File size: 48,875 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
import os
import numpy as np
import numpy.testing as npt
from numpy.testing import assert_allclose, assert_equal
import pytest
from scipy import stats
from scipy.optimize import differential_evolution

from .test_continuous_basic import distcont
from scipy.stats._distn_infrastructure import FitError
from scipy.stats._distr_params import distdiscrete
from scipy.stats import goodness_of_fit


# this is not a proper statistical test for convergence, but only
# verifies that the estimate and true values don't differ by too much

fit_sizes = [1000, 5000, 10000]  # sample sizes to try

thresh_percent = 0.25  # percent of true parameters for fail cut-off
thresh_min = 0.75  # minimum difference estimate - true to fail test

mle_failing_fits = [
        'dpareto_lognorm',
        'gausshyper',
        'genexpon',
        'gengamma',
        'irwinhall',
        'kappa4',
        'ksone',
        'kstwo',
        'ncf',
        'ncx2',
        'truncexpon',
        'tukeylambda',
        'vonmises',
        'levy_stable',
        'trapezoid',
        'truncweibull_min',
        'studentized_range',
]

# these pass but are XSLOW (>1s)
mle_Xslow_fits = ['betaprime', 'crystalball', 'exponweib', 'f', 'geninvgauss',
                  'jf_skew_t', 'recipinvgauss', 'rel_breitwigner', 'vonmises_line']

# The MLE fit method of these distributions doesn't perform well when all
# parameters are fit, so test them with the location fixed at 0.
mle_use_floc0 = [
    'burr',
    'chi',
    'chi2',
    'mielke',
    'pearson3',
    'genhalflogistic',
    'rdist',
    'pareto',
    'powerlaw',  # distfn.nnlf(est2, rvs) > distfn.nnlf(est1, rvs) otherwise
    'powerlognorm',
    'wrapcauchy',
    'rel_breitwigner',
]

mm_failing_fits = ['alpha', 'betaprime', 'burr', 'burr12', 'cauchy', 'chi',
                   'chi2', 'crystalball', 'dgamma', 'dpareto_lognorm', 'dweibull',
                   'f', 'fatiguelife', 'fisk', 'foldcauchy', 'genextreme',
                   'gengamma', 'genhyperbolic', 'gennorm', 'genpareto',
                   'halfcauchy', 'invgamma', 'invweibull', 'irwinhall', 'jf_skew_t',
                   'johnsonsu', 'kappa3', 'ksone', 'kstwo', 'landau', 'levy', 'levy_l',
                   'levy_stable', 'loglaplace', 'lomax', 'mielke', 'nakagami',
                   'ncf', 'nct', 'ncx2', 'pareto', 'powerlognorm', 'powernorm',
                   'rel_breitwigner', 'skewcauchy', 't', 'trapezoid', 'triang',
                   'truncpareto', 'truncweibull_min', 'tukeylambda',
                   'studentized_range']

# not sure if these fail, but they caused my patience to fail
mm_XXslow_fits = ['argus', 'exponpow', 'exponweib', 'gausshyper', 'genexpon',
                  'genhalflogistic', 'halfgennorm', 'gompertz', 'johnsonsb',
                  'kappa4', 'kstwobign', 'recipinvgauss',
                  'truncexpon', 'vonmises', 'vonmises_line']

# these pass but are XSLOW (>1s)
mm_Xslow_fits = ['wrapcauchy']

failing_fits = {"MM": mm_failing_fits + mm_XXslow_fits, "MLE": mle_failing_fits}
xslow_fits = {"MM": mm_Xslow_fits, "MLE": mle_Xslow_fits}
fail_interval_censored = {"truncpareto"}

# Don't run the fit test on these:
skip_fit = [
    'erlang',  # Subclass of gamma, generates a warning.
    'genhyperbolic', 'norminvgauss',  # too slow
]


def cases_test_cont_fit():
    # this tests the closeness of the estimated parameters to the true
    # parameters with fit method of continuous distributions
    # Note: is slow, some distributions don't converge with sample
    # size <= 10000
    for distname, arg in distcont:
        if distname not in skip_fit:
            yield distname, arg


@pytest.mark.slow
@pytest.mark.parametrize('distname,arg', cases_test_cont_fit())
@pytest.mark.parametrize('method', ["MLE", "MM"])
def test_cont_fit(distname, arg, method):
    run_xfail = int(os.getenv('SCIPY_XFAIL', default=False))
    run_xslow = int(os.getenv('SCIPY_XSLOW', default=False))

    if distname in failing_fits[method] and not run_xfail:
        # The generic `fit` method can't be expected to work perfectly for all
        # distributions, data, and guesses. Some failures are expected.
        msg = "Failure expected; set environment variable SCIPY_XFAIL=1 to run."
        pytest.xfail(msg)

    if distname in xslow_fits[method] and not run_xslow:
        msg = "Very slow; set environment variable SCIPY_XSLOW=1 to run."
        pytest.skip(msg)

    distfn = getattr(stats, distname)

    truearg = np.hstack([arg, [0.0, 1.0]])
    diffthreshold = np.max(np.vstack([truearg*thresh_percent,
                                      np.full(distfn.numargs+2, thresh_min)]),
                           0)

    for fit_size in fit_sizes:
        # Note that if a fit succeeds, the other fit_sizes are skipped
        np.random.seed(1234)

