File size: 10,937 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
from numpy.testing import (assert_equal, assert_array_equal,
                           assert_array_almost_equal, assert_approx_equal,
                           assert_allclose)
import pytest
from pytest import raises as assert_raises
from scipy import stats
from scipy.special import xlogy
from scipy.stats.contingency import (margins, expected_freq,
                                     chi2_contingency, association)


def test_margins():
    a = np.array([1])
    m = margins(a)
    assert_equal(len(m), 1)
    m0 = m[0]
    assert_array_equal(m0, np.array([1]))

    a = np.array([[1]])
    m0, m1 = margins(a)
    expected0 = np.array([[1]])
    expected1 = np.array([[1]])
    assert_array_equal(m0, expected0)
    assert_array_equal(m1, expected1)

    a = np.arange(12).reshape(2, 6)
    m0, m1 = margins(a)
    expected0 = np.array([[15], [51]])
    expected1 = np.array([[6, 8, 10, 12, 14, 16]])
    assert_array_equal(m0, expected0)
    assert_array_equal(m1, expected1)

    a = np.arange(24).reshape(2, 3, 4)
    m0, m1, m2 = margins(a)
    expected0 = np.array([[[66]], [[210]]])
    expected1 = np.array([[[60], [92], [124]]])
    expected2 = np.array([[[60, 66, 72, 78]]])
    assert_array_equal(m0, expected0)
    assert_array_equal(m1, expected1)
    assert_array_equal(m2, expected2)


def test_expected_freq():
    assert_array_equal(expected_freq([1]), np.array([1.0]))

    observed = np.array([[[2, 0], [0, 2]], [[0, 2], [2, 0]], [[1, 1], [1, 1]]])
    e = expected_freq(observed)
    assert_array_equal(e, np.ones_like(observed))

    observed = np.array([[10, 10, 20], [20, 20, 20]])
    e = expected_freq(observed)
    correct = np.array([[12., 12., 16.], [18., 18., 24.]])
    assert_array_almost_equal(e, correct)


class TestChi2Contingency:
    def test_chi2_contingency_trivial(self):
        # Some very simple tests for chi2_contingency.

        # A trivial case
        obs = np.array([[1, 2], [1, 2]])
        chi2, p, dof, expected = chi2_contingency(obs, correction=False)
        assert_equal(chi2, 0.0)
        assert_equal(p, 1.0)
        assert_equal(dof, 1)
        assert_array_equal(obs, expected)

        # A *really* trivial case: 1-D data.
        obs = np.array([1, 2, 3])
        chi2, p, dof, expected = chi2_contingency(obs, correction=False)
        assert_equal(chi2, 0.0)
        assert_equal(p, 1.0)
        assert_equal(dof, 0)
        assert_array_equal(obs, expected)

    def test_chi2_contingency_R(self):
        # Some test cases that were computed independently, using R.

        # Rcode = \
        # """
        # # Data vector.
        # data <- c(
        #   12, 34, 23,     4,  47,  11,
        #   35, 31, 11,    34,  10,  18,
        #   12, 32,  9,    18,  13,  19,
        #   12, 12, 14,     9,  33,  25
        #   )
        #
        # # Create factor tags:r=rows, c=columns, t=tiers
        # r <- factor(gl(4, 2*3, 2*3*4, labels=c("r1", "r2", "r3", "r4")))
        # c <- factor(gl(3, 1,   2*3*4, labels=c("c1", "c2", "c3")))
        # t <- factor(gl(2, 3,   2*3*4, labels=c("t1", "t2")))
        #
        # # 3-way Chi squared test of independence
        # s = summary(xtabs(data~r+c+t))
        # print(s)
        # """
        # Routput = \
        # """
        # Call: xtabs(formula = data ~ r + c + t)
        # Number of cases in table: 478
        # Number of factors: 3
        # Test for independence of all factors:
        #         Chisq = 102.17, df = 17, p-value = 3.514e-14
        # """
        obs = np.array(
            [[[12, 34, 23],
              [35, 31, 11],
              [12, 32, 9],
              [12, 12, 14]],
             [[4, 47, 11],
              [34, 10, 18],
              [18, 13, 19],
              [9, 33, 25]]])
        chi2, p, dof, expected = chi2_contingency(obs)
        assert_approx_equal(chi2, 102.17, significant=5)
        assert_approx_equal(p, 3.514e-14, significant=4)
        assert_equal(dof, 17)

        # Rcode = \
        # """
        # # Data vector.
        # data <- c(
        #     #
        #     12, 17,
        #     11, 16,
        #     #
        #     11, 12,
        #     15, 16,
        #     #
        #     23, 15,
        #     30, 22,
        #     #
        #     14, 17,
        #     15, 16
        #     )
        #
        # # Create factor tags:r=rows, c=columns, d=depths(?), t=tiers
        # r <- factor(gl(2, 2,  2*2*2*2, labels=c("r1", "r2")))
        # c <- factor(gl(2, 1,  2*2*2*2, labels=c("c1", "c2")))
        # d <- factor(gl(2, 4,  2*2*2*2, labels=c("d1", "d2")))
        # t <- factor(gl(2, 8,  2*2*2*2, labels=c("t1", "t2")))
        #
        # # 4-way Chi squared test of independence
        # s = summary(xtabs(data~r+c+d+t))
        # print(s)
        # """
        # Routput = \
        # """
        # Call: xtabs(formula = data ~ r + c + d + t)
        # Number of cases in table: 262
        # Number of factors: 4
        # Test for independence of all factors:
        #         Chisq = 8.758, df = 11, p-value = 0.6442
        # """
        obs = np.array(
            [[[[12, 17],
               [11, 16]],
              [[11, 12],
               [15, 16]]],
             [[[23, 15],
               [30, 22]],
              [[14, 17],
               [15, 16]]]])
        chi2, p, dof, expected = chi2_contingency(obs)
        assert_approx_equal(chi2, 8.758, significant=4)
        assert_approx_equal(p, 0.6442, significant=4)
        assert_equal(dof, 11)

