File size: 79,978 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 |
from itertools import product
import numpy as np
import random
import functools
import pytest
from numpy.testing import (assert_, assert_equal, assert_allclose,
assert_almost_equal) # avoid new uses
from pytest import raises as assert_raises
import scipy.stats as stats
from scipy.stats import distributions
from scipy.stats._hypotests import (epps_singleton_2samp, cramervonmises,
_cdf_cvm, cramervonmises_2samp,
_pval_cvm_2samp_exact, barnard_exact,
boschloo_exact)
from scipy.stats._mannwhitneyu import mannwhitneyu, _mwu_state, _MWU
from .common_tests import check_named_results
from scipy._lib._testutils import _TestPythranFunc
from scipy.stats._axis_nan_policy import SmallSampleWarning, too_small_1d_not_omit
class TestEppsSingleton:
def test_statistic_1(self):
# first example in Goerg & Kaiser, also in original paper of
# Epps & Singleton. Note: values do not match exactly, the
# value of the interquartile range varies depending on how
# quantiles are computed
x = np.array([-0.35, 2.55, 1.73, 0.73, 0.35,
2.69, 0.46, -0.94, -0.37, 12.07])
y = np.array([-1.15, -0.15, 2.48, 3.25, 3.71,
4.29, 5.00, 7.74, 8.38, 8.60])
w, p = epps_singleton_2samp(x, y)
assert_almost_equal(w, 15.14, decimal=1)
assert_almost_equal(p, 0.00442, decimal=3)
def test_statistic_2(self):
# second example in Goerg & Kaiser, again not a perfect match
x = np.array((0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 10,
10, 10, 10))
y = np.array((10, 4, 0, 5, 10, 10, 0, 5, 6, 7, 10, 3, 1, 7, 0, 8, 1,
5, 8, 10))
w, p = epps_singleton_2samp(x, y)
assert_allclose(w, 8.900, atol=0.001)
assert_almost_equal(p, 0.06364, decimal=3)
def test_epps_singleton_array_like(self):
np.random.seed(1234)
x, y = np.arange(30), np.arange(28)
w1, p1 = epps_singleton_2samp(list(x), list(y))
w2, p2 = epps_singleton_2samp(tuple(x), tuple(y))
w3, p3 = epps_singleton_2samp(x, y)
assert_(w1 == w2 == w3)
assert_(p1 == p2 == p3)
def test_epps_singleton_size(self):
# warns if sample contains fewer than 5 elements
x, y = (1, 2, 3, 4), np.arange(10)
with pytest.warns(SmallSampleWarning, match=too_small_1d_not_omit):
res = epps_singleton_2samp(x, y)
assert_equal(res.statistic, np.nan)
assert_equal(res.pvalue, np.nan)
def test_epps_singleton_nonfinite(self):
# raise error if there are non-finite values
x, y = (1, 2, 3, 4, 5, np.inf), np.arange(10)
assert_raises(ValueError, epps_singleton_2samp, x, y)
def test_names(self):
x, y = np.arange(20), np.arange(30)
res = epps_singleton_2samp(x, y)
attributes = ('statistic', 'pvalue')
check_named_results(res, attributes)
class TestCvm:
# the expected values of the cdfs are taken from Table 1 in
# Csorgo / Faraway: The Exact and Asymptotic Distribution of
# Cramér-von Mises Statistics, 1996.
def test_cdf_4(self):
assert_allclose(
_cdf_cvm([0.02983, 0.04111, 0.12331, 0.94251], 4),
[0.01, 0.05, 0.5, 0.999],
atol=1e-4)
def test_cdf_10(self):
assert_allclose(
_cdf_cvm([0.02657, 0.03830, 0.12068, 0.56643], 10),
[0.01, 0.05, 0.5, 0.975],
atol=1e-4)
def test_cdf_1000(self):
assert_allclose(
_cdf_cvm([0.02481, 0.03658, 0.11889, 1.16120], 1000),
[0.01, 0.05, 0.5, 0.999],
atol=1e-4)
def test_cdf_inf(self):
assert_allclose(
_cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204]),
[0.01, 0.05, 0.5, 0.999],
atol=1e-4)
def test_cdf_support(self):
# cdf has support on [1/(12*n), n/3]
assert_equal(_cdf_cvm([1/(12*533), 533/3], 533), [0, 1])
assert_equal(_cdf_cvm([1/(12*(27 + 1)), (27 + 1)/3], 27), [0, 1])
def test_cdf_large_n(self):
# test that asymptotic cdf and cdf for large samples are close
assert_allclose(
_cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204, 100], 10000),
_cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204, 100]),
atol=1e-4)
def test_large_x(self):
# for large values of x and n, the series used to compute the cdf
# converges slowly.
# this leads to bug in R package goftest and MAPLE code that is
# the basis of the implementation in scipy
# note: cdf = 1 for x >= 1000/3 and n = 1000
assert_(0.99999 < _cdf_cvm(333.3, 1000) < 1.0)
assert_(0.99999 < _cdf_cvm(333.3) < 1.0)
def test_low_p(self):
# _cdf_cvm can return values larger than 1. In that case, we just
# return a p-value of zero.
n = 12
res = cramervonmises(np.ones(n)*0.8, 'norm')
assert_(_cdf_cvm(res.statistic, n) > 1.0)
assert_equal(res.pvalue, 0)
@pytest.mark.parametrize('x', [(), [1.5]])
def test_invalid_input(self, x):
with pytest.warns(SmallSampleWarning, match=too_small_1d_not_omit):
res = cramervonmises(x, "norm")
assert_equal(res.statistic, np.nan)
assert_equal(res.pvalue, np.nan)
def test_values_R(self):
# compared against R package goftest, version 1.1.1
# goftest::cvm.test(c(-1.7, 2, 0, 1.3, 4, 0.1, 0.6), "pnorm")
res = cramervonmises([-1.7, 2, 0, 1.3, 4, 0.1, 0.6], "norm")
assert_allclose(res.statistic, 0.288156, atol=1e-6)
assert_allclose(res.pvalue, 0.1453465, atol=1e-6)
# goftest::cvm.test(c(-1.7, 2, 0, 1.3, 4, 0.1, 0.6),
# "pnorm", mean = 3, sd = 1.5)
res = cramervonmises([-1.7, 2, 0, 1.3, 4, 0.1, 0.6], "norm", (3, 1.5))
assert_allclose(res.statistic, 0.9426685, atol=1e-6)
assert_allclose(res.pvalue, 0.002026417, atol=1e-6)
# goftest::cvm.test(c(1, 2, 5, 1.4, 0.14, 11, 13, 0.9, 7.5), "pexp")
res = cramervonmises([1, 2, 5, 1.4, 0.14, 11, 13, 0.9, 7.5], "expon")
assert_allclose(res.statistic, 0.8421854, atol=1e-6)
assert_allclose(res.pvalue, 0.004433406, atol=1e-6)
def test_callable_cdf(self):
x, args = np.arange(5), (1.4, 0.7)
r1 = cramervonmises(x, distributions.expon.cdf)
r2 = cramervonmises(x, "expon")
assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue))
r1 = cramervonmises(x, distributions.beta.cdf, args)
r2 = cramervonmises(x, "beta", args)
assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue))
class TestMannWhitneyU:
# All magic numbers are from R wilcox.test unless otherwise specified
# https://rdrr.io/r/stats/wilcox.test.html
# --- Test Input Validation ---
@pytest.mark.parametrize('kwargs_update', [{'x': []}, {'y': []},
{'x': [], 'y': []}])
def test_empty(self, kwargs_update):
x = np.array([1, 2]) # generic, valid inputs
y = np.array([3, 4])
kwargs = dict(x=x, y=y)
kwargs.update(kwargs_update)
with pytest.warns(SmallSampleWarning, match=too_small_1d_not_omit):
res = mannwhitneyu(**kwargs)
assert_equal(res.statistic, np.nan)
assert_equal(res.pvalue, np.nan)
def test_input_validation(self):
x = np.array([1, 2]) # generic, valid inputs
y = np.array([3, 4])
with assert_raises(ValueError, match="`use_continuity` must be one"):
mannwhitneyu(x, y, use_continuity='ekki')
with assert_raises(ValueError, match="`alternative` must be one of"):
mannwhitneyu(x, y, alternative='ekki')
with assert_raises(ValueError, match="`axis` must be an integer"):
mannwhitneyu(x, y, axis=1.5)
with assert_raises(ValueError, match="`method` must be one of"):
mannwhitneyu(x, y, method='ekki')
def test_auto(self):
# Test that default method ('auto') chooses intended method
np.random.seed(1)
n = 8 # threshold to switch from exact to asymptotic
# both inputs are smaller than threshold; should use exact
x = np.random.rand(n-1)
y = np.random.rand(n-1)
auto = mannwhitneyu(x, y)
asymptotic = mannwhitneyu(x, y, method='asymptotic')
exact = mannwhitneyu(x, y, method='exact')
assert auto.pvalue == exact.pvalue
assert auto.pvalue != asymptotic.pvalue
# one input is smaller than threshold; should use exact
x = np.random.rand(n-1)
y = np.random.rand(n+1)
auto = mannwhitneyu(x, y)
asymptotic = mannwhitneyu(x, y, method='asymptotic')
exact = mannwhitneyu(x, y, method='exact')
assert auto.pvalue == exact.pvalue
assert auto.pvalue != asymptotic.pvalue
# other input is smaller than threshold; should use exact
auto = mannwhitneyu(y, x)
asymptotic = mannwhitneyu(x, y, method='asymptotic')
exact = mannwhitneyu(x, y, method='exact')
assert auto.pvalue == exact.pvalue
assert auto.pvalue != asymptotic.pvalue
# both inputs are larger than threshold; should use asymptotic
x = np.random.rand(n+1)
y = np.random.rand(n+1)
auto = mannwhitneyu(x, y)
asymptotic = mannwhitneyu(x, y, method='asymptotic')
exact = mannwhitneyu(x, y, method='exact')
assert auto.pvalue != exact.pvalue
assert auto.pvalue == asymptotic.pvalue
# both inputs are smaller than threshold, but there is a tie
# should use asymptotic
x = np.random.rand(n-1)
y = np.random.rand(n-1)
y[3] = x[3]
auto = mannwhitneyu(x, y)
asymptotic = mannwhitneyu(x, y, method='asymptotic')
exact = mannwhitneyu(x, y, method='exact')
assert auto.pvalue != exact.pvalue
assert auto.pvalue == asymptotic.pvalue
# --- Test Basic Functionality ---
x = [210.052110, 110.190630, 307.918612]
y = [436.08811482466416, 416.37397329768191, 179.96975939463582,
197.8118754228619, 34.038757281225756, 138.54220550921517,
128.7769351470246, 265.92721427951852, 275.6617533155341,
592.34083395416258, 448.73177590617018, 300.61495185038905,
187.97508449019588]