        with np.errstate(all='ignore'):
            rvs = distfn.rvs(size=fit_size, *arg)
            if method == 'MLE' and distfn.name in mle_use_floc0:
                kwds = {'floc': 0}
            else:
                kwds = {}
            # start with default values
            est = distfn.fit(rvs, method=method, **kwds)
            if method == 'MLE':
                # Trivial test of the use of CensoredData.  The fit() method
                # will check that data contains no actual censored data, and
                # do a regular uncensored fit.
                data1 = stats.CensoredData(rvs)
                est1 = distfn.fit(data1, **kwds)
                msg = ('Different results fitting uncensored data wrapped as'
                       f' CensoredData: {distfn.name}: est={est} est1={est1}')
                assert_allclose(est1, est, rtol=1e-10, err_msg=msg)
            if method == 'MLE' and distname not in fail_interval_censored:
                # Convert the first `nic` values in rvs to interval-censored
                # values. The interval is small, so est2 should be close to
                # est.
                nic = 15
                interval = np.column_stack((rvs, rvs))
                interval[:nic, 0] *= 0.99
                interval[:nic, 1] *= 1.01
                interval.sort(axis=1)
                data2 = stats.CensoredData(interval=interval)
                est2 = distfn.fit(data2, **kwds)
                msg = ('Different results fitting interval-censored'
                       f' data: {distfn.name}: est={est} est2={est2}')
                assert_allclose(est2, est, rtol=0.05, err_msg=msg)

        diff = est - truearg

        # threshold for location
        diffthreshold[-2] = np.max([np.abs(rvs.mean())*thresh_percent,
                                    thresh_min])

        if np.any(np.isnan(est)):
            raise AssertionError('nan returned in fit')
        else:
            if np.all(np.abs(diff) <= diffthreshold):
                break
    else:
        txt = f'parameter: {str(truearg)}\n'
        txt += f'estimated: {str(est)}\n'
        txt += f'diff     : {str(diff)}\n'
        raise AssertionError(f'fit not very good in {distfn.name}\n' + txt)


def _check_loc_scale_mle_fit(name, data, desired, atol=None):
    d = getattr(stats, name)
    actual = d.fit(data)[-2:]
    assert_allclose(actual, desired, atol=atol,
                    err_msg=f'poor mle fit of (loc, scale) in {name}')


def test_non_default_loc_scale_mle_fit():
    data = np.array([1.01, 1.78, 1.78, 1.78, 1.88, 1.88, 1.88, 2.00])
    _check_loc_scale_mle_fit('uniform', data, [1.01, 0.99], 1e-3)
    _check_loc_scale_mle_fit('expon', data, [1.01, 0.73875], 1e-3)


def test_expon_fit():
    """gh-6167"""
    data = [0, 0, 0, 0, 2, 2, 2, 2]
    phat = stats.expon.fit(data, floc=0)
    assert_allclose(phat, [0, 1.0], atol=1e-3)


def test_fit_error():
    data = np.concatenate([np.zeros(29), np.ones(21)])
    message = "Optimization converged to parameters that are..."
    with pytest.raises(FitError, match=message), \
            pytest.warns(RuntimeWarning):
        stats.beta.fit(data)


@pytest.mark.parametrize("dist, params",
                         [(stats.norm, (0.5, 2.5)),  # type: ignore[attr-defined]
                          (stats.binom, (10, 0.3, 2))])  # type: ignore[attr-defined]
def test_nnlf_and_related_methods(dist, params):
    rng = np.random.default_rng(983459824)

    if hasattr(dist, 'pdf'):
        logpxf = dist.logpdf
    else:
        logpxf = dist.logpmf

    x = dist.rvs(*params, size=100, random_state=rng)
    ref = -logpxf(x, *params).sum()
    res1 = dist.nnlf(params, x)
    res2 = dist._penalized_nnlf(params, x)
    assert_allclose(res1, ref)
    assert_allclose(res2, ref)


def cases_test_fit_mle():
    # These fail default test or hang
    skip_basic_fit = {'argus', 'irwinhall', 'foldnorm', 'truncpareto',
                      'truncweibull_min', 'ksone', 'levy_stable',
                      'studentized_range', 'kstwo',
                      'beta', 'nakagami', 'truncnorm', # don't meet tolerance
                      'poisson_binom'}  # vector-valued shape parameter

    # Please keep this list in alphabetical order...
    slow_basic_fit = {'alpha', 'arcsine', 'betaprime', 'binom', 'bradford', 'burr12',
                      'chi', 'crystalball', 'dweibull', 'erlang', 'exponnorm',
                      'exponpow', 'f', 'fatiguelife', 'fisk', 'foldcauchy', 'gamma',
                      'genexpon', 'genextreme', 'gennorm', 'genpareto',
                      'gompertz', 'halfgennorm', 'invgamma', 'invgauss', 'invweibull',
                      'jf_skew_t', 'johnsonsb', 'johnsonsu', 'kappa3',
                      'kstwobign', 'loglaplace', 'lognorm', 'lomax', 'mielke',
                      'nbinom', 'norminvgauss',
                      'pareto', 'pearson3', 'powerlaw', 'powernorm',
                      'randint', 'rdist', 'recipinvgauss', 'rice', 'skewnorm',
                      't', 'uniform', 'weibull_max', 'weibull_min', 'wrapcauchy'}

