File size: 48,875 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 |
import os
import numpy as np
import numpy.testing as npt
from numpy.testing import assert_allclose, assert_equal
import pytest
from scipy import stats
from scipy.optimize import differential_evolution
from .test_continuous_basic import distcont
from scipy.stats._distn_infrastructure import FitError
from scipy.stats._distr_params import distdiscrete
from scipy.stats import goodness_of_fit
# this is not a proper statistical test for convergence, but only
# verifies that the estimate and true values don't differ by too much
fit_sizes = [1000, 5000, 10000] # sample sizes to try
thresh_percent = 0.25 # percent of true parameters for fail cut-off
thresh_min = 0.75 # minimum difference estimate - true to fail test
mle_failing_fits = [
'dpareto_lognorm',
'gausshyper',
'genexpon',
'gengamma',
'irwinhall',
'kappa4',
'ksone',
'kstwo',
'ncf',
'ncx2',
'truncexpon',
'tukeylambda',
'vonmises',
'levy_stable',
'trapezoid',
'truncweibull_min',
'studentized_range',
]
# these pass but are XSLOW (>1s)
mle_Xslow_fits = ['betaprime', 'crystalball', 'exponweib', 'f', 'geninvgauss',
'jf_skew_t', 'recipinvgauss', 'rel_breitwigner', 'vonmises_line']
# The MLE fit method of these distributions doesn't perform well when all
# parameters are fit, so test them with the location fixed at 0.
mle_use_floc0 = [
'burr',
'chi',
'chi2',
'mielke',
'pearson3',
'genhalflogistic',
'rdist',
'pareto',
'powerlaw', # distfn.nnlf(est2, rvs) > distfn.nnlf(est1, rvs) otherwise
'powerlognorm',
'wrapcauchy',
'rel_breitwigner',
]
mm_failing_fits = ['alpha', 'betaprime', 'burr', 'burr12', 'cauchy', 'chi',
'chi2', 'crystalball', 'dgamma', 'dpareto_lognorm', 'dweibull',
'f', 'fatiguelife', 'fisk', 'foldcauchy', 'genextreme',
'gengamma', 'genhyperbolic', 'gennorm', 'genpareto',
'halfcauchy', 'invgamma', 'invweibull', 'irwinhall', 'jf_skew_t',
'johnsonsu', 'kappa3', 'ksone', 'kstwo', 'landau', 'levy', 'levy_l',
'levy_stable', 'loglaplace', 'lomax', 'mielke', 'nakagami',
'ncf', 'nct', 'ncx2', 'pareto', 'powerlognorm', 'powernorm',
'rel_breitwigner', 'skewcauchy', 't', 'trapezoid', 'triang',
'truncpareto', 'truncweibull_min', 'tukeylambda',
'studentized_range']
# not sure if these fail, but they caused my patience to fail
mm_XXslow_fits = ['argus', 'exponpow', 'exponweib', 'gausshyper', 'genexpon',
'genhalflogistic', 'halfgennorm', 'gompertz', 'johnsonsb',
'kappa4', 'kstwobign', 'recipinvgauss',
'truncexpon', 'vonmises', 'vonmises_line']
# these pass but are XSLOW (>1s)
mm_Xslow_fits = ['wrapcauchy']
failing_fits = {"MM": mm_failing_fits + mm_XXslow_fits, "MLE": mle_failing_fits}
xslow_fits = {"MM": mm_Xslow_fits, "MLE": mle_Xslow_fits}
fail_interval_censored = {"truncpareto"}
# Don't run the fit test on these:
skip_fit = [
'erlang', # Subclass of gamma, generates a warning.
'genhyperbolic', 'norminvgauss', # too slow
]
def cases_test_cont_fit():
# this tests the closeness of the estimated parameters to the true
# parameters with fit method of continuous distributions
# Note: is slow, some distributions don't converge with sample
# size <= 10000
for distname, arg in distcont:
if distname not in skip_fit:
yield distname, arg
@pytest.mark.slow
@pytest.mark.parametrize('distname,arg', cases_test_cont_fit())
@pytest.mark.parametrize('method', ["MLE", "MM"])
def test_cont_fit(distname, arg, method):
run_xfail = int(os.getenv('SCIPY_XFAIL', default=False))
run_xslow = int(os.getenv('SCIPY_XSLOW', default=False))
if distname in failing_fits[method] and not run_xfail:
# The generic `fit` method can't be expected to work perfectly for all
# distributions, data, and guesses. Some failures are expected.
msg = "Failure expected; set environment variable SCIPY_XFAIL=1 to run."
pytest.xfail(msg)
if distname in xslow_fits[method] and not run_xslow:
msg = "Very slow; set environment variable SCIPY_XSLOW=1 to run."