# This test was written for mann_whitney_u in gh-4933.
# Originally, the p-values for alternatives were swapped;
# this has been corrected and the tests have been refactored for
# compactness, but otherwise the tests are unchanged.
# R code for comparison, e.g.:
# options(digits = 16)
# x = c(210.052110, 110.190630, 307.918612)
# y = c(436.08811482466416, 416.37397329768191, 179.96975939463582,
# 197.8118754228619, 34.038757281225756, 138.54220550921517,
# 128.7769351470246, 265.92721427951852, 275.6617533155341,
# 592.34083395416258, 448.73177590617018, 300.61495185038905,
# 187.97508449019588)
# wilcox.test(x, y, alternative="g", exact=TRUE)
cases_basic = [[{"alternative": 'two-sided', "method": "asymptotic"},
(16, 0.6865041817876)],
[{"alternative": 'less', "method": "asymptotic"},
(16, 0.3432520908938)],
[{"alternative": 'greater', "method": "asymptotic"},
(16, 0.7047591913255)],
[{"alternative": 'two-sided', "method": "exact"},
(16, 0.7035714285714)],
[{"alternative": 'less', "method": "exact"},
(16, 0.3517857142857)],
[{"alternative": 'greater', "method": "exact"},
(16, 0.6946428571429)]]
@pytest.mark.parametrize(("kwds", "expected"), cases_basic)
def test_basic(self, kwds, expected):
res = mannwhitneyu(self.x, self.y, **kwds)
assert_allclose(res, expected)
cases_continuity = [[{"alternative": 'two-sided', "use_continuity": True},
(23, 0.6865041817876)],
[{"alternative": 'less', "use_continuity": True},
(23, 0.7047591913255)],
[{"alternative": 'greater', "use_continuity": True},
(23, 0.3432520908938)],
[{"alternative": 'two-sided', "use_continuity": False},
(23, 0.6377328900502)],
[{"alternative": 'less', "use_continuity": False},
(23, 0.6811335549749)],
[{"alternative": 'greater', "use_continuity": False},
(23, 0.3188664450251)]]
@pytest.mark.parametrize(("kwds", "expected"), cases_continuity)
def test_continuity(self, kwds, expected):
# When x and y are interchanged, less and greater p-values should
# swap (compare to above). This wouldn't happen if the continuity
# correction were applied in the wrong direction. Note that less and
# greater p-values do not sum to 1 when continuity correction is on,
# which is what we'd expect. Also check that results match R when
# continuity correction is turned off.
# Note that method='asymptotic' -> exact=FALSE
# and use_continuity=False -> correct=FALSE, e.g.:
# wilcox.test(x, y, alternative="t", exact=FALSE, correct=FALSE)
res = mannwhitneyu(self.y, self.x, method='asymptotic', **kwds)
assert_allclose(res, expected)
def test_tie_correct(self):
# Test tie correction against R's wilcox.test
# options(digits = 16)
# x = c(1, 2, 3, 4)
# y = c(1, 2, 3, 4, 5)
# wilcox.test(x, y, exact=FALSE)
x = [1, 2, 3, 4]
y0 = np.array([1, 2, 3, 4, 5])
dy = np.array([0, 1, 0, 1, 0])*0.01
dy2 = np.array([0, 0, 1, 0, 0])*0.01
y = [y0-0.01, y0-dy, y0-dy2, y0, y0+dy2, y0+dy, y0+0.01]
res = mannwhitneyu(x, y, axis=-1, method="asymptotic")
U_expected = [10, 9, 8.5, 8, 7.5, 7, 6]
p_expected = [1, 0.9017048037317, 0.804080657472, 0.7086240584439,
0.6197963884941, 0.5368784563079, 0.3912672792826]
assert_equal(res.statistic, U_expected)
assert_allclose(res.pvalue, p_expected)
# --- Test Exact Distribution of U ---
# These are tabulated values of the CDF of the exact distribution of
# the test statistic from pg 52 of reference [1] (Mann-Whitney Original)
pn3 = {1: [0.25, 0.5, 0.75], 2: [0.1, 0.2, 0.4, 0.6],
3: [0.05, .1, 0.2, 0.35, 0.5, 0.65]}
pn4 = {1: [0.2, 0.4, 0.6], 2: [0.067, 0.133, 0.267, 0.4, 0.6],
3: [0.028, 0.057, 0.114, 0.2, .314, 0.429, 0.571],
4: [0.014, 0.029, 0.057, 0.1, 0.171, 0.243, 0.343, 0.443, 0.557]}
pm5 = {1: [0.167, 0.333, 0.5, 0.667],
2: [0.047, 0.095, 0.19, 0.286, 0.429, 0.571],
3: [0.018, 0.036, 0.071, 0.125, 0.196, 0.286, 0.393, 0.5, 0.607],
4: [0.008, 0.016, 0.032, 0.056, 0.095, 0.143,
0.206, 0.278, 0.365, 0.452, 0.548],
5: [0.004, 0.008, 0.016, 0.028, 0.048, 0.075, 0.111,
0.155, 0.21, 0.274, 0.345, .421, 0.5, 0.579]}
pm6 = {1: [0.143, 0.286, 0.428, 0.571],
2: [0.036, 0.071, 0.143, 0.214, 0.321, 0.429, 0.571],
3: [0.012, 0.024, 0.048, 0.083, 0.131,
0.19, 0.274, 0.357, 0.452, 0.548],
4: [0.005, 0.01, 0.019, 0.033, 0.057, 0.086, 0.129,
0.176, 0.238, 0.305, 0.381, 0.457, 0.543], # the last element
# of the previous list, 0.543, has been modified from 0.545;
# I assume it was a typo
5: [0.002, 0.004, 0.009, 0.015, 0.026, 0.041, 0.063, 0.089,
0.123, 0.165, 0.214, 0.268, 0.331, 0.396, 0.465, 0.535],
6: [0.001, 0.002, 0.004, 0.008, 0.013, 0.021, 0.032, 0.047,
0.066, 0.09, 0.12, 0.155, 0.197, 0.242, 0.294, 0.350,
0.409, 0.469, 0.531]}
def test_exact_distribution(self):