    # Please keep this list in alphabetical order...
    xslow_basic_fit = {'betabinom', 'betanbinom', 'burr', 'dpareto_lognorm',
                       'exponweib', 'gausshyper', 'gengamma', 'genhalflogistic',
                       'genhyperbolic', 'geninvgauss',
                       'hypergeom', 'kappa4', 'loguniform',
                       'ncf', 'nchypergeom_fisher', 'nchypergeom_wallenius',
                       'nct', 'ncx2', 'nhypergeom',
                       'powerlognorm', 'reciprocal', 'rel_breitwigner',
                       'skellam', 'trapezoid', 'triang',
                       'tukeylambda', 'vonmises', 'zipfian'}

    for dist in dict(distdiscrete + distcont):
        if dist in skip_basic_fit or not isinstance(dist, str):
            reason = "tested separately"
            yield pytest.param(dist, marks=pytest.mark.skip(reason=reason))
        elif dist in slow_basic_fit:
            reason = "too slow (>= 0.25s)"
            yield pytest.param(dist, marks=pytest.mark.slow(reason=reason))
        elif dist in xslow_basic_fit:
            reason = "too slow (>= 1.0s)"
            yield pytest.param(dist, marks=pytest.mark.xslow(reason=reason))
        else:
            yield dist


def cases_test_fit_mse():
    # the first four are so slow that I'm not sure whether they would pass
    skip_basic_fit = {'levy_stable', 'studentized_range', 'ksone', 'skewnorm',
                      'irwinhall', # hangs
                      'norminvgauss',  # super slow (~1 hr) but passes
                      'kstwo',  # very slow (~25 min) but passes
                      'geninvgauss',  # quite slow (~4 minutes) but passes
                      'gausshyper', 'genhyperbolic',  # integration warnings
                      'tukeylambda',  # close, but doesn't meet tolerance
                      'vonmises',  # can have negative CDF; doesn't play nice
                      'arcsine', 'argus', 'powerlaw', 'rdist', # don't meet tolerance
                      'poisson_binom',  # vector-valued shape parameter
                      }

    # Please keep this list in alphabetical order...
    slow_basic_fit = {'alpha', 'anglit', 'betabinom', 'bradford',
                      'chi', 'chi2', 'crystalball', 'dweibull',
                      'erlang', 'exponnorm', 'exponpow', 'exponweib',
                      'fatiguelife', 'fisk', 'foldcauchy', 'foldnorm',
                      'gamma', 'genexpon', 'genextreme', 'genhalflogistic',
                      'genlogistic', 'genpareto', 'gompertz',
                      'hypergeom', 'invweibull',
                      'johnsonsu', 'kappa3', 'kstwobign',
                      'laplace_asymmetric', 'loggamma', 'loglaplace',
                      'lognorm', 'lomax',
                      'maxwell', 'nhypergeom',
                      'pareto', 'powernorm', 'randint', 'recipinvgauss',
                      'semicircular',
                      't', 'triang', 'truncexpon', 'truncpareto',
                      'uniform',
                      'wald', 'weibull_max', 'weibull_min', 'wrapcauchy'}

    # Please keep this list in alphabetical order...
    xslow_basic_fit = {'argus', 'beta', 'betaprime', 'burr', 'burr12',
                       'dgamma', 'dpareto_lognorm', 'f', 'gengamma', 'gennorm',
                       'halfgennorm', 'invgamma', 'invgauss', 'jf_skew_t',
                       'johnsonsb', 'kappa4', 'loguniform', 'mielke',
                       'nakagami', 'ncf', 'nchypergeom_fisher',
                       'nchypergeom_wallenius', 'nct', 'ncx2',
                       'pearson3', 'powerlognorm',
                       'reciprocal', 'rel_breitwigner', 'rice',
                       'trapezoid', 'truncnorm', 'truncweibull_min',
                       'vonmises_line', 'zipfian'}

    warns_basic_fit = {'skellam'}  # can remove mark after gh-14901 is resolved

    for dist in dict(distdiscrete + distcont):
        if dist in skip_basic_fit or not isinstance(dist, str):
            reason = "Fails. Oh well."
            yield pytest.param(dist, marks=pytest.mark.skip(reason=reason))
        elif dist in slow_basic_fit:
            reason = "too slow (>= 0.25s)"
            yield pytest.param(dist, marks=pytest.mark.slow(reason=reason))
        elif dist in xslow_basic_fit:
            reason = "too slow (>= 1.0s)"
            yield pytest.param(dist, marks=pytest.mark.xslow(reason=reason))
        elif dist in warns_basic_fit:
            mark = pytest.mark.filterwarnings('ignore::RuntimeWarning')
            yield pytest.param(dist, marks=mark)
        else:
            yield dist


def cases_test_fitstart():
    for distname, shapes in dict(distcont).items():
        if (not isinstance(distname, str) or
                distname in {'studentized_range', 'recipinvgauss'}):  # slow
            continue
        yield distname, shapes


@pytest.mark.parametrize('distname, shapes', cases_test_fitstart())
def test_fitstart(distname, shapes):
    dist = getattr(stats, distname)
    rng = np.random.default_rng(216342614)
    data = rng.random(10)

    with np.errstate(invalid='ignore', divide='ignore'):  # irrelevant to test
        guess = dist._fitstart(data)

    assert dist._argcheck(*guess[:-2])


def assert_nlff_less_or_close(dist, data, params1, params0, rtol=1e-7, atol=0,
                              nlff_name='nnlf'):
    nlff = getattr(dist, nlff_name)
    nlff1 = nlff(params1, data)
    nlff0 = nlff(params0, data)
    if not (nlff1 < nlff0):
        np.testing.assert_allclose(nlff1, nlff0, rtol=rtol, atol=atol)


class TestFit:
    dist = stats.binom  # type: ignore[attr-defined]
    seed = 654634816187
    rng = np.random.default_rng(seed)
    data = stats.binom.rvs(5, 0.5, size=100, random_state=rng)  # type: ignore[attr-defined]  # noqa: E501
    shape_bounds_a = [(1, 10), (0, 1)]
    shape_bounds_d = {'n': (1, 10), 'p': (0, 1)}
    atol = 5e-2
    rtol = 1e-2
    tols = {'atol': atol, 'rtol': rtol}