pytest.skip(msg)
distfn = getattr(stats, distname)
truearg = np.hstack([arg, [0.0, 1.0]])
diffthreshold = np.max(np.vstack([truearg*thresh_percent,
np.full(distfn.numargs+2, thresh_min)]),
0)
for fit_size in fit_sizes:
# Note that if a fit succeeds, the other fit_sizes are skipped
np.random.seed(1234)
with np.errstate(all='ignore'):
rvs = distfn.rvs(size=fit_size, *arg)
if method == 'MLE' and distfn.name in mle_use_floc0:
kwds = {'floc': 0}
else:
kwds = {}
# start with default values
est = distfn.fit(rvs, method=method, **kwds)
if method == 'MLE':
# Trivial test of the use of CensoredData. The fit() method
# will check that data contains no actual censored data, and
# do a regular uncensored fit.
data1 = stats.CensoredData(rvs)
est1 = distfn.fit(data1, **kwds)
msg = ('Different results fitting uncensored data wrapped as'
f' CensoredData: {distfn.name}: est={est} est1={est1}')
assert_allclose(est1, est, rtol=1e-10, err_msg=msg)
if method == 'MLE' and distname not in fail_interval_censored:
# Convert the first `nic` values in rvs to interval-censored
# values. The interval is small, so est2 should be close to
# est.
nic = 15
interval = np.column_stack((rvs, rvs))
interval[:nic, 0] *= 0.99
interval[:nic, 1] *= 1.01
interval.sort(axis=1)
data2 = stats.CensoredData(interval=interval)
est2 = distfn.fit(data2, **kwds)
msg = ('Different results fitting interval-censored'
f' data: {distfn.name}: est={est} est2={est2}')
assert_allclose(est2, est, rtol=0.05, err_msg=msg)
diff = est - truearg
# threshold for location
diffthreshold[-2] = np.max([np.abs(rvs.mean())*thresh_percent,
thresh_min])
if np.any(np.isnan(est)):
raise AssertionError('nan returned in fit')
else:
if np.all(np.abs(diff) <= diffthreshold):
break
else:
txt = f'parameter: {str(truearg)}\n'
txt += f'estimated: {str(est)}\n'
txt += f'diff : {str(diff)}\n'
raise AssertionError(f'fit not very good in {distfn.name}\n' + txt)
def _check_loc_scale_mle_fit(name, data, desired, atol=None):
d = getattr(stats, name)
actual = d.fit(data)[-2:]
assert_allclose(actual, desired, atol=atol,
err_msg=f'poor mle fit of (loc, scale) in {name}')
def test_non_default_loc_scale_mle_fit():
data = np.array([1.01, 1.78, 1.78, 1.78, 1.88, 1.88, 1.88, 2.00])
_check_loc_scale_mle_fit('uniform', data, [1.01, 0.99], 1e-3)
_check_loc_scale_mle_fit('expon', data, [1.01, 0.73875], 1e-3)
def test_expon_fit():
"""gh-6167"""
data = [0, 0, 0, 0, 2, 2, 2, 2]
phat = stats.expon.fit(data, floc=0)
assert_allclose(phat, [0, 1.0], atol=1e-3)
def test_fit_error():
data = np.concatenate([np.zeros(29), np.ones(21)])
message = "Optimization converged to parameters that are..."
with pytest.raises(FitError, match=message), \
pytest.warns(RuntimeWarning):
stats.beta.fit(data)
@pytest.mark.parametrize("dist, params",
[(stats.norm, (0.5, 2.5)), # type: ignore[attr-defined]
(stats.binom, (10, 0.3, 2))]) # type: ignore[attr-defined]
def test_nnlf_and_related_methods(dist, params):
rng = np.random.default_rng(983459824)
if hasattr(dist, 'pdf'):
logpxf = dist.logpdf
else:
logpxf = dist.logpmf
x = dist.rvs(*params, size=100, random_state=rng)
ref = -logpxf(x, *params).sum()
res1 = dist.nnlf(params, x)
res2 = dist._penalized_nnlf(params, x)
assert_allclose(res1, ref)
assert_allclose(res2, ref)
def cases_test_fit_mle():
# These fail default test or hang
skip_basic_fit = {'argus', 'irwinhall', 'foldnorm', 'truncpareto',
'truncweibull_min', 'ksone', 'levy_stable',
'studentized_range', 'kstwo',
'beta', 'nakagami', 'truncnorm', # don't meet tolerance
'poisson_binom'} # vector-valued shape parameter
# Please keep this list in alphabetical order...
slow_basic_fit = {'alpha', 'arcsine', 'betaprime', 'binom', 'bradford', 'burr12',