# I considered parametrize. I decided against it.
setattr(_mwu_state, 's', _MWU(0, 0))
p_tables = {3: self.pn3, 4: self.pn4, 5: self.pm5, 6: self.pm6}
for n, table in p_tables.items():
for m, p in table.items():
# check p-value against table
u = np.arange(0, len(p))
_mwu_state.s.set_shapes(m, n)
assert_allclose(_mwu_state.s.cdf(k=u), p, atol=1e-3)
# check identity CDF + SF - PMF = 1
# ( In this implementation, SF(U) includes PMF(U) )
u2 = np.arange(0, m*n+1)
assert_allclose(_mwu_state.s.cdf(k=u2)
+ _mwu_state.s.sf(k=u2)
- _mwu_state.s.pmf(k=u2), 1)
# check symmetry about mean of U, i.e. pmf(U) = pmf(m*n-U)
pmf = _mwu_state.s.pmf(k=u2)
assert_allclose(pmf, pmf[::-1])
# check symmetry w.r.t. interchange of m, n
_mwu_state.s.set_shapes(n, m)
pmf2 = _mwu_state.s.pmf(k=u2)
assert_allclose(pmf, pmf2)
def test_asymptotic_behavior(self):
np.random.seed(0)
# for small samples, the asymptotic test is not very accurate
x = np.random.rand(5)
y = np.random.rand(5)
res1 = mannwhitneyu(x, y, method="exact")
res2 = mannwhitneyu(x, y, method="asymptotic")
assert res1.statistic == res2.statistic
assert np.abs(res1.pvalue - res2.pvalue) > 1e-2
# for large samples, they agree reasonably well
x = np.random.rand(40)
y = np.random.rand(40)
res1 = mannwhitneyu(x, y, method="exact")
res2 = mannwhitneyu(x, y, method="asymptotic")
assert res1.statistic == res2.statistic
assert np.abs(res1.pvalue - res2.pvalue) < 1e-3
# --- Test Corner Cases ---
def test_exact_U_equals_mean(self):
# Test U == m*n/2 with exact method
# Without special treatment, two-sided p-value > 1 because both
# one-sided p-values are > 0.5
res_l = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="less",
method="exact")
res_g = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="greater",
method="exact")
assert_equal(res_l.pvalue, res_g.pvalue)
assert res_l.pvalue > 0.5
res = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="two-sided",
method="exact")
assert_equal(res, (3, 1))
# U == m*n/2 for asymptotic case tested in test_gh_2118
# The reason it's tricky for the asymptotic test has to do with
# continuity correction.
cases_scalar = [[{"alternative": 'two-sided', "method": "asymptotic"},
(0, 1)],
[{"alternative": 'less', "method": "asymptotic"},
(0, 0.5)],
[{"alternative": 'greater', "method": "asymptotic"},
(0, 0.977249868052)],
[{"alternative": 'two-sided', "method": "exact"}, (0, 1)],
[{"alternative": 'less', "method": "exact"}, (0, 0.5)],
[{"alternative": 'greater', "method": "exact"}, (0, 1)]]
@pytest.mark.parametrize(("kwds", "result"), cases_scalar)
def test_scalar_data(self, kwds, result):
# just making sure scalars work
assert_allclose(mannwhitneyu(1, 2, **kwds), result)
def test_equal_scalar_data(self):
# when two scalars are equal, there is an -0.5/0 in the asymptotic
# approximation. R gives pvalue=1.0 for alternatives 'less' and
# 'greater' but NA for 'two-sided'. I don't see why, so I don't
# see a need for a special case to match that behavior.
assert_equal(mannwhitneyu(1, 1, method="exact"), (0.5, 1))
assert_equal(mannwhitneyu(1, 1, method="asymptotic"), (0.5, 1))
# without continuity correction, this becomes 0/0, which really
# is undefined
assert_equal(mannwhitneyu(1, 1, method="asymptotic",
use_continuity=False), (0.5, np.nan))
# --- Test Enhancements / Bug Reports ---
@pytest.mark.parametrize("method", ["asymptotic", "exact"])
def test_gh_12837_11113(self, method):
# Test that behavior for broadcastable nd arrays is appropriate:
# output shape is correct and all values are equal to when the test
# is performed on one pair of samples at a time.
# Tests that gh-12837 and gh-11113 (requests for n-d input)
# are resolved
np.random.seed(0)
# arrays are broadcastable except for axis = -3
axis = -3
m, n = 7, 10 # sample sizes
x = np.random.rand(m, 3, 8)
y = np.random.rand(6, n, 1, 8) + 0.1
res = mannwhitneyu(x, y, method=method, axis=axis)
shape = (6, 3, 8) # appropriate shape of outputs, given inputs
assert res.pvalue.shape == shape
assert res.statistic.shape == shape
# move axis of test to end for simplicity
x, y = np.moveaxis(x, axis, -1), np.moveaxis(y, axis, -1)
x = x[None, ...] # give x a zeroth dimension
assert x.ndim == y.ndim
x = np.broadcast_to(x, shape + (m,))
y = np.broadcast_to(y, shape + (n,))
assert x.shape[:-1] == shape
assert y.shape[:-1] == shape
# loop over pairs of samples
statistics = np.zeros(shape)
pvalues = np.zeros(shape)
for indices in product(*[range(i) for i in shape]):
xi = x[indices]
yi = y[indices]
temp = mannwhitneyu(xi, yi, method=method)
statistics[indices] = temp.statistic
pvalues[indices] = temp.pvalue
np.testing.assert_equal(res.pvalue, pvalues)
np.testing.assert_equal(res.statistic, statistics)
def test_gh_11355(self):
# Test for correct behavior with NaN/Inf in input
x = [1, 2, 3, 4]
y = [3, 6, 7, 8, 9, 3, 2, 1, 4, 4, 5]
res1 = mannwhitneyu(x, y)
# Inf is not a problem. This is a rank test, and it's the largest value
y[4] = np.inf
res2 = mannwhitneyu(x, y)
assert_equal(res1.statistic, res2.statistic)
assert_equal(res1.pvalue, res2.pvalue)
# NaNs should propagate by default.
y[4] = np.nan
res3 = mannwhitneyu(x, y)
assert_equal(res3.statistic, np.nan)
assert_equal(res3.pvalue, np.nan)
cases_11355 = [([1, 2, 3, 4],
[3, 6, 7, 8, np.inf, 3, 2, 1, 4, 4, 5],
10, 0.1297704873477),
([1, 2, 3, 4],
[3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5],
8.5, 0.08735617507695),
([1, 2, np.inf, 4],
[3, 6, 7, 8, np.inf, 3, 2, 1, 4, 4, 5],
17.5, 0.5988856695752),
([1, 2, np.inf, 4],
[3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5],
16, 0.4687165824462),
([1, np.inf, np.inf, 4],
[3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5],
24.5, 0.7912517950119)]
@pytest.mark.parametrize(("x", "y", "statistic", "pvalue"), cases_11355)
def test_gh_11355b(self, x, y, statistic, pvalue):
# Test for correct behavior with NaN/Inf in input
res = mannwhitneyu(x, y, method='asymptotic')
assert_allclose(res.statistic, statistic, atol=1e-12)
assert_allclose(res.pvalue, pvalue, atol=1e-12)
cases_9184 = [[True, "less", "asymptotic", 0.900775348204],
[True, "greater", "asymptotic", 0.1223118025635],
[True, "two-sided", "asymptotic", 0.244623605127],
[False, "less", "asymptotic", 0.8896643190401],
[False, "greater", "asymptotic", 0.1103356809599],
[False, "two-sided", "asymptotic", 0.2206713619198],
[True, "less", "exact", 0.8967698967699],
[True, "greater", "exact", 0.1272061272061],
[True, "two-sided", "exact", 0.2544122544123]]
@pytest.mark.parametrize(("use_continuity", "alternative",
"method", "pvalue_exp"), cases_9184)
def test_gh_9184(self, use_continuity, alternative, method, pvalue_exp):
# gh-9184 might be considered a doc-only bug. Please see the
# documentation to confirm that mannwhitneyu correctly notes
# that the output statistic is that of the first sample (x). In any
# case, check the case provided there against output from R.
# R code:
# options(digits=16)
# x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
# y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
# wilcox.test(x, y, alternative = "less", exact = FALSE)
# wilcox.test(x, y, alternative = "greater", exact = FALSE)
# wilcox.test(x, y, alternative = "two.sided", exact = FALSE)
# wilcox.test(x, y, alternative = "less", exact = FALSE,
# correct=FALSE)
# wilcox.test(x, y, alternative = "greater", exact = FALSE,
# correct=FALSE)
# wilcox.test(x, y, alternative = "two.sided", exact = FALSE,
# correct=FALSE)
# wilcox.test(x, y, alternative = "less", exact = TRUE)
# wilcox.test(x, y, alternative = "greater", exact = TRUE)
# wilcox.test(x, y, alternative = "two.sided", exact = TRUE)
statistic_exp = 35
x = (0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y = (1.15, 0.88, 0.90, 0.74, 1.21)
res = mannwhitneyu(x, y, use_continuity=use_continuity,
alternative=alternative, method=method)
assert_equal(res.statistic, statistic_exp)
assert_allclose(res.pvalue, pvalue_exp)
def test_gh_4067(self):
# Test for correct behavior with all NaN input - default is propagate
a = np.array([np.nan, np.nan, np.nan, np.nan, np.nan])
b = np.array([np.nan, np.nan, np.nan, np.nan, np.nan])
res = mannwhitneyu(a, b)
assert_equal(res.statistic, np.nan)
assert_equal(res.pvalue, np.nan)
