bins=50)
>>> plt.title("Permutation distribution of test statistic")
>>> plt.xlabel("Value of Statistic")
>>> plt.ylabel("Frequency")
>>> plt.show()
Inspection of the null distribution is essential if the statistic suffers
from inaccuracy due to limited machine precision. Consider the following
case:
>>> from scipy.stats import pearsonr
>>> x = [1, 2, 4, 3]
>>> y = [2, 4, 6, 8]
>>> def statistic(x, y, axis=-1):
... return pearsonr(x, y, axis=axis).statistic
>>> res = permutation_test((x, y), statistic, vectorized=True,
... permutation_type='pairings',
... alternative='greater')
>>> r, pvalue, null = res.statistic, res.pvalue, res.null_distribution
In this case, some elements of the null distribution differ from the
observed value of the correlation coefficient ``r`` due to numerical noise.
We manually inspect the elements of the null distribution that are nearly
the same as the observed value of the test statistic.
>>> r
0.7999999999999999
>>> unique = np.unique(null)
>>> unique
array([-1. , -1. , -0.8, -0.8, -0.8, -0.6, -0.4, -0.4, -0.2, -0.2, -0.2,
0. , 0.2, 0.2, 0.2, 0.4, 0.4, 0.6, 0.8, 0.8, 0.8, 1. ,
1. ]) # may vary
>>> unique[np.isclose(r, unique)].tolist()
[0.7999999999999998, 0.7999999999999999, 0.8] # may vary
If `permutation_test` were to perform the comparison naively, the
elements of the null distribution with value ``0.7999999999999998`` would
not be considered as extreme or more extreme as the observed value of the
statistic, so the calculated p-value would be too small.
>>> incorrect_pvalue = np.count_nonzero(null >= r) / len(null)
>>> incorrect_pvalue
0.14583333333333334 # may vary
Instead, `permutation_test` treats elements of the null distribution that
are within ``max(1e-14, abs(r)*1e-14)`` of the observed value of the
statistic ``r`` to be equal to ``r``.
>>> correct_pvalue = np.count_nonzero(null >= r - 1e-14) / len(null)
>>> correct_pvalue
0.16666666666666666
>>> res.pvalue == correct_pvalue
True
This method of comparison is expected to be accurate in most practical
situations, but the user is advised to assess this by inspecting the
elements of the null distribution that are close to the observed value
of the statistic. Also, consider the use of statistics that can be
calculated using exact arithmetic (e.g. integer statistics).
"""
args = _permutation_test_iv(data, statistic, permutation_type, vectorized,
n_resamples, batch, alternative, axis,
rng)
(data, statistic, permutation_type, vectorized, n_resamples, batch,
alternative, axis, rng) = args
observed = statistic(*data, axis=-1)
null_calculators = {"pairings": _calculate_null_pairings,
"samples": _calculate_null_samples,
"independent": _calculate_null_both}
null_calculator_args = (data, statistic, n_resamples,
batch, rng)
calculate_null = null_calculators[permutation_type]
null_distribution, n_resamples, exact_test = (
calculate_null(*null_calculator_args))
# See References [2] and [3]
adjustment = 0 if exact_test else 1
# relative tolerance for detecting numerically distinct but
# theoretically equal values in the null distribution
eps = (0 if not np.issubdtype(observed.dtype, np.inexact)
else np.finfo(observed.dtype).eps*100)
gamma = np.abs(eps * observed)
def less(null_distribution, observed):
cmps = null_distribution <= observed + gamma
pvalues = (cmps.sum(axis=0) + adjustment) / (n_resamples + adjustment)
return pvalues
def greater(null_distribution, observed):
cmps = null_distribution >= observed - gamma
pvalues = (cmps.sum(axis=0) + adjustment) / (n_resamples + adjustment)
return pvalues
def two_sided(null_distribution, observed):
pvalues_less = less(null_distribution, observed)
pvalues_greater = greater(null_distribution, observed)
pvalues = np.minimum(pvalues_less, pvalues_greater) * 2
return pvalues
compare = {"less": less,
"greater": greater,
"two-sided": two_sided}
pvalues = compare[alternative](null_distribution, observed)
pvalues = np.clip(pvalues, 0, 1)
return PermutationTestResult(observed, pvalues, null_distribution)
@dataclass
class ResamplingMethod:
"""Configuration information for a statistical resampling method.
Instances of this class can be passed into the `method` parameter of some
hypothesis test functions to perform a resampling or Monte Carlo version
of the hypothesis test.