'chi', 'crystalball', 'dweibull', 'erlang', 'exponnorm',
'exponpow', 'f', 'fatiguelife', 'fisk', 'foldcauchy', 'gamma',
'genexpon', 'genextreme', 'gennorm', 'genpareto',
'gompertz', 'halfgennorm', 'invgamma', 'invgauss', 'invweibull',
'jf_skew_t', 'johnsonsb', 'johnsonsu', 'kappa3',
'kstwobign', 'loglaplace', 'lognorm', 'lomax', 'mielke',
'nbinom', 'norminvgauss',
'pareto', 'pearson3', 'powerlaw', 'powernorm',
'randint', 'rdist', 'recipinvgauss', 'rice', 'skewnorm',
't', 'uniform', 'weibull_max', 'weibull_min', 'wrapcauchy'}
# Please keep this list in alphabetical order...
xslow_basic_fit = {'betabinom', 'betanbinom', 'burr', 'dpareto_lognorm',
'exponweib', 'gausshyper', 'gengamma', 'genhalflogistic',
'genhyperbolic', 'geninvgauss',
'hypergeom', 'kappa4', 'loguniform',
'ncf', 'nchypergeom_fisher', 'nchypergeom_wallenius',
'nct', 'ncx2', 'nhypergeom',
'powerlognorm', 'reciprocal', 'rel_breitwigner',
'skellam', 'trapezoid', 'triang',
'tukeylambda', 'vonmises', 'zipfian'}
for dist in dict(distdiscrete + distcont):
if dist in skip_basic_fit or not isinstance(dist, str):
reason = "tested separately"
yield pytest.param(dist, marks=pytest.mark.skip(reason=reason))
elif dist in slow_basic_fit:
reason = "too slow (>= 0.25s)"
yield pytest.param(dist, marks=pytest.mark.slow(reason=reason))
elif dist in xslow_basic_fit:
reason = "too slow (>= 1.0s)"
yield pytest.param(dist, marks=pytest.mark.xslow(reason=reason))
else:
yield dist
def cases_test_fit_mse():
# the first four are so slow that I'm not sure whether they would pass
skip_basic_fit = {'levy_stable', 'studentized_range', 'ksone', 'skewnorm',
'irwinhall', # hangs
'norminvgauss', # super slow (~1 hr) but passes
'kstwo', # very slow (~25 min) but passes
'geninvgauss', # quite slow (~4 minutes) but passes
'gausshyper', 'genhyperbolic', # integration warnings
'tukeylambda', # close, but doesn't meet tolerance
'vonmises', # can have negative CDF; doesn't play nice
'arcsine', 'argus', 'powerlaw', 'rdist', # don't meet tolerance
'poisson_binom', # vector-valued shape parameter
}
# Please keep this list in alphabetical order...
slow_basic_fit = {'alpha', 'anglit', 'betabinom', 'bradford',
'chi', 'chi2', 'crystalball', 'dweibull',
'erlang', 'exponnorm', 'exponpow', 'exponweib',
'fatiguelife', 'fisk', 'foldcauchy', 'foldnorm',
'gamma', 'genexpon', 'genextreme', 'genhalflogistic',
'genlogistic', 'genpareto', 'gompertz',
'hypergeom', 'invweibull',
'johnsonsu', 'kappa3', 'kstwobign',
'laplace_asymmetric', 'loggamma', 'loglaplace',
'lognorm', 'lomax',
'maxwell', 'nhypergeom',
'pareto', 'powernorm', 'randint', 'recipinvgauss',
'semicircular',
't', 'triang', 'truncexpon', 'truncpareto',
'uniform',
'wald', 'weibull_max', 'weibull_min', 'wrapcauchy'}
# Please keep this list in alphabetical order...
xslow_basic_fit = {'argus', 'beta', 'betaprime', 'burr', 'burr12',
'dgamma', 'dpareto_lognorm', 'f', 'gengamma', 'gennorm',
'halfgennorm', 'invgamma', 'invgauss', 'jf_skew_t',
'johnsonsb', 'kappa4', 'loguniform', 'mielke',
'nakagami', 'ncf', 'nchypergeom_fisher',
'nchypergeom_wallenius', 'nct', 'ncx2',
'pearson3', 'powerlognorm',
'reciprocal', 'rel_breitwigner', 'rice',
'trapezoid', 'truncnorm', 'truncweibull_min',
'vonmises_line', 'zipfian'}
warns_basic_fit = {'skellam'} # can remove mark after gh-14901 is resolved
for dist in dict(distdiscrete + distcont):
if dist in skip_basic_fit or not isinstance(dist, str):
reason = "Fails. Oh well."
yield pytest.param(dist, marks=pytest.mark.skip(reason=reason))
elif dist in slow_basic_fit:
reason = "too slow (>= 0.25s)"
yield pytest.param(dist, marks=pytest.mark.slow(reason=reason))
elif dist in xslow_basic_fit:
reason = "too slow (>= 1.0s)"
yield pytest.param(dist, marks=pytest.mark.xslow(reason=reason))
elif dist in warns_basic_fit:
mark = pytest.mark.filterwarnings('ignore::RuntimeWarning')
yield pytest.param(dist, marks=mark)
else:
yield dist
def cases_test_fitstart():
for distname, shapes in dict(distcont).items():
if (not isinstance(distname, str) or
distname in {'studentized_range', 'recipinvgauss'}): # slow
continue
yield distname, shapes
@pytest.mark.parametrize('distname, shapes', cases_test_fitstart())
def test_fitstart(distname, shapes):
dist = getattr(stats, distname)
rng = np.random.default_rng(216342614)
data = rng.random(10)
with np.errstate(invalid='ignore', divide='ignore'): # irrelevant to test
guess = dist._fitstart(data)
assert dist._argcheck(*guess[:-2])
def assert_nlff_less_or_close(dist, data, params1, params0, rtol=1e-7, atol=0,
nlff_name='nnlf'):
nlff = getattr(dist, nlff_name)
nlff1 = nlff(params1, data)
nlff0 = nlff(params0, data)
if not (nlff1 < nlff0):
np.testing.assert_allclose(nlff1, nlff0, rtol=rtol, atol=atol)
class TestFit:
dist = stats.binom # type: ignore[attr-defined]
seed = 654634816187
rng = np.random.default_rng(seed)
data = stats.binom.rvs(5, 0.5, size=100, random_state=rng) # type: ignore[attr-defined] # noqa: E501
shape_bounds_a = [(1, 10), (0, 1)]
shape_bounds_d = {'n': (1, 10), 'p': (0, 1)}
atol = 5e-2
rtol = 1e-2
tols = {'atol': atol, 'rtol': rtol}
def opt(self, *args, rng=1, **kwds):
return differential_evolution(*args, rng=rng, **kwds)
def test_dist_iv(self):
message = "`dist` must be an instance of..."
with pytest.raises(ValueError, match=message):
stats.fit(10, self.data, self.shape_bounds_a)
def test_data_iv(self):
message = "`data` must be exactly one-dimensional."