# All cases checked against R wilcox.test, e.g.
# options(digits=16)
# x = c(1, 2, 3)
# y = c(1.5, 2.5)
# wilcox.test(x, y, exact=FALSE, alternative='less')
cases_2118 = [[[1, 2, 3], [1.5, 2.5], "greater", (3, 0.6135850036578)],
[[1, 2, 3], [1.5, 2.5], "less", (3, 0.6135850036578)],
[[1, 2, 3], [1.5, 2.5], "two-sided", (3, 1.0)],
[[1, 2, 3], [2], "greater", (1.5, 0.681324055883)],
[[1, 2, 3], [2], "less", (1.5, 0.681324055883)],
[[1, 2, 3], [2], "two-sided", (1.5, 1)],
[[1, 2], [1, 2], "greater", (2, 0.667497228949)],
[[1, 2], [1, 2], "less", (2, 0.667497228949)],
[[1, 2], [1, 2], "two-sided", (2, 1)]]
@pytest.mark.parametrize(["x", "y", "alternative", "expected"], cases_2118)
def test_gh_2118(self, x, y, alternative, expected):
# test cases in which U == m*n/2 when method is asymptotic
# applying continuity correction could result in p-value > 1
res = mannwhitneyu(x, y, use_continuity=True, alternative=alternative,
method="asymptotic")
assert_allclose(res, expected, rtol=1e-12)
def test_gh19692_smaller_table(self):
# In gh-19692, we noted that the shape of the cache used in calculating
# p-values was dependent on the order of the inputs because the sample
# sizes n1 and n2 changed. This was indicative of unnecessary cache
# growth and redundant calculation. Check that this is resolved.
rng = np.random.default_rng(7600451795963068007)
m, n = 5, 11
x = rng.random(size=m)
y = rng.random(size=n)
setattr(_mwu_state, 's', _MWU(0, 0))
_mwu_state.s.reset() # reset cache
res = stats.mannwhitneyu(x, y, method='exact')
shape = _mwu_state.s.configurations.shape
assert shape[-1] == min(res.statistic, m*n - res.statistic) + 1
stats.mannwhitneyu(y, x, method='exact')
assert shape == _mwu_state.s.configurations.shape # same with reversed sizes
# Also, we weren't exploiting the symmetry of the null distribution
# to its full potential. Ensure that the null distribution is not
# evaluated explicitly for `k > m*n/2`.
_mwu_state.s.reset() # reset cache
stats.mannwhitneyu(x, 0*y, method='exact', alternative='greater')
shape = _mwu_state.s.configurations.shape
assert shape[-1] == 1 # k is smallest possible
stats.mannwhitneyu(0*x, y, method='exact', alternative='greater')
assert shape == _mwu_state.s.configurations.shape
@pytest.mark.parametrize('alternative', ['less', 'greater', 'two-sided'])
def test_permutation_method(self, alternative):
rng = np.random.default_rng(7600451795963068007)
x = rng.random(size=(2, 5))
y = rng.random(size=(2, 6))
res = stats.mannwhitneyu(x, y, method=stats.PermutationMethod(),
alternative=alternative, axis=1)
res2 = stats.mannwhitneyu(x, y, method='exact',
alternative=alternative, axis=1)
assert_allclose(res.statistic, res2.statistic, rtol=1e-15)
assert_allclose(res.pvalue, res2.pvalue, rtol=1e-15)
class TestSomersD(_TestPythranFunc):
def setup_method(self):
self.dtypes = self.ALL_INTEGER + self.ALL_FLOAT
self.arguments = {0: (np.arange(10),
self.ALL_INTEGER + self.ALL_FLOAT),
1: (np.arange(10),
self.ALL_INTEGER + self.ALL_FLOAT)}
input_array = [self.arguments[idx][0] for idx in self.arguments]
# In this case, self.partialfunc can simply be stats.somersd,
# since `alternative` is an optional argument. If it is required,
# we can use functools.partial to freeze the value, because
# we only mainly test various array inputs, not str, etc.
self.partialfunc = functools.partial(stats.somersd,
alternative='two-sided')
self.expected = self.partialfunc(*input_array)
def pythranfunc(self, *args):
res = self.partialfunc(*args)
assert_allclose(res.statistic, self.expected.statistic, atol=1e-15)
assert_allclose(res.pvalue, self.expected.pvalue, atol=1e-15)
def test_pythranfunc_keywords(self):
# Not specifying the optional keyword args
table = [[27, 25, 14, 7, 0], [7, 14, 18, 35, 12], [1, 3, 2, 7, 17]]
res1 = stats.somersd(table)
# Specifying the optional keyword args with default value
optional_args = self.get_optional_args(stats.somersd)
res2 = stats.somersd(table, **optional_args)
# Check if the results are the same in two cases
assert_allclose(res1.statistic, res2.statistic, atol=1e-15)
assert_allclose(res1.pvalue, res2.pvalue, atol=1e-15)
def test_like_kendalltau(self):
# All tests correspond with one in test_stats.py `test_kendalltau`
# case without ties, con-dis equal zero
x = [5, 2, 1, 3, 6, 4, 7, 8]
y = [5, 2, 6, 3, 1, 8, 7, 4]
# Cross-check with result from SAS FREQ:
expected = (0.000000000000000, 1.000000000000000)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# case without ties, con-dis equal zero
x = [0, 5, 2, 1, 3, 6, 4, 7, 8]
y = [5, 2, 0, 6, 3, 1, 8, 7, 4]
# Cross-check with result from SAS FREQ:
expected = (0.000000000000000, 1.000000000000000)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# case without ties, con-dis close to zero
x = [5, 2, 1, 3, 6, 4, 7]
y = [5, 2, 6, 3, 1, 7, 4]
# Cross-check with result from SAS FREQ:
expected = (-0.142857142857140, 0.630326953157670)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# simple case without ties
x = np.arange(10)
y = np.arange(10)
# Cross-check with result from SAS FREQ:
# SAS p value is not provided.
expected = (1.000000000000000, 0)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# swap a couple values and a couple more
x = np.arange(10)
y = np.array([0, 2, 1, 3, 4, 6, 5, 7, 8, 9])
# Cross-check with result from SAS FREQ:
expected = (0.911111111111110, 0.000000000000000)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# same in opposite direction
x = np.arange(10)
y = np.arange(10)[::-1]
# Cross-check with result from SAS FREQ:
# SAS p value is not provided.
expected = (-1.000000000000000, 0)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# swap a couple values and a couple more
x = np.arange(10)
y = np.array([9, 7, 8, 6, 5, 3, 4, 2, 1, 0])
# Cross-check with result from SAS FREQ:
expected = (-0.9111111111111111, 0.000000000000000)
res = stats.somersd(x, y)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# with some ties
x1 = [12, 2, 1, 12, 2]
x2 = [1, 4, 7, 1, 0]
# Cross-check with result from SAS FREQ:
expected = (-0.500000000000000, 0.304901788178780)
res = stats.somersd(x1, x2)
assert_allclose(res.statistic, expected[0], atol=1e-15)
assert_allclose(res.pvalue, expected[1], atol=1e-15)
# with only ties in one or both inputs
# SAS will not produce an output for these:
# NOTE: No statistics are computed for x * y because x has fewer
# than 2 nonmissing levels.
# WARNING: No OUTPUT data set is produced for this table because a
# row or column variable has fewer than 2 nonmissing levels and no
# statistics are computed.
res = stats.somersd([2, 2, 2], [2, 2, 2])
assert_allclose(res.statistic, np.nan)
assert_allclose(res.pvalue, np.nan)
res = stats.somersd([2, 0, 2], [2, 2, 2])
assert_allclose(res.statistic, np.nan)
assert_allclose(res.pvalue, np.nan)
res = stats.somersd([2, 2, 2], [2, 0, 2])
assert_allclose(res.statistic, np.nan)
assert_allclose(res.pvalue, np.nan)
res = stats.somersd([0], [0])
assert_allclose(res.statistic, np.nan)
assert_allclose(res.pvalue, np.nan)
# empty arrays provided as input
res = stats.somersd([], [])
assert_allclose(res.statistic, np.nan)
assert_allclose(res.pvalue, np.nan)
# test unequal length inputs
x = np.arange(10.)
y = np.arange(20.)