Attributes
----------
n_resamples : int
The number of resamples to perform or Monte Carlo samples to draw.
batch : int, optional
The number of resamples to process in each vectorized call to
the statistic. Batch sizes >>1 tend to be faster when the statistic
is vectorized, but memory usage scales linearly with the batch size.
Default is ``None``, which processes all resamples in a single batch.
"""
n_resamples: int = 9999
batch: int = None # type: ignore[assignment]
@dataclass
class MonteCarloMethod(ResamplingMethod):
"""Configuration information for a Monte Carlo hypothesis test.
Instances of this class can be passed into the `method` parameter of some
hypothesis test functions to perform a Monte Carlo version of the
hypothesis tests.
Attributes
----------
n_resamples : int, optional
The number of Monte Carlo samples to draw. Default is 9999.
batch : int, optional
The number of Monte Carlo samples to process in each vectorized call to
the statistic. Batch sizes >>1 tend to be faster when the statistic
is vectorized, but memory usage scales linearly with the batch size.
Default is ``None``, which processes all samples in a single batch.
rvs : callable or tuple of callables, optional
A callable or sequence of callables that generates random variates
under the null hypothesis. Each element of `rvs` must be a callable
that accepts keyword argument ``size`` (e.g. ``rvs(size=(m, n))``) and
returns an N-d array sample of that shape. If `rvs` is a sequence, the
number of callables in `rvs` must match the number of samples passed
to the hypothesis test in which the `MonteCarloMethod` is used. Default
is ``None``, in which case the hypothesis test function chooses values
to match the standard version of the hypothesis test. For example,
the null hypothesis of `scipy.stats.pearsonr` is typically that the
samples are drawn from the standard normal distribution, so
``rvs = (rng.normal, rng.normal)`` where
``rng = np.random.default_rng()``.
rng : `numpy.random.Generator`, optional
Pseudorandom number generator state. When `rng` is None, a new
`numpy.random.Generator` is created using entropy from the
operating system. Types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
"""
rvs: object = None
rng: object = None
def __init__(self, n_resamples=9999, batch=None, rvs=None, rng=None):
if (rvs is not None) and (rng is not None):
message = 'Use of `rvs` and `rng` are mutually exclusive.'
raise ValueError(message)
self.n_resamples = n_resamples
self.batch = batch
self.rvs = rvs
self.rng = rng
def _asdict(self):
# `dataclasses.asdict` deepcopies; we don't want that.
return dict(n_resamples=self.n_resamples, batch=self.batch,
rvs=self.rvs, rng=self.rng)
_rs_deprecation = ("Use of attribute `random_state` is deprecated and replaced by "
"`rng`. Support for `random_state` will be removed in SciPy 1.19.0. "
"To silence this warning and ensure consistent behavior in SciPy "
"1.19.0, control the RNG using attribute `rng`. Values set using "
"attribute `rng` will be validated by `np.random.default_rng`, so "
"the behavior corresponding with a given value may change compared "
"to use of `random_state`. For example, 1) `None` will result in "
"unpredictable random numbers, 2) an integer will result in a "
"different stream of random numbers, (with the same distribution), "
"and 3) `np.random` or `RandomState` instances will result in an "
"error. See the documentation of `default_rng` for more "
"information.")
@dataclass
class PermutationMethod(ResamplingMethod):
"""Configuration information for a permutation hypothesis test.
Instances of this class can be passed into the `method` parameter of some
hypothesis test functions to perform a permutation version of the
hypothesis tests.
Attributes
----------
n_resamples : int, optional
The number of resamples to perform. Default is 9999.
batch : int, optional
The number of resamples to process in each vectorized call to
the statistic. Batch sizes >>1 tend to be faster when the statistic
is vectorized, but memory usage scales linearly with the batch size.
Default is ``None``, which processes all resamples in a single batch.
rng : `numpy.random.Generator`, optional
Pseudorandom number generator used to perform resampling.
If `rng` is passed by keyword to the initializer or the `rng` attribute is used
directly, types other than `numpy.random.Generator` are passed to
`numpy.random.default_rng` to instantiate a ``Generator`` before use.
If `rng` is already a ``Generator`` instance, then the provided instance is
used. Specify `rng` for repeatable behavior.
If this argument is passed by position, if `random_state` is passed by keyword
into the initializer, or if the `random_state` attribute is used directly,
legacy behavior for `random_state` applies:
- If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
singleton is used.
- If `random_state` is an int, a new ``RandomState`` instance is used,
seeded with `random_state`.