    def test_chi2_contingency_g(self):
        c = np.array([[15, 60], [15, 90]])
        g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood',
                                        correction=False)
        assert_allclose(g, 2*xlogy(c, c/e).sum())

        g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood',
                                        correction=True)
        c_corr = c + np.array([[-0.5, 0.5], [0.5, -0.5]])
        assert_allclose(g, 2*xlogy(c_corr, c_corr/e).sum())

        c = np.array([[10, 12, 10], [12, 10, 10]])
        g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood')
        assert_allclose(g, 2*xlogy(c, c/e).sum())

    def test_chi2_contingency_bad_args(self):
        # Test that "bad" inputs raise a ValueError.

        # Negative value in the array of observed frequencies.
        obs = np.array([[-1, 10], [1, 2]])
        assert_raises(ValueError, chi2_contingency, obs)

        # The zeros in this will result in zeros in the array
        # of expected frequencies.
        obs = np.array([[0, 1], [0, 1]])
        assert_raises(ValueError, chi2_contingency, obs)

        # A degenerate case: `observed` has size 0.
        obs = np.empty((0, 8))
        assert_raises(ValueError, chi2_contingency, obs)

    def test_chi2_contingency_yates_gh13875(self):
        # Magnitude of Yates' continuity correction should not exceed difference
        # between expected and observed value of the statistic; see gh-13875
        observed = np.array([[1573, 3], [4, 0]])
        p = chi2_contingency(observed)[1]
        assert_allclose(p, 1, rtol=1e-12)

    @pytest.mark.parametrize("correction", [False, True])
    def test_result(self, correction):
        obs = np.array([[1, 2], [1, 2]])
        res = chi2_contingency(obs, correction=correction)
        assert_equal((res.statistic, res.pvalue, res.dof, res.expected_freq), res)

    @pytest.mark.slow
    def test_exact_permutation(self):
        table = np.arange(4).reshape(2, 2)
        ref_statistic = chi2_contingency(table, correction=False).statistic
        ref_pvalue = stats.fisher_exact(table).pvalue
        method = stats.PermutationMethod(n_resamples=50000)
        res = chi2_contingency(table, correction=False, method=method)
        assert_equal(res.statistic, ref_statistic)
        assert_allclose(res.pvalue, ref_pvalue, rtol=1e-15)

    @pytest.mark.slow
    @pytest.mark.parametrize('method', (stats.PermutationMethod,
                                        stats.MonteCarloMethod))
    def test_resampling_randomized(self, method):
        rng = np.random.default_rng(2592340925)
        # need to have big sum for asymptotic approximation to be good
        rows = [300, 1000, 800]
        cols = [200, 400, 800, 700]
        table = stats.random_table(rows, cols, seed=rng).rvs()
        res = chi2_contingency(table, correction=False, method=method(rng=rng))
        ref = chi2_contingency(table, correction=False)
        assert_equal(res.statistic, ref.statistic)
        assert_allclose(res.pvalue, ref.pvalue, atol=5e-3)
        assert_equal(res.dof, np.nan)
        assert_equal(res.expected_freq, ref.expected_freq)

    def test_resampling_invalid_args(self):
        table = np.arange(8).reshape(2, 2, 2)

        method = stats.PermutationMethod()
        message = "Use of `method` is only compatible with two-way tables."
        with pytest.raises(ValueError, match=message):
            chi2_contingency(table, correction=False, method=method)

        table = np.arange(4).reshape(2, 2)

        method = stats.PermutationMethod()
        message = "`correction=True` is not compatible with..."
        with pytest.raises(ValueError, match=message):
            chi2_contingency(table, method=method)

        method = stats.MonteCarloMethod()
        message = "`lambda_=2` is not compatible with..."
        with pytest.raises(ValueError, match=message):
            chi2_contingency(table, correction=False, lambda_=2, method=method)

        method = 'herring'
        message = "`method='herring'` not recognized; if provided, `method`..."
        with pytest.raises(ValueError, match=message):
            chi2_contingency(table, correction=False, method=method)

        method = stats.MonteCarloMethod(rvs=stats.norm.rvs)
        message = "If the `method` argument of `chi2_contingency` is..."
        with pytest.raises(ValueError, match=message):
            chi2_contingency(table, correction=False, method=method)


def test_bad_association_args():
    # Invalid Test Statistic
    assert_raises(ValueError, association, [[1, 2], [3, 4]], "X")
    # Invalid array shape
    assert_raises(ValueError, association, [[[1, 2]], [[3, 4]]], "cramer")
    # chi2_contingency exception
    assert_raises(ValueError, association, [[-1, 10], [1, 2]], 'cramer')
    # Invalid Array Item Data Type
    assert_raises(ValueError, association,
                  np.array([[1, 2], ["dd", 4]], dtype=object), 'cramer')


@pytest.mark.parametrize('stat, expected',
                         [('cramer', 0.09222412010290792),
                          ('tschuprow', 0.0775509319944633),
                          ('pearson', 0.12932925727138758)])
def test_assoc(stat, expected):
    # 2d Array
    obs1 = np.array([[12, 13, 14, 15, 16],
                     [17, 16, 18, 19, 11],
                     [9, 15, 14, 12, 11]])
    a = association(observed=obs1, method=stat)
    assert_allclose(a, expected)