assert_raises(ValueError, stats.somersd, x, y)
def test_asymmetry(self):
# test that somersd is asymmetric w.r.t. input order and that
# convention is as described: first input is row variable & independent
# data is from Wikipedia:
# https://en.wikipedia.org/wiki/Somers%27_D
# but currently that example contradicts itself - it says X is
# independent yet take D_XY
x = [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2,
2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
y = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
# Cross-check with result from SAS FREQ:
d_cr = 0.272727272727270
d_rc = 0.342857142857140
p = 0.092891940883700 # same p-value for either direction
res = stats.somersd(x, y)
assert_allclose(res.statistic, d_cr, atol=1e-15)
assert_allclose(res.pvalue, p, atol=1e-4)
assert_equal(res.table.shape, (3, 2))
res = stats.somersd(y, x)
assert_allclose(res.statistic, d_rc, atol=1e-15)
assert_allclose(res.pvalue, p, atol=1e-15)
assert_equal(res.table.shape, (2, 3))
def test_somers_original(self):
# test against Somers' original paper [1]
# Table 5A
# Somers' convention was column IV
table = np.array([[8, 2], [6, 5], [3, 4], [1, 3], [2, 3]])
# Our convention (and that of SAS FREQ) is row IV
table = table.T
dyx = 129/340
assert_allclose(stats.somersd(table).statistic, dyx)
# table 7A - d_yx = 1
table = np.array([[25, 0], [85, 0], [0, 30]])
dxy, dyx = 3300/5425, 3300/3300
assert_allclose(stats.somersd(table).statistic, dxy)
assert_allclose(stats.somersd(table.T).statistic, dyx)
# table 7B - d_yx < 0
table = np.array([[25, 0], [0, 30], [85, 0]])
dyx = -1800/3300
assert_allclose(stats.somersd(table.T).statistic, dyx)
def test_contingency_table_with_zero_rows_cols(self):
# test that zero rows/cols in contingency table don't affect result
N = 100
shape = 4, 6
size = np.prod(shape)
np.random.seed(0)
s = stats.multinomial.rvs(N, p=np.ones(size)/size).reshape(shape)
res = stats.somersd(s)
s2 = np.insert(s, 2, np.zeros(shape[1]), axis=0)
res2 = stats.somersd(s2)
s3 = np.insert(s, 2, np.zeros(shape[0]), axis=1)
res3 = stats.somersd(s3)
s4 = np.insert(s2, 2, np.zeros(shape[0]+1), axis=1)
res4 = stats.somersd(s4)
# Cross-check with result from SAS FREQ:
assert_allclose(res.statistic, -0.116981132075470, atol=1e-15)
assert_allclose(res.statistic, res2.statistic)
assert_allclose(res.statistic, res3.statistic)
assert_allclose(res.statistic, res4.statistic)
assert_allclose(res.pvalue, 0.156376448188150, atol=1e-15)
assert_allclose(res.pvalue, res2.pvalue)
assert_allclose(res.pvalue, res3.pvalue)
assert_allclose(res.pvalue, res4.pvalue)
def test_invalid_contingency_tables(self):
N = 100
shape = 4, 6
size = np.prod(shape)
np.random.seed(0)
# start with a valid contingency table
s = stats.multinomial.rvs(N, p=np.ones(size)/size).reshape(shape)
s5 = s - 2
message = "All elements of the contingency table must be non-negative"
with assert_raises(ValueError, match=message):
stats.somersd(s5)
s6 = s + 0.01
message = "All elements of the contingency table must be integer"
with assert_raises(ValueError, match=message):
stats.somersd(s6)
message = ("At least two elements of the contingency "
"table must be nonzero.")
with assert_raises(ValueError, match=message):
stats.somersd([[]])
with assert_raises(ValueError, match=message):
stats.somersd([[1]])
s7 = np.zeros((3, 3))
with assert_raises(ValueError, match=message):
stats.somersd(s7)
s7[0, 1] = 1
with assert_raises(ValueError, match=message):
stats.somersd(s7)
def test_only_ranks_matter(self):
# only ranks of input data should matter
x = [1, 2, 3]
x2 = [-1, 2.1, np.inf]
y = [3, 2, 1]
y2 = [0, -0.5, -np.inf]
res = stats.somersd(x, y)
res2 = stats.somersd(x2, y2)
assert_equal(res.statistic, res2.statistic)
assert_equal(res.pvalue, res2.pvalue)
def test_contingency_table_return(self):
# check that contingency table is returned
x = np.arange(10)
y = np.arange(10)
res = stats.somersd(x, y)
assert_equal(res.table, np.eye(10))
def test_somersd_alternative(self):
# Test alternative parameter, asymptotic method (due to tie)
# Based on scipy.stats.test_stats.TestCorrSpearman2::test_alternative
x1 = [1, 2, 3, 4, 5]
x2 = [5, 6, 7, 8, 7]
# strong positive correlation
expected = stats.somersd(x1, x2, alternative="two-sided")
assert expected.statistic > 0
# rank correlation > 0 -> large "less" p-value
res = stats.somersd(x1, x2, alternative="less")
assert_equal(res.statistic, expected.statistic)
assert_allclose(res.pvalue, 1 - (expected.pvalue / 2))
# rank correlation > 0 -> small "greater" p-value
res = stats.somersd(x1, x2, alternative="greater")
assert_equal(res.statistic, expected.statistic)
assert_allclose(res.pvalue, expected.pvalue / 2)
# reverse the direction of rank correlation
x2.reverse()
# strong negative correlation
expected = stats.somersd(x1, x2, alternative="two-sided")
assert expected.statistic < 0
# rank correlation < 0 -> large "greater" p-value
res = stats.somersd(x1, x2, alternative="greater")
assert_equal(res.statistic, expected.statistic)
assert_allclose(res.pvalue, 1 - (expected.pvalue / 2))
# rank correlation < 0 -> small "less" p-value
res = stats.somersd(x1, x2, alternative="less")
assert_equal(res.statistic, expected.statistic)
assert_allclose(res.pvalue, expected.pvalue / 2)
with pytest.raises(ValueError, match="`alternative` must be..."):
stats.somersd(x1, x2, alternative="ekki-ekki")
@pytest.mark.parametrize("positive_correlation", (False, True))
def test_somersd_perfect_correlation(self, positive_correlation):
# Before the addition of `alternative`, perfect correlation was
# treated as a special case. Now it is treated like any other case, but
# make sure there are no divide by zero warnings or associated errors
x1 = np.arange(10)
x2 = x1 if positive_correlation else np.flip(x1)
expected_statistic = 1 if positive_correlation else -1
# perfect correlation -> small "two-sided" p-value (0)
res = stats.somersd(x1, x2, alternative="two-sided")
assert res.statistic == expected_statistic
assert res.pvalue == 0
# rank correlation > 0 -> large "less" p-value (1)
res = stats.somersd(x1, x2, alternative="less")
assert res.statistic == expected_statistic
assert res.pvalue == (1 if positive_correlation else 0)
# rank correlation > 0 -> small "greater" p-value (0)
res = stats.somersd(x1, x2, alternative="greater")
assert res.statistic == expected_statistic
assert res.pvalue == (0 if positive_correlation else 1)
def test_somersd_large_inputs_gh18132(self):
# Test that large inputs where potential overflows could occur give
# the expected output. This is tested in the case of binary inputs.
# See gh-18126.
# generate lists of random classes 1-2 (binary)
classes = [1, 2]
n_samples = 10 ** 6
random.seed(6272161)
x = random.choices(classes, k=n_samples)
y = random.choices(classes, k=n_samples)
# get value to compare with: sklearn output
# from sklearn import metrics
# val_auc_sklearn = metrics.roc_auc_score(x, y)
# # convert to the Gini coefficient (Gini = (AUC*2)-1)
# val_sklearn = 2 * val_auc_sklearn - 1
val_sklearn = -0.001528138777036947
# calculate the Somers' D statistic, which should be equal to the
# result of val_sklearn until approximately machine precision
val_scipy = stats.somersd(x, y).statistic
assert_allclose(val_sklearn, val_scipy, atol=1e-15)
class TestBarnardExact:
"""Some tests to show that barnard_exact() works correctly."""