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, [[1, 2, 3]], self.shape_bounds_a)
message = "All elements of `data` must be finite numbers."
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, [1, 2, 3, np.nan], self.shape_bounds_a)
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, [1, 2, 3, np.inf], self.shape_bounds_a)
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, ['1', '2', '3'], self.shape_bounds_a)
def test_bounds_iv(self):
message = "Bounds provided for the following unrecognized..."
shape_bounds = {'n': (1, 10), 'p': (0, 1), '1': (0, 10)}
with pytest.warns(RuntimeWarning, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "Each element of a `bounds` sequence must be a tuple..."
shape_bounds = [(1, 10, 3), (0, 1)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "Each element of `bounds` must be a tuple specifying..."
shape_bounds = [(1, 10, 3), (0, 1, 0.5)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
shape_bounds = [1, 0]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "A `bounds` sequence must contain at least 2 elements..."
shape_bounds = [(1, 10)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "A `bounds` sequence may not contain more than 3 elements..."
bounds = [(1, 10), (1, 10), (1, 10), (1, 10)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, bounds)
message = "There are no values for `p` on the interval..."
shape_bounds = {'n': (1, 10), 'p': (1, 0)}
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "There are no values for `n` on the interval..."
shape_bounds = [(10, 1), (0, 1)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "There are no integer values for `n` on the interval..."
shape_bounds = [(1.4, 1.6), (0, 1)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
message = "The intersection of user-provided bounds for `n`"
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data)
shape_bounds = [(-np.inf, np.inf), (0, 1)]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, shape_bounds)
def test_guess_iv(self):
message = "Guesses provided for the following unrecognized..."
guess = {'n': 1, 'p': 0.5, '1': 255}
with pytest.warns(RuntimeWarning, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "Each element of `guess` must be a scalar..."
guess = {'n': 1, 'p': 'hi'}
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
guess = [1, 'f']
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
guess = [[1, 2]]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "A `guess` sequence must contain at least 2..."
guess = [1]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "A `guess` sequence may not contain more than 3..."
guess = [1, 2, 3, 4]
with pytest.raises(ValueError, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "Guess for parameter `n` rounded.*|Guess for parameter `p` clipped.*"
guess = {'n': 4.5, 'p': -0.5}
with pytest.warns(RuntimeWarning, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "Guess for parameter `loc` rounded..."
guess = [5, 0.5, 0.5]
with pytest.warns(RuntimeWarning, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "Guess for parameter `p` clipped..."
guess = {'n': 5, 'p': -0.5}
with pytest.warns(RuntimeWarning, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
message = "Guess for parameter `loc` clipped..."
guess = [5, 0.5, 1]
with pytest.warns(RuntimeWarning, match=message):
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess)
def basic_fit_test(self, dist_name, method, rng=1):
N = 5000
dist_data = dict(distcont + distdiscrete)
rng = np.random.default_rng(self.seed)
dist = getattr(stats, dist_name)
shapes = np.array(dist_data[dist_name])
bounds = np.empty((len(shapes) + 2, 2), dtype=np.float64)
bounds[:-2, 0] = shapes/10.**np.sign(shapes)
bounds[:-2, 1] = shapes*10.**np.sign(shapes)
bounds[-2] = (0, 10)
bounds[-1] = (1e-16, 10)
loc = rng.uniform(*bounds[-2])
scale = rng.uniform(*bounds[-1])
ref = list(dist_data[dist_name]) + [loc, scale]
if getattr(dist, 'pmf', False):
ref = ref[:-1]
ref[-1] = np.floor(loc)
data = dist.rvs(*ref, size=N, random_state=rng)
bounds = bounds[:-1]
if getattr(dist, 'pdf', False):
data = dist.rvs(*ref, size=N, random_state=rng)
with npt.suppress_warnings() as sup:
sup.filter(RuntimeWarning, "overflow encountered")
res = stats.fit(dist, data, bounds, method=method,
optimizer=self.opt)
nlff_names = {'mle': 'nnlf', 'mse': '_penalized_nlpsf'}
nlff_name = nlff_names[method]
assert_nlff_less_or_close(dist, data, res.params, ref, **self.tols,