    def opt(self, *args, rng=1, **kwds):
        return differential_evolution(*args, rng=rng, **kwds)

    def test_dist_iv(self):
        message = "`dist` must be an instance of..."
        with pytest.raises(ValueError, match=message):
            stats.fit(10, self.data, self.shape_bounds_a)

    def test_data_iv(self):
        message = "`data` must be exactly one-dimensional."
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, [[1, 2, 3]], self.shape_bounds_a)

        message = "All elements of `data` must be finite numbers."
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, [1, 2, 3, np.nan], self.shape_bounds_a)
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, [1, 2, 3, np.inf], self.shape_bounds_a)
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, ['1', '2', '3'], self.shape_bounds_a)

    def test_bounds_iv(self):
        message = "Bounds provided for the following unrecognized..."
        shape_bounds = {'n': (1, 10), 'p': (0, 1), '1': (0, 10)}
        with pytest.warns(RuntimeWarning, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "Each element of a `bounds` sequence must be a tuple..."
        shape_bounds = [(1, 10, 3), (0, 1)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "Each element of `bounds` must be a tuple specifying..."
        shape_bounds = [(1, 10, 3), (0, 1, 0.5)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)
        shape_bounds = [1, 0]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "A `bounds` sequence must contain at least 2 elements..."
        shape_bounds = [(1, 10)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "A `bounds` sequence may not contain more than 3 elements..."
        bounds = [(1, 10), (1, 10), (1, 10), (1, 10)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, bounds)

        message = "There are no values for `p` on the interval..."
        shape_bounds = {'n': (1, 10), 'p': (1, 0)}
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "There are no values for `n` on the interval..."
        shape_bounds = [(10, 1), (0, 1)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "There are no integer values for `n` on the interval..."
        shape_bounds = [(1.4, 1.6), (0, 1)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

        message = "The intersection of user-provided bounds for `n`"
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data)
        shape_bounds = [(-np.inf, np.inf), (0, 1)]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, shape_bounds)

    def test_guess_iv(self):
        message = "Guesses provided for the following unrecognized..."
        guess = {'n': 1, 'p': 0.5, '1': 255}
        with pytest.warns(RuntimeWarning, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "Each element of `guess` must be a scalar..."
        guess = {'n': 1, 'p': 'hi'}
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
        guess = [1, 'f']
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
        guess = [[1, 2]]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "A `guess` sequence must contain at least 2..."
        guess = [1]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "A `guess` sequence may not contain more than 3..."
        guess = [1, 2, 3, 4]
        with pytest.raises(ValueError, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "Guess for parameter `n` rounded.*|Guess for parameter `p` clipped.*"
        guess = {'n': 4.5, 'p': -0.5}
        with pytest.warns(RuntimeWarning, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "Guess for parameter `loc` rounded..."
        guess = [5, 0.5, 0.5]
        with pytest.warns(RuntimeWarning, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "Guess for parameter `p` clipped..."
        guess = {'n': 5, 'p': -0.5}
        with pytest.warns(RuntimeWarning, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

        message = "Guess for parameter `loc` clipped..."
        guess = [5, 0.5, 1]
        with pytest.warns(RuntimeWarning, match=message):
            stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)

    def basic_fit_test(self, dist_name, method, rng=1):

        N = 5000
        dist_data = dict(distcont + distdiscrete)
        rng = np.random.default_rng(self.seed)
        dist = getattr(stats, dist_name)
        shapes = np.array(dist_data[dist_name])
        bounds = np.empty((len(shapes) + 2, 2), dtype=np.float64)
        bounds[:-2, 0] = shapes/10.**np.sign(shapes)
        bounds[:-2, 1] = shapes*10.**np.sign(shapes)
        bounds[-2] = (0, 10)
        bounds[-1] = (1e-16, 10)
        loc = rng.uniform(*bounds[-2])
        scale = rng.uniform(*bounds[-1])
        ref = list(dist_data[dist_name]) + [loc, scale]

        if getattr(dist, 'pmf', False):
            ref = ref[:-1]
            ref[-1] = np.floor(loc)
            data = dist.rvs(*ref, size=N, random_state=rng)
            bounds = bounds[:-1]
        if getattr(dist, 'pdf', False):
            data = dist.rvs(*ref, size=N, random_state=rng)

        with npt.suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "overflow encountered")
            res = stats.fit(dist, data, bounds, method=method,
                            optimizer=self.opt)

        nlff_names = {'mle': 'nnlf', 'mse': '_penalized_nlpsf'}
        nlff_name = nlff_names[method]
        assert_nlff_less_or_close(dist, data, res.params, ref, **self.tols,
                                  nlff_name=nlff_name)

    @pytest.mark.parametrize("dist_name", cases_test_fit_mle())
    def test_basic_fit_mle(self, dist_name):
        self.basic_fit_test(dist_name, "mle", rng=5)

    @pytest.mark.parametrize("dist_name", cases_test_fit_mse())
    def test_basic_fit_mse(self, dist_name):
        self.basic_fit_test(dist_name, "mse", rng=2)

    @pytest.mark.slow
    def test_arcsine(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.arcsine
        shapes = (1., 2.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = {'loc': (0.1, 10), 'scale': (0.1, 10)}
        res = stats.fit(dist, data, shape_bounds, method='mse', optimizer=self.opt)
        assert_nlff_less_or_close(dist, data, res.params, shapes,
                                  nlff_name='_penalized_nlpsf', **self.tols)