@pytest.mark.parametrize(
"input_sample,expected",
[
([[43, 40], [10, 39]], (3.555406779643, 0.000362832367)),
([[100, 2], [1000, 5]], (-1.776382925679, 0.135126970878)),
([[2, 7], [8, 2]], (-2.518474945157, 0.019210815430)),
([[5, 1], [10, 10]], (1.449486150679, 0.156277546306)),
([[5, 15], [20, 20]], (-1.851640199545, 0.066363501421)),
([[5, 16], [20, 25]], (-1.609639949352, 0.116984852192)),
([[10, 5], [10, 1]], (-1.449486150679, 0.177536588915)),
([[5, 0], [1, 4]], (2.581988897472, 0.013671875000)),
([[0, 1], [3, 2]], (-1.095445115010, 0.509667991877)),
([[0, 2], [6, 4]], (-1.549193338483, 0.197019618792)),
([[2, 7], [8, 2]], (-2.518474945157, 0.019210815430)),
],
)
def test_precise(self, input_sample, expected):
"""The expected values have been generated by R, using a resolution
for the nuisance parameter of 1e-6 :
```R
library(Barnard)
options(digits=10)
barnard.test(43, 40, 10, 39, dp=1e-6, pooled=TRUE)
```
"""
res = barnard_exact(input_sample)
statistic, pvalue = res.statistic, res.pvalue
assert_allclose([statistic, pvalue], expected)
@pytest.mark.parametrize(
"input_sample,expected",
[
([[43, 40], [10, 39]], (3.920362887717, 0.000289470662)),
([[100, 2], [1000, 5]], (-1.139432816087, 0.950272080594)),
([[2, 7], [8, 2]], (-3.079373904042, 0.020172119141)),
([[5, 1], [10, 10]], (1.622375939458, 0.150599922226)),
([[5, 15], [20, 20]], (-1.974771239528, 0.063038448651)),
([[5, 16], [20, 25]], (-1.722122973346, 0.133329494287)),
([[10, 5], [10, 1]], (-1.765469659009, 0.250566655215)),
([[5, 0], [1, 4]], (5.477225575052, 0.007812500000)),
([[0, 1], [3, 2]], (-1.224744871392, 0.509667991877)),
([[0, 2], [6, 4]], (-1.732050807569, 0.197019618792)),
([[2, 7], [8, 2]], (-3.079373904042, 0.020172119141)),
],
)
def test_pooled_param(self, input_sample, expected):
"""The expected values have been generated by R, using a resolution
for the nuisance parameter of 1e-6 :
```R
library(Barnard)
options(digits=10)
barnard.test(43, 40, 10, 39, dp=1e-6, pooled=FALSE)
```
"""
res = barnard_exact(input_sample, pooled=False)
statistic, pvalue = res.statistic, res.pvalue
assert_allclose([statistic, pvalue], expected)
def test_raises(self):
# test we raise an error for wrong input number of nuisances.
error_msg = (
"Number of points `n` must be strictly positive, found 0"
)
with assert_raises(ValueError, match=error_msg):
barnard_exact([[1, 2], [3, 4]], n=0)
# test we raise an error for wrong shape of input.
error_msg = "The input `table` must be of shape \\(2, 2\\)."
with assert_raises(ValueError, match=error_msg):
barnard_exact(np.arange(6).reshape(2, 3))
# Test all values must be positives
error_msg = "All values in `table` must be nonnegative."
with assert_raises(ValueError, match=error_msg):
barnard_exact([[-1, 2], [3, 4]])
# Test value error on wrong alternative param
error_msg = (
"`alternative` should be one of {'two-sided', 'less', 'greater'},"
" found .*"
)
with assert_raises(ValueError, match=error_msg):
barnard_exact([[1, 2], [3, 4]], "not-correct")
@pytest.mark.parametrize(
"input_sample,expected",
[
([[0, 0], [4, 3]], (1.0, 0)),
],
)
def test_edge_cases(self, input_sample, expected):
res = barnard_exact(input_sample)
statistic, pvalue = res.statistic, res.pvalue
assert_equal(pvalue, expected[0])
assert_equal(statistic, expected[1])
@pytest.mark.parametrize(
"input_sample,expected",
[
([[0, 5], [0, 10]], (1.0, np.nan)),
([[5, 0], [10, 0]], (1.0, np.nan)),
],
)
def test_row_or_col_zero(self, input_sample, expected):
res = barnard_exact(input_sample)
statistic, pvalue = res.statistic, res.pvalue
assert_equal(pvalue, expected[0])
assert_equal(statistic, expected[1])
@pytest.mark.parametrize(
"input_sample,expected",
[
([[2, 7], [8, 2]], (-2.518474945157, 0.009886140845)),
([[7, 200], [300, 8]], (-21.320036698460, 0.0)),
([[21, 28], [1957, 6]], (-30.489638143953, 0.0)),
],
)
@pytest.mark.parametrize("alternative", ["greater", "less"])
def test_less_greater(self, input_sample, expected, alternative):
"""
"The expected values have been generated by R, using a resolution
for the nuisance parameter of 1e-6 :
```R
library(Barnard)
options(digits=10)
a = barnard.test(2, 7, 8, 2, dp=1e-6, pooled=TRUE)
a$p.value[1]
```
In this test, we are using the "one-sided" return value `a$p.value[1]`
to test our pvalue.
"""
expected_stat, less_pvalue_expect = expected
if alternative == "greater":
input_sample = np.array(input_sample)[:, ::-1]
expected_stat = -expected_stat
res = barnard_exact(input_sample, alternative=alternative)
statistic, pvalue = res.statistic, res.pvalue
assert_allclose(
[statistic, pvalue], [expected_stat, less_pvalue_expect], atol=1e-7
)
class TestBoschlooExact:
"""Some tests to show that boschloo_exact() works correctly."""
ATOL = 1e-7
@pytest.mark.parametrize(
"input_sample,expected",
[
([[2, 7], [8, 2]], (0.01852173, 0.009886142)),
([[5, 1], [10, 10]], (0.9782609, 0.9450994)),
([[5, 16], [20, 25]], (0.08913823, 0.05827348)),
([[10, 5], [10, 1]], (0.1652174, 0.08565611)),
([[5, 0], [1, 4]], (1, 1)),
([[0, 1], [3, 2]], (0.5, 0.34375)),
([[2, 7], [8, 2]], (0.01852173, 0.009886142)),
([[7, 12], [8, 3]], (0.06406797, 0.03410916)),
([[10, 24], [25, 37]], (0.2009359, 0.1512882)),
],
)
def test_less(self, input_sample, expected):
"""The expected values have been generated by R, using a resolution
for the nuisance parameter of 1e-8 :
```R
library(Exact)
options(digits=10)
data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE)
a = exact.test(data, method="Boschloo", alternative="less",
tsmethod="central", np.interval=TRUE, beta=1e-8)
```
"""
res = boschloo_exact(input_sample, alternative="less")
statistic, pvalue = res.statistic, res.pvalue
assert_allclose([statistic, pvalue], expected, atol=self.ATOL)
@pytest.mark.parametrize(
"input_sample,expected",
[
([[43, 40], [10, 39]], (0.0002875544, 0.0001615562)),
([[2, 7], [8, 2]], (0.9990149, 0.9918327)),
([[5, 1], [10, 10]], (0.1652174, 0.09008534)),
([[5, 15], [20, 20]], (0.9849087, 0.9706997)),
([[5, 16], [20, 25]], (0.972349, 0.9524124)),
([[5, 0], [1, 4]], (0.02380952, 0.006865367)),
([[0, 1], [3, 2]], (1, 1)),
([[0, 2], [6, 4]], (1, 1)),
([[2, 7], [8, 2]], (0.9990149, 0.9918327)),
([[7, 12], [8, 3]], (0.9895302, 0.9771215)),
([[10, 24], [25, 37]], (0.9012936, 0.8633275)),
],
)
def test_greater(self, input_sample, expected):
"""The expected values have been generated by R, using a resolution
for the nuisance parameter of 1e-8 :
```R
library(Exact)
options(digits=10)
data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE)
a = exact.test(data, method="Boschloo", alternative="greater",
tsmethod="central", np.interval=TRUE, beta=1e-8)
```
"""
res = boschloo_exact(input_sample, alternative="greater")
statistic, pvalue = res.statistic, res.pvalue
assert_allclose([statistic, pvalue], expected, atol=self.ATOL)
@pytest.mark.parametrize(
"input_sample,expected",
[
([[43, 40], [10, 39]], (0.0002875544, 0.0003231115)),
([[2, 7], [8, 2]], (0.01852173, 0.01977228)),
([[5, 1], [10, 10]], (0.1652174, 0.1801707)),
([[5, 16], [20, 25]], (0.08913823, 0.116547)),
([[5, 0], [1, 4]], (0.02380952, 0.01373073)),
([[0, 1], [3, 2]], (0.5, 0.6875)),
([[2, 7], [8, 2]], (0.01852173, 0.01977228)),
([[7, 12], [8, 3]], (0.06406797, 0.06821831)),
],
)
def test_two_sided(self, input_sample, expected):
"""The expected values have been generated by R, using a resolution
for the nuisance parameter of 1e-8 :
```R
library(Exact)
options(digits=10)
data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE)
a = exact.test(data, method="Boschloo", alternative="two.sided",
tsmethod="central", np.interval=TRUE, beta=1e-8)
```
"""
res = boschloo_exact(input_sample, alternative="two-sided", n=64)
# Need n = 64 for python 32-bit
statistic, pvalue = res.statistic, res.pvalue
assert_allclose([statistic, pvalue], expected, atol=self.ATOL)
def test_raises(self):
# test we raise an error for wrong input number of nuisances.
error_msg = (
"Number of points `n` must be strictly positive, found 0"
)
with assert_raises(ValueError, match=error_msg):
boschloo_exact([[1, 2], [3, 4]], n=0)
# test we raise an error for wrong shape of input.
error_msg = "The input `table` must be of shape \\(2, 2\\)."
with assert_raises(ValueError, match=error_msg):
boschloo_exact(np.arange(6).reshape(2, 3))
# Test all values must be positives
error_msg = "All values in `table` must be nonnegative."