nlff_name=nlff_name)
@pytest.mark.parametrize("dist_name", cases_test_fit_mle())
def test_basic_fit_mle(self, dist_name):
self.basic_fit_test(dist_name, "mle", rng=5)
@pytest.mark.parametrize("dist_name", cases_test_fit_mse())
def test_basic_fit_mse(self, dist_name):
self.basic_fit_test(dist_name, "mse", rng=2)
@pytest.mark.slow
def test_arcsine(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.arcsine
shapes = (1., 2.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = {'loc': (0.1, 10), 'scale': (0.1, 10)}
res = stats.fit(dist, data, shape_bounds, method='mse', optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes,
nlff_name='_penalized_nlpsf', **self.tols)
@pytest.mark.parametrize("method", ('mle', 'mse'))
def test_argus(self, method):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.argus
shapes = (1., 2., 3.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = {'chi': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt, method=method)
nlff_name = {'mle': 'nnlf', 'mse': '_penalized_nlpsf'}[method]
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols,
nlff_name=nlff_name)
@pytest.mark.xslow
def test_beta(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.beta
shapes = (2.3098496451481823, 0.62687954300963677, 1., 2.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = {'a': (0.1, 10), 'b':(0.1, 10),
'loc': (0.1, 10), 'scale': (0.1, 10)}
res = stats.fit(dist, data, shape_bounds, method='mle', optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes,
nlff_name='nnlf', **self.tols)
def test_foldnorm(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.foldnorm
shapes = (1.952125337355587, 2., 3.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = {'c': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols)
def test_nakagami(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.nakagami
shapes = (4.9673794866666237, 1., 2.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = {'nu':(0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
res = stats.fit(dist, data, shape_bounds, method='mle', optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes,
nlff_name='nnlf', **self.tols)
@pytest.mark.slow
def test_powerlaw(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.powerlaw
shapes = (1.6591133289905851, 1., 2.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = {'a': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)}
res = stats.fit(dist, data, shape_bounds, method='mse', optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes,
nlff_name='_penalized_nlpsf', **self.tols)
def test_truncpareto(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.truncpareto
shapes = (1.8, 5.3, 2.3, 4.1)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = [(0.1, 10)]*4
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols)
@pytest.mark.slow
def test_truncweibull_min(self):
# Can't guarantee that all distributions will fit all data with
# arbitrary bounds. This distribution just happens to fail above.
# Try something slightly different.
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.truncweibull_min
shapes = (2.5, 0.25, 1.75, 2., 3.)
data = dist.rvs(*shapes, size=N, random_state=rng)
shape_bounds = [(0.1, 10)]*5
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols)
def test_missing_shape_bounds(self):
# some distributions have a small domain w.r.t. a parameter, e.g.
# $p \in [0, 1]$ for binomial distribution
# User does not need to provide these because the intersection of the
# user's bounds (none) and the distribution's domain is finite
N = 1000
rng = np.random.default_rng(self.seed)
dist = stats.binom
n, p, loc = 10, 0.65, 0
data = dist.rvs(n, p, loc=loc, size=N, random_state=rng)
shape_bounds = {'n': np.array([0, 20])} # check arrays are OK, too
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
assert_allclose(res.params, (n, p, loc), **self.tols)
dist = stats.bernoulli
p, loc = 0.314159, 0
data = dist.rvs(p, loc=loc, size=N, random_state=rng)
res = stats.fit(dist, data, optimizer=self.opt)
assert_allclose(res.params, (p, loc), **self.tols)
def test_fit_only_loc_scale(self):
# fit only loc
N = 5000
rng = np.random.default_rng(self.seed)
dist = stats.norm
loc, scale = 1.5, 1
data = dist.rvs(loc=loc, size=N, random_state=rng)
loc_bounds = (0, 5)
bounds = {'loc': loc_bounds}
res = stats.fit(dist, data, bounds, optimizer=self.opt)
assert_allclose(res.params, (loc, scale), **self.tols)
# fit only scale
loc, scale = 0, 2.5
data = dist.rvs(scale=scale, size=N, random_state=rng)