    @pytest.mark.parametrize("method", ('mle', 'mse'))
    def test_argus(self, method):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.argus
        shapes = (1., 2., 3.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = {'chi': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
        res = stats.fit(dist, data, shape_bounds, optimizer=self.opt, method=method)
        nlff_name = {'mle': 'nnlf', 'mse': '_penalized_nlpsf'}[method]
        assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols,
                                  nlff_name=nlff_name)

    @pytest.mark.xslow
    def test_beta(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.beta
        shapes = (2.3098496451481823, 0.62687954300963677, 1., 2.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = {'a': (0.1, 10), 'b':(0.1, 10),
                        'loc': (0.1, 10), 'scale': (0.1, 10)}
        res = stats.fit(dist, data, shape_bounds, method='mle', optimizer=self.opt)
        assert_nlff_less_or_close(dist, data, res.params, shapes,
                                  nlff_name='nnlf', **self.tols)

    def test_foldnorm(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.foldnorm
        shapes = (1.952125337355587, 2., 3.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = {'c': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
        res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)

        assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols)

    def test_nakagami(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.nakagami
        shapes = (4.9673794866666237, 1., 2.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = {'nu':(0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
        res = stats.fit(dist, data, shape_bounds, method='mle', optimizer=self.opt)
        assert_nlff_less_or_close(dist, data, res.params, shapes,
                                  nlff_name='nnlf', **self.tols)

    @pytest.mark.slow
    def test_powerlaw(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.powerlaw
        shapes = (1.6591133289905851, 1., 2.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = {'a': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
        res = stats.fit(dist, data, shape_bounds, method='mse', optimizer=self.opt)
        assert_nlff_less_or_close(dist, data, res.params, shapes,
                                  nlff_name='_penalized_nlpsf', **self.tols)

    def test_truncpareto(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.truncpareto
        shapes = (1.8, 5.3, 2.3, 4.1)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = [(0.1, 10)]*4
        res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)

        assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols)

    @pytest.mark.slow
    def test_truncweibull_min(self):
        # Can't guarantee that all distributions will fit all data with
        # arbitrary bounds. This distribution just happens to fail above.
        # Try something slightly different.
        N = 1000
        rng = np.random.default_rng(self.seed)
        dist = stats.truncweibull_min
        shapes = (2.5, 0.25, 1.75, 2., 3.)
        data = dist.rvs(*shapes, size=N, random_state=rng)
        shape_bounds = [(0.1, 10)]*5
        res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)

        assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols)

    def test_missing_shape_bounds(self):
        # some distributions have a small domain w.r.t. a parameter, e.g.
        # $p \in [0, 1]$ for binomial distribution
        # User does not need to provide these because the intersection of the
        # user's bounds (none) and the distribution's domain is finite
        N = 1000
        rng = np.random.default_rng(self.seed)

        dist = stats.binom
        n, p, loc = 10, 0.65, 0
        data = dist.rvs(n, p, loc=loc, size=N, random_state=rng)
        shape_bounds = {'n': np.array([0, 20])}  # check arrays are OK, too
        res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
        assert_allclose(res.params, (n, p, loc), **self.tols)

        dist = stats.bernoulli
        p, loc = 0.314159, 0
        data = dist.rvs(p, loc=loc, size=N, random_state=rng)
        res = stats.fit(dist, data, optimizer=self.opt)
        assert_allclose(res.params, (p, loc), **self.tols)

    def test_fit_only_loc_scale(self):
        # fit only loc
        N = 5000
        rng = np.random.default_rng(self.seed)

        dist = stats.norm
        loc, scale = 1.5, 1
        data = dist.rvs(loc=loc, size=N, random_state=rng)
        loc_bounds = (0, 5)
        bounds = {'loc': loc_bounds}
        res = stats.fit(dist, data, bounds, optimizer=self.opt)
        assert_allclose(res.params, (loc, scale), **self.tols)

        # fit only scale
        loc, scale = 0, 2.5
        data = dist.rvs(scale=scale, size=N, random_state=rng)
        scale_bounds = (0.01, 5)
        bounds = {'scale': scale_bounds}
        res = stats.fit(dist, data, bounds, optimizer=self.opt)
        assert_allclose(res.params, (loc, scale), **self.tols)

        # fit only loc and scale
        dist = stats.norm
        loc, scale = 1.5, 2.5
        data = dist.rvs(loc=loc, scale=scale, size=N, random_state=rng)
        bounds = {'loc': loc_bounds, 'scale': scale_bounds}
        res = stats.fit(dist, data, bounds, optimizer=self.opt)
        assert_allclose(res.params, (loc, scale), **self.tols)

    def test_everything_fixed(self):
        N = 5000
        rng = np.random.default_rng(self.seed)

        dist = stats.norm
        loc, scale = 1.5, 2.5
        data = dist.rvs(loc=loc, scale=scale, size=N, random_state=rng)

        # loc, scale fixed to 0, 1 by default
        res = stats.fit(dist, data)
        assert_allclose(res.params, (0, 1), **self.tols)

        # loc, scale explicitly fixed
        bounds = {'loc': (loc, loc), 'scale': (scale, scale)}
        res = stats.fit(dist, data, bounds)
        assert_allclose(res.params, (loc, scale), **self.tols)

        # `n` gets fixed during polishing
        dist = stats.binom
        n, p, loc = 10, 0.65, 0
        data = dist.rvs(n, p, loc=loc, size=N, random_state=rng)
        shape_bounds = {'n': (0, 20), 'p': (0.65, 0.65)}
        res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
        assert_allclose(res.params, (n, p, loc), **self.tols)

    def test_failure(self):
        N = 5000
        rng = np.random.default_rng(self.seed)

        dist = stats.nbinom
        shapes = (5, 0.5)
        data = dist.rvs(*shapes, size=N, random_state=rng)

        assert data.min() == 0
        # With lower bounds on location at 0.5, likelihood is zero
        bounds = [(0, 30), (0, 1), (0.5, 10)]
        res = stats.fit(dist, data, bounds)
        message = "Optimization converged to parameter values that are"
        assert res.message.startswith(message)
        assert res.success is False