with assert_raises(ValueError, match=error_msg):
boschloo_exact([[-1, 2], [3, 4]])
# Test value error on wrong alternative param
error_msg = (
r"`alternative` should be one of \('two-sided', 'less', "
r"'greater'\), found .*"
)
with assert_raises(ValueError, match=error_msg):
boschloo_exact([[1, 2], [3, 4]], "not-correct")
@pytest.mark.parametrize(
"input_sample,expected",
[
([[0, 5], [0, 10]], (np.nan, np.nan)),
([[5, 0], [10, 0]], (np.nan, np.nan)),
],
)
def test_row_or_col_zero(self, input_sample, expected):
res = boschloo_exact(input_sample)
statistic, pvalue = res.statistic, res.pvalue
assert_equal(pvalue, expected[0])
assert_equal(statistic, expected[1])
def test_two_sided_gt_1(self):
# Check that returned p-value does not exceed 1 even when twice
# the minimum of the one-sided p-values does. See gh-15345.
tbl = [[1, 1], [13, 12]]
pl = boschloo_exact(tbl, alternative='less').pvalue
pg = boschloo_exact(tbl, alternative='greater').pvalue
assert 2*min(pl, pg) > 1
pt = boschloo_exact(tbl, alternative='two-sided').pvalue
assert pt == 1.0
@pytest.mark.parametrize("alternative", ("less", "greater"))
def test_against_fisher_exact(self, alternative):
# Check that the statistic of `boschloo_exact` is the same as the
# p-value of `fisher_exact` (for one-sided tests). See gh-15345.
tbl = [[2, 7], [8, 2]]
boschloo_stat = boschloo_exact(tbl, alternative=alternative).statistic
fisher_p = stats.fisher_exact(tbl, alternative=alternative)[1]
assert_allclose(boschloo_stat, fisher_p)
class TestCvm_2samp:
@pytest.mark.parametrize('args', [([], np.arange(5)),
(np.arange(5), [1])])
def test_too_small_input(self, args):
with pytest.warns(SmallSampleWarning, match=too_small_1d_not_omit):
res = cramervonmises_2samp(*args)
assert_equal(res.statistic, np.nan)
assert_equal(res.pvalue, np.nan)
def test_invalid_input(self):
y = np.arange(5)
msg = 'method must be either auto, exact or asymptotic'
with pytest.raises(ValueError, match=msg):
cramervonmises_2samp(y, y, 'xyz')
def test_list_input(self):
x = [2, 3, 4, 7, 6]
y = [0.2, 0.7, 12, 18]
r1 = cramervonmises_2samp(x, y)
r2 = cramervonmises_2samp(np.array(x), np.array(y))
assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue))
def test_example_conover(self):
# Example 2 in Section 6.2 of W.J. Conover: Practical Nonparametric
# Statistics, 1971.
x = [7.6, 8.4, 8.6, 8.7, 9.3, 9.9, 10.1, 10.6, 11.2]
y = [5.2, 5.7, 5.9, 6.5, 6.8, 8.2, 9.1, 9.8, 10.8, 11.3, 11.5, 12.3,
12.5, 13.4, 14.6]
r = cramervonmises_2samp(x, y)
assert_allclose(r.statistic, 0.262, atol=1e-3)
assert_allclose(r.pvalue, 0.18, atol=1e-2)
@pytest.mark.parametrize('statistic, m, n, pval',
[(710, 5, 6, 48./462),
(1897, 7, 7, 117./1716),
(576, 4, 6, 2./210),
(1764, 6, 7, 2./1716)])
def test_exact_pvalue(self, statistic, m, n, pval):
# the exact values are taken from Anderson: On the distribution of the
# two-sample Cramer-von-Mises criterion, 1962.
# The values are taken from Table 2, 3, 4 and 5
assert_equal(_pval_cvm_2samp_exact(statistic, m, n), pval)
@pytest.mark.xslow
def test_large_sample(self):
# for large samples, the statistic U gets very large
# do a sanity check that p-value is not 0, 1 or nan
np.random.seed(4367)
x = distributions.norm.rvs(size=1000000)
y = distributions.norm.rvs(size=900000)
r = cramervonmises_2samp(x, y)
assert_(0 < r.pvalue < 1)
r = cramervonmises_2samp(x, y+0.1)
assert_(0 < r.pvalue < 1)
def test_exact_vs_asymptotic(self):
np.random.seed(0)
x = np.random.rand(7)
y = np.random.rand(8)
r1 = cramervonmises_2samp(x, y, method='exact')
r2 = cramervonmises_2samp(x, y, method='asymptotic')
assert_equal(r1.statistic, r2.statistic)
assert_allclose(r1.pvalue, r2.pvalue, atol=1e-2)
def test_method_auto(self):
x = np.arange(20)
y = [0.5, 4.7, 13.1]
r1 = cramervonmises_2samp(x, y, method='exact')
r2 = cramervonmises_2samp(x, y, method='auto')
assert_equal(r1.pvalue, r2.pvalue)
# switch to asymptotic if one sample has more than 20 observations
x = np.arange(21)
r1 = cramervonmises_2samp(x, y, method='asymptotic')
r2 = cramervonmises_2samp(x, y, method='auto')
assert_equal(r1.pvalue, r2.pvalue)
def test_same_input(self):
# make sure trivial edge case can be handled
# note that _cdf_cvm_inf(0) = nan. implementation avoids nan by
# returning pvalue=1 for very small values of the statistic
x = np.arange(15)
res = cramervonmises_2samp(x, x)
assert_equal((res.statistic, res.pvalue), (0.0, 1.0))
# check exact p-value
res = cramervonmises_2samp(x[:4], x[:4])
assert_equal((res.statistic, res.pvalue), (0.0, 1.0))
class TestTukeyHSD:
data_same_size = ([24.5, 23.5, 26.4, 27.1, 29.9],
[28.4, 34.2, 29.5, 32.2, 30.1],
[26.1, 28.3, 24.3, 26.2, 27.8])
data_diff_size = ([24.5, 23.5, 26.28, 26.4, 27.1, 29.9, 30.1, 30.1],
[28.4, 34.2, 29.5, 32.2, 30.1],
[26.1, 28.3, 24.3, 26.2, 27.8])
extreme_size = ([24.5, 23.5, 26.4],
[28.4, 34.2, 29.5, 32.2, 30.1, 28.4, 34.2, 29.5, 32.2,
30.1],
[26.1, 28.3, 24.3, 26.2, 27.8])
sas_same_size = """
Comparison LowerCL Difference UpperCL Significance
2 - 3 0.6908830568 4.34 7.989116943 1
2 - 1 0.9508830568 4.6 8.249116943 1
3 - 2 -7.989116943 -4.34 -0.6908830568 1
3 - 1 -3.389116943 0.26 3.909116943 0
1 - 2 -8.249116943 -4.6 -0.9508830568 1
1 - 3 -3.909116943 -0.26 3.389116943 0
"""
sas_diff_size = """
Comparison LowerCL Difference UpperCL Significance
2 - 1 0.2679292645 3.645 7.022070736 1
2 - 3 0.5934764007 4.34 8.086523599 1
1 - 2 -7.022070736 -3.645 -0.2679292645 1
1 - 3 -2.682070736 0.695 4.072070736 0
3 - 2 -8.086523599 -4.34 -0.5934764007 1
3 - 1 -4.072070736 -0.695 2.682070736 0
"""
sas_extreme = """
Comparison LowerCL Difference UpperCL Significance
2 - 3 1.561605075 4.34 7.118394925 1
2 - 1 2.740784879 6.08 9.419215121 1
3 - 2 -7.118394925 -4.34 -1.561605075 1
3 - 1 -1.964526566 1.74 5.444526566 0
1 - 2 -9.419215121 -6.08 -2.740784879 1
1 - 3 -5.444526566 -1.74 1.964526566 0
"""
@pytest.mark.parametrize("data,res_expect_str,atol",
((data_same_size, sas_same_size, 1e-4),
(data_diff_size, sas_diff_size, 1e-4),
(extreme_size, sas_extreme, 1e-10),
),
ids=["equal size sample",
"unequal sample size",
"extreme sample size differences"])
def test_compare_sas(self, data, res_expect_str, atol):
'''
SAS code used to generate results for each sample:
DATA ACHE;
INPUT BRAND RELIEF;
CARDS;
1 24.5
...