scale_bounds = (0.01, 5)
bounds = {'scale': scale_bounds}
res = stats.fit(dist, data, bounds, optimizer=self.opt)
assert_allclose(res.params, (loc, scale), **self.tols)
# fit only loc and scale
dist = stats.norm
loc, scale = 1.5, 2.5
data = dist.rvs(loc=loc, scale=scale, size=N, random_state=rng)
bounds = {'loc': loc_bounds, 'scale': scale_bounds}
res = stats.fit(dist, data, bounds, optimizer=self.opt)
assert_allclose(res.params, (loc, scale), **self.tols)
def test_everything_fixed(self):
N = 5000
rng = np.random.default_rng(self.seed)
dist = stats.norm
loc, scale = 1.5, 2.5
data = dist.rvs(loc=loc, scale=scale, size=N, random_state=rng)
# loc, scale fixed to 0, 1 by default
res = stats.fit(dist, data)
assert_allclose(res.params, (0, 1), **self.tols)
# loc, scale explicitly fixed
bounds = {'loc': (loc, loc), 'scale': (scale, scale)}
res = stats.fit(dist, data, bounds)
assert_allclose(res.params, (loc, scale), **self.tols)
# `n` gets fixed during polishing
dist = stats.binom
n, p, loc = 10, 0.65, 0
data = dist.rvs(n, p, loc=loc, size=N, random_state=rng)
shape_bounds = {'n': (0, 20), 'p': (0.65, 0.65)}
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt)
assert_allclose(res.params, (n, p, loc), **self.tols)
def test_failure(self):
N = 5000
rng = np.random.default_rng(self.seed)
dist = stats.nbinom
shapes = (5, 0.5)
data = dist.rvs(*shapes, size=N, random_state=rng)
assert data.min() == 0
# With lower bounds on location at 0.5, likelihood is zero
bounds = [(0, 30), (0, 1), (0.5, 10)]
res = stats.fit(dist, data, bounds)
message = "Optimization converged to parameter values that are"
assert res.message.startswith(message)
assert res.success is False
@pytest.mark.xslow
def test_guess(self):
# Test that guess helps DE find the desired solution
N = 2000
# With some seeds, `fit` doesn't need a guess
rng = np.random.default_rng(196390444561)
dist = stats.nhypergeom
params = (20, 7, 12, 0)
bounds = [(2, 200), (0.7, 70), (1.2, 120), (0, 10)]
data = dist.rvs(*params, size=N, random_state=rng)
res = stats.fit(dist, data, bounds, optimizer=self.opt)
assert not np.allclose(res.params, params, **self.tols)
res = stats.fit(dist, data, bounds, guess=params, optimizer=self.opt)
assert_allclose(res.params, params, **self.tols)
def test_mse_accuracy_1(self):
# Test maximum spacing estimation against example from Wikipedia
# https://en.wikipedia.org/wiki/Maximum_spacing_estimation#Examples
data = [2, 4]
dist = stats.expon
bounds = {'loc': (0, 0), 'scale': (1e-8, 10)}
res_mle = stats.fit(dist, data, bounds=bounds, method='mle')
assert_allclose(res_mle.params.scale, 3, atol=1e-3)
res_mse = stats.fit(dist, data, bounds=bounds, method='mse')
assert_allclose(res_mse.params.scale, 3.915, atol=1e-3)
def test_mse_accuracy_2(self):
# Test maximum spacing estimation against example from Wikipedia
# https://en.wikipedia.org/wiki/Maximum_spacing_estimation#Examples
rng = np.random.default_rng(9843212616816518964)
dist = stats.uniform
n = 10
data = dist(3, 6).rvs(size=n, random_state=rng)
bounds = {'loc': (0, 10), 'scale': (1e-8, 10)}
res = stats.fit(dist, data, bounds=bounds, method='mse')
# (loc=3.608118420015416, scale=5.509323262055043)
x = np.sort(data)
a = (n*x[0] - x[-1])/(n - 1)
b = (n*x[-1] - x[0])/(n - 1)
ref = a, b-a # (3.6081133632151503, 5.509328130317254)
assert_allclose(res.params, ref, rtol=1e-4)
# Data from Matlab: https://www.mathworks.com/help/stats/lillietest.html
examgrades = [65, 61, 81, 88, 69, 89, 55, 84, 86, 84, 71, 81, 84, 81, 78, 67,
96, 66, 73, 75, 59, 71, 69, 63, 79, 76, 63, 85, 87, 88, 80, 71,
65, 84, 71, 75, 81, 79, 64, 65, 84, 77, 70, 75, 84, 75, 73, 92,
90, 79, 80, 71, 73, 71, 58, 79, 73, 64, 77, 82, 81, 59, 54, 82,
57, 79, 79, 73, 74, 82, 63, 64, 73, 69, 87, 68, 81, 73, 83, 73,
80, 73, 73, 71, 66, 78, 64, 74, 68, 67, 75, 75, 80, 85, 74, 76,
80, 77, 93, 70, 86, 80, 81, 83, 68, 60, 85, 64, 74, 82, 81, 77,
66, 85, 75, 81, 69, 60, 83, 72]
class TestGoodnessOfFit:
def test_gof_iv(self):
dist = stats.norm
x = [1, 2, 3]
message = r"`dist` must be a \(non-frozen\) instance of..."
with pytest.raises(TypeError, match=message):
goodness_of_fit(stats.norm(), x)
message = "`data` must be a one-dimensional array of numbers."
with pytest.raises(ValueError, match=message):
goodness_of_fit(dist, [[1, 2, 3]])
message = "`statistic` must be one of..."
with pytest.raises(ValueError, match=message):
goodness_of_fit(dist, x, statistic='mm')
message = "`n_mc_samples` must be an integer."