    @pytest.mark.xslow
    def test_guess(self):
        # Test that guess helps DE find the desired solution
        N = 2000
        # With some seeds, `fit` doesn't need a guess
        rng = np.random.default_rng(196390444561)
        dist = stats.nhypergeom
        params = (20, 7, 12, 0)
        bounds = [(2, 200), (0.7, 70), (1.2, 120), (0, 10)]

        data = dist.rvs(*params, size=N, random_state=rng)

        res = stats.fit(dist, data, bounds, optimizer=self.opt)
        assert not np.allclose(res.params, params, **self.tols)

        res = stats.fit(dist, data, bounds, guess=params, optimizer=self.opt)
        assert_allclose(res.params, params, **self.tols)

    def test_mse_accuracy_1(self):
        # Test maximum spacing estimation against example from Wikipedia
        # https://en.wikipedia.org/wiki/Maximum_spacing_estimation#Examples
        data = [2, 4]
        dist = stats.expon
        bounds = {'loc': (0, 0), 'scale': (1e-8, 10)}
        res_mle = stats.fit(dist, data, bounds=bounds, method='mle')
        assert_allclose(res_mle.params.scale, 3, atol=1e-3)
        res_mse = stats.fit(dist, data, bounds=bounds, method='mse')
        assert_allclose(res_mse.params.scale, 3.915, atol=1e-3)

    def test_mse_accuracy_2(self):
        # Test maximum spacing estimation against example from Wikipedia
        # https://en.wikipedia.org/wiki/Maximum_spacing_estimation#Examples
        rng = np.random.default_rng(9843212616816518964)

        dist = stats.uniform
        n = 10
        data = dist(3, 6).rvs(size=n, random_state=rng)
        bounds = {'loc': (0, 10), 'scale': (1e-8, 10)}
        res = stats.fit(dist, data, bounds=bounds, method='mse')
        # (loc=3.608118420015416, scale=5.509323262055043)

        x = np.sort(data)
        a = (n*x[0] - x[-1])/(n - 1)
        b = (n*x[-1] - x[0])/(n - 1)
        ref = a, b-a  # (3.6081133632151503, 5.509328130317254)
        assert_allclose(res.params, ref, rtol=1e-4)


# Data from Matlab: https://www.mathworks.com/help/stats/lillietest.html
examgrades = [65, 61, 81, 88, 69, 89, 55, 84, 86, 84, 71, 81, 84, 81, 78, 67,
              96, 66, 73, 75, 59, 71, 69, 63, 79, 76, 63, 85, 87, 88, 80, 71,
              65, 84, 71, 75, 81, 79, 64, 65, 84, 77, 70, 75, 84, 75, 73, 92,
              90, 79, 80, 71, 73, 71, 58, 79, 73, 64, 77, 82, 81, 59, 54, 82,
              57, 79, 79, 73, 74, 82, 63, 64, 73, 69, 87, 68, 81, 73, 83, 73,
              80, 73, 73, 71, 66, 78, 64, 74, 68, 67, 75, 75, 80, 85, 74, 76,
              80, 77, 93, 70, 86, 80, 81, 83, 68, 60, 85, 64, 74, 82, 81, 77,
              66, 85, 75, 81, 69, 60, 83, 72]


class TestGoodnessOfFit:

    def test_gof_iv(self):
        dist = stats.norm
        x = [1, 2, 3]

        message = r"`dist` must be a \(non-frozen\) instance of..."
        with pytest.raises(TypeError, match=message):
            goodness_of_fit(stats.norm(), x)

        message = "`data` must be a one-dimensional array of numbers."
        with pytest.raises(ValueError, match=message):
            goodness_of_fit(dist, [[1, 2, 3]])

        message = "`statistic` must be one of..."
        with pytest.raises(ValueError, match=message):
            goodness_of_fit(dist, x, statistic='mm')

        message = "`n_mc_samples` must be an integer."
        with pytest.raises(TypeError, match=message):
            goodness_of_fit(dist, x, n_mc_samples=1000.5)

        message = "SeedSequence expects int or sequence"
        with pytest.raises(TypeError, match=message):
            goodness_of_fit(dist, x, rng='herring')

    def test_against_ks(self):
        rng = np.random.default_rng(8517426291317196949)
        x = examgrades
        known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)}
        res = goodness_of_fit(stats.norm, x, known_params=known_params,
                              statistic='ks', rng=rng)
        ref = stats.kstest(x, stats.norm(**known_params).cdf, method='exact')
        assert_allclose(res.statistic, ref.statistic)  # ~0.0848
        assert_allclose(res.pvalue, ref.pvalue, atol=5e-3)  # ~0.335

    def test_against_lilliefors(self):
        rng = np.random.default_rng(2291803665717442724)
        x = examgrades
        # preserve use of old random_state during SPEC 7 transition
        res = goodness_of_fit(stats.norm, x, statistic='ks', random_state=rng)
        known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)}
        ref = stats.kstest(x, stats.norm(**known_params).cdf, method='exact')
        assert_allclose(res.statistic, ref.statistic)  # ~0.0848
        assert_allclose(res.pvalue, 0.0348, atol=5e-3)