- If `random_state` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
.. versionchanged:: 1.15.0
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
transition from use of `numpy.random.RandomState` to
`numpy.random.Generator`, this attribute name was changed from
`random_state` to `rng`. For an interim period, both names will continue to
work, although only one may be specified at a time. After the interim
period, uses of `random_state` will emit warnings. The behavior of both
`random_state` and `rng` are outlined above, but only `rng` should be used
in new code.
"""
rng: object # type: ignore[misc]
_rng: object = field(init=False, repr=False, default=None) # type: ignore[assignment]
@property
def random_state(self):
# Uncomment in SciPy 1.17.0
# warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
return self._random_state
@random_state.setter
def random_state(self, val):
# Uncomment in SciPy 1.17.0
# warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
self._random_state = val
@property # type: ignore[no-redef]
def rng(self): # noqa: F811
return self._rng
def __init__(self, n_resamples=9999, batch=None, random_state=None, *, rng=None):
# Uncomment in SciPy 1.17.0
# warnings.warn(_rs_deprecation.replace('attribute', 'argument'),
# DeprecationWarning, stacklevel=2)
self._rng = rng
self._random_state = random_state
super().__init__(n_resamples=n_resamples, batch=batch)
def _asdict(self):
# `dataclasses.asdict` deepcopies; we don't want that.
d = dict(n_resamples=self.n_resamples, batch=self.batch)
if self.rng is not None:
d['rng'] = self.rng
if self.random_state is not None:
d['random_state'] = self.random_state
return d
@dataclass
class BootstrapMethod(ResamplingMethod):
"""Configuration information for a bootstrap confidence interval.
Instances of this class can be passed into the `method` parameter of some
confidence interval methods to generate a bootstrap confidence interval.
Attributes
----------
n_resamples : int, optional
The number of resamples to perform. Default is 9999.
batch : int, optional
The number of resamples to process in each vectorized call to
the statistic. Batch sizes >>1 tend to be faster when the statistic
is vectorized, but memory usage scales linearly with the batch size.
Default is ``None``, which processes all resamples in a single batch.
rng : `numpy.random.Generator`, optional
Pseudorandom number generator used to perform resampling.
If `rng` is passed by keyword to the initializer or the `rng` attribute is used
directly, types other than `numpy.random.Generator` are passed to
`numpy.random.default_rng` to instantiate a ``Generator`` before use.
If `rng` is already a ``Generator`` instance, then the provided instance is
used. Specify `rng` for repeatable behavior.
If this argument is passed by position, if `random_state` is passed by keyword
into the initializer, or if the `random_state` attribute is used directly,
legacy behavior for `random_state` applies:
- If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
singleton is used.
- If `random_state` is an int, a new ``RandomState`` instance is used,
seeded with `random_state`.
- If `random_state` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
.. versionchanged:: 1.15.0
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
transition from use of `numpy.random.RandomState` to
`numpy.random.Generator`, this attribute name was changed from
`random_state` to `rng`. For an interim period, both names will continue to
work, although only one may be specified at a time. After the interim
period, uses of `random_state` will emit warnings. The behavior of both
`random_state` and `rng` are outlined above, but only `rng` should be used
in new code.
method : {'BCa', 'percentile', 'basic'}
Whether to use the 'percentile' bootstrap ('percentile'), the 'basic'
(AKA 'reverse') bootstrap ('basic'), or the bias-corrected and
accelerated bootstrap ('BCa', default).
"""
rng: object # type: ignore[misc]
_rng: object = field(init=False, repr=False, default=None) # type: ignore[assignment]
method: str = 'BCa'
@property
def random_state(self):
# Uncomment in SciPy 1.17.0
# warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
return self._random_state
@random_state.setter
def random_state(self, val):
# Uncomment in SciPy 1.17.0
# warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
self._random_state = val
@property # type: ignore[no-redef]
def rng(self): # noqa: F811
return self._rng
def __init__(self, n_resamples=9999, batch=None, random_state=None,
method='BCa', *, rng=None):
# Uncomment in SciPy 1.17.0
# warnings.warn(_rs_deprecation.replace('attribute', 'argument'),
# DeprecationWarning, stacklevel=2)
self._rng = rng # don't validate with `default_rng`
self._random_state = random_state
self.method = method
super().__init__(n_resamples=n_resamples, batch=batch)
def _asdict(self):
# `dataclasses.asdict` deepcopies; we don't want that.
d = dict(n_resamples=self.n_resamples, batch=self.batch,
method=self.method)
if self.rng is not None:
d['rng'] = self.rng
if self.random_state is not None:
d['random_state'] = self.random_state
return d
|