with pytest.raises(TypeError, match=message):
goodness_of_fit(dist, x, n_mc_samples=1000.5)
message = "SeedSequence expects int or sequence"
with pytest.raises(TypeError, match=message):
goodness_of_fit(dist, x, rng='herring')
def test_against_ks(self):
rng = np.random.default_rng(8517426291317196949)
x = examgrades
known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)}
res = goodness_of_fit(stats.norm, x, known_params=known_params,
statistic='ks', rng=rng)
ref = stats.kstest(x, stats.norm(**known_params).cdf, method='exact')
assert_allclose(res.statistic, ref.statistic) # ~0.0848
assert_allclose(res.pvalue, ref.pvalue, atol=5e-3) # ~0.335
def test_against_lilliefors(self):
rng = np.random.default_rng(2291803665717442724)
x = examgrades
# preserve use of old random_state during SPEC 7 transition
res = goodness_of_fit(stats.norm, x, statistic='ks', random_state=rng)
known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)}
ref = stats.kstest(x, stats.norm(**known_params).cdf, method='exact')
assert_allclose(res.statistic, ref.statistic) # ~0.0848
assert_allclose(res.pvalue, 0.0348, atol=5e-3)
def test_against_cvm(self):
rng = np.random.default_rng(8674330857509546614)
x = examgrades
known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)}
res = goodness_of_fit(stats.norm, x, known_params=known_params,
statistic='cvm', rng=rng)
ref = stats.cramervonmises(x, stats.norm(**known_params).cdf)
assert_allclose(res.statistic, ref.statistic) # ~0.090
assert_allclose(res.pvalue, ref.pvalue, atol=5e-3) # ~0.636
def test_against_anderson_case_0(self):
# "Case 0" is where loc and scale are known [1]
rng = np.random.default_rng(7384539336846690410)
x = np.arange(1, 101)
# loc that produced critical value of statistic found w/ root_scalar
known_params = {'loc': 45.01575354024957, 'scale': 30}
res = goodness_of_fit(stats.norm, x, known_params=known_params,
statistic='ad', rng=rng)
assert_allclose(res.statistic, 2.492) # See [1] Table 1A 1.0
assert_allclose(res.pvalue, 0.05, atol=5e-3)
def test_against_anderson_case_1(self):
# "Case 1" is where scale is known and loc is fit [1]
rng = np.random.default_rng(5040212485680146248)
x = np.arange(1, 101)
# scale that produced critical value of statistic found w/ root_scalar
known_params = {'scale': 29.957112639101933}
res = goodness_of_fit(stats.norm, x, known_params=known_params,
statistic='ad', rng=rng)
assert_allclose(res.statistic, 0.908) # See [1] Table 1B 1.1
assert_allclose(res.pvalue, 0.1, atol=5e-3)
def test_against_anderson_case_2(self):
# "Case 2" is where loc is known and scale is fit [1]
rng = np.random.default_rng(726693985720914083)
x = np.arange(1, 101)
# loc that produced critical value of statistic found w/ root_scalar
known_params = {'loc': 44.5680212261933}
res = goodness_of_fit(stats.norm, x, known_params=known_params,
statistic='ad', rng=rng)
assert_allclose(res.statistic, 2.904) # See [1] Table 1B 1.2
assert_allclose(res.pvalue, 0.025, atol=5e-3)
def test_against_anderson_case_3(self):
# "Case 3" is where both loc and scale are fit [1]
rng = np.random.default_rng(6763691329830218206)
# c that produced critical value of statistic found w/ root_scalar
x = stats.skewnorm.rvs(1.4477847789132101, loc=1, scale=2, size=100,
random_state=rng)
res = goodness_of_fit(stats.norm, x, statistic='ad', rng=rng)
assert_allclose(res.statistic, 0.559) # See [1] Table 1B 1.2
assert_allclose(res.pvalue, 0.15, atol=5e-3)
@pytest.mark.xslow
def test_against_anderson_gumbel_r(self):
rng = np.random.default_rng(7302761058217743)
# c that produced critical value of statistic found w/ root_scalar
x = stats.genextreme(0.051896837188595134, loc=0.5,
scale=1.5).rvs(size=1000, random_state=rng)
res = goodness_of_fit(stats.gumbel_r, x, statistic='ad',
rng=rng)
ref = stats.anderson(x, dist='gumbel_r')
assert_allclose(res.statistic, ref.critical_values[0])
assert_allclose(res.pvalue, ref.significance_level[0]/100, atol=5e-3)
def test_against_filliben_norm(self):
# Test against `stats.fit` ref. [7] Section 8 "Example"
rng = np.random.default_rng(8024266430745011915)
y = [6, 1, -4, 8, -2, 5, 0]
known_params = {'loc': 0, 'scale': 1}
res = stats.goodness_of_fit(stats.norm, y, known_params=known_params,
statistic="filliben", rng=rng)
# Slight discrepancy presumably due to roundoff in Filliben's
# calculation. Using exact order statistic medians instead of
# Filliben's approximation doesn't account for it.
assert_allclose(res.statistic, 0.98538, atol=1e-4)
assert 0.75 < res.pvalue < 0.9
# Using R's ppcc library:
# library(ppcc)
# options(digits=16)
# x < - c(6, 1, -4, 8, -2, 5, 0)
# set.seed(100)
# ppccTest(x, "qnorm", ppos="Filliben")
# Discrepancy with
assert_allclose(res.statistic, 0.98540957187084, rtol=2e-5)
assert_allclose(res.pvalue, 0.8875, rtol=2e-3)
def test_filliben_property(self):
# Filliben's statistic should be independent of data location and scale
rng = np.random.default_rng(8535677809395478813)
x = rng.normal(loc=10, scale=0.5, size=100)
res = stats.goodness_of_fit(stats.norm, x,
statistic="filliben", rng=rng)
known_params = {'loc': 0, 'scale': 1}
ref = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
statistic="filliben", rng=rng)
assert_allclose(res.statistic, ref.statistic, rtol=1e-15)
@pytest.mark.parametrize('case', [(25, [.928, .937, .950, .958, .966]),
(50, [.959, .965, .972, .977, .981]),
(95, [.977, .979, .983, .986, .989])])
def test_against_filliben_norm_table(self, case):
# Test against `stats.fit` ref. [7] Table 1
rng = np.random.default_rng(504569995557928957)
n, ref = case
x = rng.random(n)
known_params = {'loc': 0, 'scale': 1}
res = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
statistic="filliben", rng=rng)
percentiles = np.array([0.005, 0.01, 0.025, 0.05, 0.1])
res = stats.scoreatpercentile(res.null_distribution, percentiles*100)
assert_allclose(res, ref, atol=2e-3)
@pytest.mark.xslow
@pytest.mark.parametrize('case', [(5, 0.95772790260469, 0.4755),
(6, 0.95398832257958, 0.3848),
(7, 0.9432692889277, 0.2328)])
def test_against_ppcc(self, case):