    def test_against_cvm(self):
        rng = np.random.default_rng(8674330857509546614)
        x = examgrades
        known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)}
        res = goodness_of_fit(stats.norm, x, known_params=known_params,
                              statistic='cvm', rng=rng)
        ref = stats.cramervonmises(x, stats.norm(**known_params).cdf)
        assert_allclose(res.statistic, ref.statistic)  # ~0.090
        assert_allclose(res.pvalue, ref.pvalue, atol=5e-3)  # ~0.636

    def test_against_anderson_case_0(self):
        # "Case 0" is where loc and scale are known [1]
        rng = np.random.default_rng(7384539336846690410)
        x = np.arange(1, 101)
        # loc that produced critical value of statistic found w/ root_scalar
        known_params = {'loc': 45.01575354024957, 'scale': 30}
        res = goodness_of_fit(stats.norm, x, known_params=known_params,
                              statistic='ad', rng=rng)
        assert_allclose(res.statistic, 2.492)  # See [1] Table 1A 1.0
        assert_allclose(res.pvalue, 0.05, atol=5e-3)

    def test_against_anderson_case_1(self):
        # "Case 1" is where scale is known and loc is fit [1]
        rng = np.random.default_rng(5040212485680146248)
        x = np.arange(1, 101)
        # scale that produced critical value of statistic found w/ root_scalar
        known_params = {'scale': 29.957112639101933}
        res = goodness_of_fit(stats.norm, x, known_params=known_params,
                              statistic='ad', rng=rng)
        assert_allclose(res.statistic, 0.908)  # See [1] Table 1B 1.1
        assert_allclose(res.pvalue, 0.1, atol=5e-3)

    def test_against_anderson_case_2(self):
        # "Case 2" is where loc is known and scale is fit [1]
        rng = np.random.default_rng(726693985720914083)
        x = np.arange(1, 101)
        # loc that produced critical value of statistic found w/ root_scalar
        known_params = {'loc': 44.5680212261933}
        res = goodness_of_fit(stats.norm, x, known_params=known_params,
                              statistic='ad', rng=rng)
        assert_allclose(res.statistic, 2.904)  # See [1] Table 1B 1.2
        assert_allclose(res.pvalue, 0.025, atol=5e-3)

    def test_against_anderson_case_3(self):
        # "Case 3" is where both loc and scale are fit [1]
        rng = np.random.default_rng(6763691329830218206)
        # c that produced critical value of statistic found w/ root_scalar
        x = stats.skewnorm.rvs(1.4477847789132101, loc=1, scale=2, size=100,
                               random_state=rng)
        res = goodness_of_fit(stats.norm, x, statistic='ad', rng=rng)
        assert_allclose(res.statistic, 0.559)  # See [1] Table 1B 1.2
        assert_allclose(res.pvalue, 0.15, atol=5e-3)

    @pytest.mark.xslow
    def test_against_anderson_gumbel_r(self):
        rng = np.random.default_rng(7302761058217743)
        # c that produced critical value of statistic found w/ root_scalar
        x = stats.genextreme(0.051896837188595134, loc=0.5,
                             scale=1.5).rvs(size=1000, random_state=rng)
        res = goodness_of_fit(stats.gumbel_r, x, statistic='ad',
                              rng=rng)
        ref = stats.anderson(x, dist='gumbel_r')
        assert_allclose(res.statistic, ref.critical_values[0])
        assert_allclose(res.pvalue, ref.significance_level[0]/100, atol=5e-3)

    def test_against_filliben_norm(self):
        # Test against `stats.fit` ref. [7] Section 8 "Example"
        rng = np.random.default_rng(8024266430745011915)
        y = [6, 1, -4, 8, -2, 5, 0]
        known_params = {'loc': 0, 'scale': 1}
        res = stats.goodness_of_fit(stats.norm, y, known_params=known_params,
                                    statistic="filliben", rng=rng)
        # Slight discrepancy presumably due to roundoff in Filliben's
        # calculation. Using exact order statistic medians instead of
        # Filliben's approximation doesn't account for it.
        assert_allclose(res.statistic, 0.98538, atol=1e-4)
        assert 0.75 < res.pvalue < 0.9

        # Using R's ppcc library:
        # library(ppcc)
        # options(digits=16)
        # x < - c(6, 1, -4, 8, -2, 5, 0)
        # set.seed(100)
        # ppccTest(x, "qnorm", ppos="Filliben")
        # Discrepancy with
        assert_allclose(res.statistic, 0.98540957187084, rtol=2e-5)
        assert_allclose(res.pvalue, 0.8875, rtol=2e-3)

    def test_filliben_property(self):
        # Filliben's statistic should be independent of data location and scale
        rng = np.random.default_rng(8535677809395478813)
        x = rng.normal(loc=10, scale=0.5, size=100)
        res = stats.goodness_of_fit(stats.norm, x,
                                    statistic="filliben", rng=rng)
        known_params = {'loc': 0, 'scale': 1}
        ref = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
                                    statistic="filliben", rng=rng)
        assert_allclose(res.statistic, ref.statistic, rtol=1e-15)

    @pytest.mark.parametrize('case', [(25, [.928, .937, .950, .958, .966]),
                                      (50, [.959, .965, .972, .977, .981]),
                                      (95, [.977, .979, .983, .986, .989])])
    def test_against_filliben_norm_table(self, case):
        # Test against `stats.fit` ref. [7] Table 1
        rng = np.random.default_rng(504569995557928957)
        n, ref = case
        x = rng.random(n)
        known_params = {'loc': 0, 'scale': 1}
        res = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
                                    statistic="filliben", rng=rng)
        percentiles = np.array([0.005, 0.01, 0.025, 0.05, 0.1])
        res = stats.scoreatpercentile(res.null_distribution, percentiles*100)
        assert_allclose(res, ref, atol=2e-3)

    @pytest.mark.xslow
    @pytest.mark.parametrize('case', [(5, 0.95772790260469, 0.4755),
                                      (6, 0.95398832257958, 0.3848),
                                      (7, 0.9432692889277, 0.2328)])
    def test_against_ppcc(self, case):
        # Test against R ppcc, e.g.
        # library(ppcc)
        # options(digits=16)
        # x < - c(0.52325412, 1.06907699, -0.36084066, 0.15305959, 0.99093194)
        # set.seed(100)
        # ppccTest(x, "qrayleigh", ppos="Filliben")
        n, ref_statistic, ref_pvalue = case
        rng = np.random.default_rng(7777775561439803116)
        x = rng.normal(size=n)
        res = stats.goodness_of_fit(stats.rayleigh, x, statistic="filliben",
                                    rng=rng)
        assert_allclose(res.statistic, ref_statistic, rtol=1e-4)
        assert_allclose(res.pvalue, ref_pvalue, atol=1.5e-2)

    def test_params_effects(self):
        # Ensure that `guessed_params`, `fit_params`, and `known_params` have
        # the intended effects.
        rng = np.random.default_rng(9121950977643805391)
        x = stats.skewnorm.rvs(-5.044559778383153, loc=1, scale=2, size=50,
                               random_state=rng)

        # Show that `guessed_params` don't fit to the guess,
        # but `fit_params` and `known_params` respect the provided fit
        guessed_params = {'c': 13.4}
        fit_params = {'scale': 13.73}
        known_params = {'loc': -13.85}
        rng = np.random.default_rng(9121950977643805391)
        res1 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2,
                               guessed_params=guessed_params,
                               fit_params=fit_params,
                               known_params=known_params, rng=rng)
        assert not np.allclose(res1.fit_result.params.c, 13.4)
        assert_equal(res1.fit_result.params.scale, 13.73)
        assert_equal(res1.fit_result.params.loc, -13.85)

        # Show that changing the guess changes the parameter that gets fit,
        # and it changes the null distribution
        guessed_params = {'c': 2}
        rng = np.random.default_rng(9121950977643805391)
        res2 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2,
                               guessed_params=guessed_params,
                               fit_params=fit_params,
                               known_params=known_params, rng=rng)
        assert not np.allclose(res2.fit_result.params.c,
                               res1.fit_result.params.c, rtol=1e-8)
        assert not np.allclose(res2.null_distribution,
                               res1.null_distribution, rtol=1e-8)
        assert_equal(res2.fit_result.params.scale, 13.73)
        assert_equal(res2.fit_result.params.loc, -13.85)

        # If we set all parameters as fit_params and known_params,
        # they're all fixed to those values, but the null distribution
        # varies.
        fit_params = {'c': 13.4, 'scale': 13.73}
        rng = np.random.default_rng(9121950977643805391)
        res3 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2,
                               guessed_params=guessed_params,
                               fit_params=fit_params,
                               known_params=known_params, rng=rng)
        assert_equal(res3.fit_result.params.c, 13.4)
        assert_equal(res3.fit_result.params.scale, 13.73)
        assert_equal(res3.fit_result.params.loc, -13.85)
        assert not np.allclose(res3.null_distribution, res1.null_distribution)

    def test_custom_statistic(self):
        # Test support for custom statistic function.

        # References:
        # [1] Pyke, R. (1965).  "Spacings".  Journal of the Royal Statistical
        #     Society: Series B (Methodological), 27(3): 395-436.
        # [2] Burrows, P. M. (1979).  "Selected Percentage Points of
        #     Greenwood's Statistics".  Journal of the Royal Statistical
        #     Society. Series A (General), 142(2): 256-258.

        # Use the Greenwood statistic for illustration; see [1, p.402].
        def greenwood(dist, data, *, axis):
            x = np.sort(data, axis=axis)
            y = dist.cdf(x)
            d = np.diff(y, axis=axis, prepend=0, append=1)
            return np.sum(d ** 2, axis=axis)

        # Run the Monte Carlo test with sample size = 5 on a fully specified
        # null distribution, and compare the simulated quantiles to the exact
        # ones given in [2, Table 1, column (n = 5)].
        rng = np.random.default_rng(9121950977643805391)
        data = stats.expon.rvs(size=5, random_state=rng)
        result = goodness_of_fit(stats.expon, data,
                                 known_params={'loc': 0, 'scale': 1},
                                 statistic=greenwood, rng=rng)
        p = [.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99]
        exact_quantiles = [
            .183863, .199403, .210088, .226040, .239947, .253677, .268422,
            .285293, .306002, .334447, .382972, .432049, .547468]
        simulated_quantiles = np.quantile(result.null_distribution, p)
        assert_allclose(simulated_quantiles, exact_quantiles, atol=0.005)

class TestFitResult:
    def test_plot_iv(self):
        rng = np.random.default_rng(1769658657308472721)
        data = stats.norm.rvs(0, 1, size=100, random_state=rng)

        def optimizer(*args, **kwargs):
            return differential_evolution(*args, **kwargs, rng=rng)

        bounds = [(0, 30), (0, 1)]
        res = stats.fit(stats.norm, data, bounds, optimizer=optimizer)
        try:
            import matplotlib  # noqa: F401
            message = r"`plot_type` must be one of \{'..."
            with pytest.raises(ValueError, match=message):
                res.plot(plot_type='llama')
        except (ModuleNotFoundError, ImportError):
            message = r"matplotlib must be installed to use method `plot`."
            with pytest.raises(ModuleNotFoundError, match=message):
                res.plot(plot_type='llama')