# Test against R ppcc, e.g.
# library(ppcc)
# options(digits=16)
# x < - c(0.52325412, 1.06907699, -0.36084066, 0.15305959, 0.99093194)
# set.seed(100)
# ppccTest(x, "qrayleigh", ppos="Filliben")
n, ref_statistic, ref_pvalue = case
rng = np.random.default_rng(7777775561439803116)
x = rng.normal(size=n)
res = stats.goodness_of_fit(stats.rayleigh, x, statistic="filliben",
rng=rng)
assert_allclose(res.statistic, ref_statistic, rtol=1e-4)
assert_allclose(res.pvalue, ref_pvalue, atol=1.5e-2)
def test_params_effects(self):
# Ensure that `guessed_params`, `fit_params`, and `known_params` have
# the intended effects.
rng = np.random.default_rng(9121950977643805391)
x = stats.skewnorm.rvs(-5.044559778383153, loc=1, scale=2, size=50,
random_state=rng)
# Show that `guessed_params` don't fit to the guess,
# but `fit_params` and `known_params` respect the provided fit
guessed_params = {'c': 13.4}
fit_params = {'scale': 13.73}
known_params = {'loc': -13.85}
rng = np.random.default_rng(9121950977643805391)
res1 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2,
guessed_params=guessed_params,
fit_params=fit_params,
known_params=known_params, rng=rng)
assert not np.allclose(res1.fit_result.params.c, 13.4)
assert_equal(res1.fit_result.params.scale, 13.73)
assert_equal(res1.fit_result.params.loc, -13.85)
# Show that changing the guess changes the parameter that gets fit,
# and it changes the null distribution
guessed_params = {'c': 2}
rng = np.random.default_rng(9121950977643805391)
res2 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2,
guessed_params=guessed_params,
fit_params=fit_params,
known_params=known_params, rng=rng)
assert not np.allclose(res2.fit_result.params.c,
res1.fit_result.params.c, rtol=1e-8)
assert not np.allclose(res2.null_distribution,
res1.null_distribution, rtol=1e-8)
assert_equal(res2.fit_result.params.scale, 13.73)
assert_equal(res2.fit_result.params.loc, -13.85)
# If we set all parameters as fit_params and known_params,
# they're all fixed to those values, but the null distribution
# varies.
fit_params = {'c': 13.4, 'scale': 13.73}
rng = np.random.default_rng(9121950977643805391)
res3 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2,
guessed_params=guessed_params,
fit_params=fit_params,
known_params=known_params, rng=rng)
assert_equal(res3.fit_result.params.c, 13.4)
assert_equal(res3.fit_result.params.scale, 13.73)
assert_equal(res3.fit_result.params.loc, -13.85)
assert not np.allclose(res3.null_distribution, res1.null_distribution)
def test_custom_statistic(self):
# Test support for custom statistic function.
# References:
# [1] Pyke, R. (1965). "Spacings". Journal of the Royal Statistical
# Society: Series B (Methodological), 27(3): 395-436.
# [2] Burrows, P. M. (1979). "Selected Percentage Points of
# Greenwood's Statistics". Journal of the Royal Statistical
# Society. Series A (General), 142(2): 256-258.
# Use the Greenwood statistic for illustration; see [1, p.402].
def greenwood(dist, data, *, axis):
x = np.sort(data, axis=axis)
y = dist.cdf(x)
d = np.diff(y, axis=axis, prepend=0, append=1)
return np.sum(d ** 2, axis=axis)
# Run the Monte Carlo test with sample size = 5 on a fully specified
# null distribution, and compare the simulated quantiles to the exact
# ones given in [2, Table 1, column (n = 5)].
rng = np.random.default_rng(9121950977643805391)
data = stats.expon.rvs(size=5, random_state=rng)
result = goodness_of_fit(stats.expon, data,
known_params={'loc': 0, 'scale': 1},
statistic=greenwood, rng=rng)
p = [.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99]
exact_quantiles = [
.183863, .199403, .210088, .226040, .239947, .253677, .268422,
.285293, .306002, .334447, .382972, .432049, .547468]
simulated_quantiles = np.quantile(result.null_distribution, p)
assert_allclose(simulated_quantiles, exact_quantiles, atol=0.005)
class TestFitResult:
def test_plot_iv(self):
rng = np.random.default_rng(1769658657308472721)
data = stats.norm.rvs(0, 1, size=100, random_state=rng)
def optimizer(*args, **kwargs):
return differential_evolution(*args, **kwargs, rng=rng)
bounds = [(0, 30), (0, 1)]
res = stats.fit(stats.norm, data, bounds, optimizer=optimizer)
try:
import matplotlib # noqa: F401
message = r"`plot_type` must be one of \{'..."
with pytest.raises(ValueError, match=message):
res.plot(plot_type='llama')
except (ModuleNotFoundError, ImportError):
message = r"matplotlib must be installed to use method `plot`."
with pytest.raises(ModuleNotFoundError, match=message):
res.plot(plot_type='llama')
|