3 27.8
;
ods graphics on; ODS RTF;ODS LISTING CLOSE;
PROC ANOVA DATA=ACHE;
CLASS BRAND;
MODEL RELIEF=BRAND;
MEANS BRAND/TUKEY CLDIFF;
TITLE 'COMPARE RELIEF ACROSS MEDICINES - ANOVA EXAMPLE';
ods output CLDiffs =tc;
proc print data=tc;
format LowerCL 17.16 UpperCL 17.16 Difference 17.16;
title "Output with many digits";
RUN;
QUIT;
ODS RTF close;
ODS LISTING;
'''
res_expect = np.asarray(res_expect_str.replace(" - ", " ").split()[5:],
dtype=float).reshape((6, 6))
res_tukey = stats.tukey_hsd(*data)
conf = res_tukey.confidence_interval()
# loop over the comparisons
for i, j, l, s, h, sig in res_expect:
i, j = int(i) - 1, int(j) - 1
assert_allclose(conf.low[i, j], l, atol=atol)
assert_allclose(res_tukey.statistic[i, j], s, atol=atol)
assert_allclose(conf.high[i, j], h, atol=atol)
assert_allclose((res_tukey.pvalue[i, j] <= .05), sig == 1)
matlab_sm_siz = """
1 2 -8.2491590248597 -4.6 -0.9508409751403 0.0144483269098
1 3 -3.9091590248597 -0.26 3.3891590248597 0.9803107240900
2 3 0.6908409751403 4.34 7.9891590248597 0.0203311368795
"""
matlab_diff_sz = """
1 2 -7.02207069748501 -3.645 -0.26792930251500 0.03371498443080
1 3 -2.68207069748500 0.695 4.07207069748500 0.85572267328807
2 3 0.59347644287720 4.34 8.08652355712281 0.02259047020620
"""
@pytest.mark.parametrize("data,res_expect_str,atol",
((data_same_size, matlab_sm_siz, 1e-12),
(data_diff_size, matlab_diff_sz, 1e-7)),
ids=["equal size sample",
"unequal size sample"])
def test_compare_matlab(self, data, res_expect_str, atol):
"""
vals = [24.5, 23.5, 26.4, 27.1, 29.9, 28.4, 34.2, 29.5, 32.2, 30.1,
26.1, 28.3, 24.3, 26.2, 27.8]
names = {'zero', 'zero', 'zero', 'zero', 'zero', 'one', 'one', 'one',
'one', 'one', 'two', 'two', 'two', 'two', 'two'}
[p,t,stats] = anova1(vals,names,"off");
[c,m,h,nms] = multcompare(stats, "CType","hsd");
"""
res_expect = np.asarray(res_expect_str.split(),
dtype=float).reshape((3, 6))
res_tukey = stats.tukey_hsd(*data)
conf = res_tukey.confidence_interval()
# loop over the comparisons
for i, j, l, s, h, p in res_expect:
i, j = int(i) - 1, int(j) - 1
assert_allclose(conf.low[i, j], l, atol=atol)
assert_allclose(res_tukey.statistic[i, j], s, atol=atol)
assert_allclose(conf.high[i, j], h, atol=atol)
assert_allclose(res_tukey.pvalue[i, j], p, atol=atol)
def test_compare_r(self):
"""
Testing against results and p-values from R:
from: https://www.rdocumentation.org/packages/stats/versions/3.6.2/
topics/TukeyHSD
> require(graphics)
> summary(fm1 <- aov(breaks ~ tension, data = warpbreaks))
> TukeyHSD(fm1, "tension", ordered = TRUE)
> plot(TukeyHSD(fm1, "tension"))
Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered
Fit: aov(formula = breaks ~ tension, data = warpbreaks)
$tension
"""
str_res = """
diff lwr upr p adj
2 - 3 4.722222 -4.8376022 14.28205 0.4630831
1 - 3 14.722222 5.1623978 24.28205 0.0014315
1 - 2 10.000000 0.4401756 19.55982 0.0384598
"""
res_expect = np.asarray(str_res.replace(" - ", " ").split()[5:],
dtype=float).reshape((3, 6))
data = ([26, 30, 54, 25, 70, 52, 51, 26, 67,
27, 14, 29, 19, 29, 31, 41, 20, 44],
[18, 21, 29, 17, 12, 18, 35, 30, 36,
42, 26, 19, 16, 39, 28, 21, 39, 29],
[36, 21, 24, 18, 10, 43, 28, 15, 26,
20, 21, 24, 17, 13, 15, 15, 16, 28])
res_tukey = stats.tukey_hsd(*data)
conf = res_tukey.confidence_interval()
# loop over the comparisons
for i, j, s, l, h, p in res_expect:
i, j = int(i) - 1, int(j) - 1
# atols are set to the number of digits present in the r result.
assert_allclose(conf.low[i, j], l, atol=1e-7)
assert_allclose(res_tukey.statistic[i, j], s, atol=1e-6)
assert_allclose(conf.high[i, j], h, atol=1e-5)
assert_allclose(res_tukey.pvalue[i, j], p, atol=1e-7)
def test_engineering_stat_handbook(self):
'''
Example sourced from:
https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm
'''
group1 = [6.9, 5.4, 5.8, 4.6, 4.0]
group2 = [8.3, 6.8, 7.8, 9.2, 6.5]
group3 = [8.0, 10.5, 8.1, 6.9, 9.3]
group4 = [5.8, 3.8, 6.1, 5.6, 6.2]
res = stats.tukey_hsd(group1, group2, group3, group4)
conf = res.confidence_interval()
lower = np.asarray([
[0, 0, 0, -2.25],
[.29, 0, -2.93, .13],
[1.13, 0, 0, .97],
[0, 0, 0, 0]])
upper = np.asarray([
[0, 0, 0, 1.93],
[4.47, 0, 1.25, 4.31],
[5.31, 0, 0, 5.15],
[0, 0, 0, 0]])
for (i, j) in [(1, 0), (2, 0), (0, 3), (1, 2), (2, 3)]:
assert_allclose(conf.low[i, j], lower[i, j], atol=1e-2)
assert_allclose(conf.high[i, j], upper[i, j], atol=1e-2)
def test_rand_symm(self):
# test some expected identities of the results
np.random.seed(1234)
data = np.random.rand(3, 100)
res = stats.tukey_hsd(*data)
conf = res.confidence_interval()
# the confidence intervals should be negated symmetric of each other
assert_equal(conf.low, -conf.high.T)
# the `high` and `low` center diagonals should be the same since the
# mean difference in a self comparison is 0.
assert_equal(np.diagonal(conf.high), conf.high[0, 0])
assert_equal(np.diagonal(conf.low), conf.low[0, 0])
# statistic array should be antisymmetric with zeros on the diagonal
assert_equal(res.statistic, -res.statistic.T)
assert_equal(np.diagonal(res.statistic), 0)
# p-values should be symmetric and 1 when compared to itself
assert_equal(res.pvalue, res.pvalue.T)
assert_equal(np.diagonal(res.pvalue), 1)
def test_no_inf(self):
with assert_raises(ValueError, match="...must be finite."):
stats.tukey_hsd([1, 2, 3], [2, np.inf], [6, 7, 3])
def test_is_1d(self):
with assert_raises(ValueError, match="...must be one-dimensional"):
stats.tukey_hsd([[1, 2], [2, 3]], [2, 5], [5, 23, 6])
def test_no_empty(self):
with assert_raises(ValueError, match="...must be greater than one"):
stats.tukey_hsd([], [2, 5], [4, 5, 6])
@pytest.mark.parametrize("nargs", (0, 1))
def test_not_enough_treatments(self, nargs):
with assert_raises(ValueError, match="...more than 1 treatment."):
stats.tukey_hsd(*([[23, 7, 3]] * nargs))
@pytest.mark.parametrize("cl", [-.5, 0, 1, 2])
def test_conf_level_invalid(self, cl):
with assert_raises(ValueError, match="must be between 0 and 1"):
r = stats.tukey_hsd([23, 7, 3], [3, 4], [9, 4])
r.confidence_interval(cl)
def test_2_args_ttest(self):
# that with 2 treatments the `pvalue` is equal to that of `ttest_ind`
res_tukey = stats.tukey_hsd(*self.data_diff_size[:2])
res_ttest = stats.ttest_ind(*self.data_diff_size[:2])
assert_allclose(res_ttest.pvalue, res_tukey.pvalue[0, 1])
assert_allclose(res_ttest.pvalue, res_tukey.pvalue[1, 0])
class TestPoissonMeansTest:
@pytest.mark.parametrize("c1, n1, c2, n2, p_expect", (
# example from [1], 6. Illustrative examples: Example 1
[0, 100, 3, 100, 0.0884],
[2, 100, 6, 100, 0.1749]
))
def test_paper_examples(self, c1, n1, c2, n2, p_expect):
res = stats.poisson_means_test(c1, n1, c2, n2)
assert_allclose(res.pvalue, p_expect, atol=1e-4)
@pytest.mark.parametrize("c1, n1, c2, n2, p_expect, alt, d", (
# These test cases are produced by the wrapped fortran code from the
# original authors. Using a slightly modified version of this fortran,
# found here, https://github.com/nolanbconaway/poisson-etest,
# additional tests were created.
[20, 10, 20, 10, 0.9999997568929630, 'two-sided', 0],
[10, 10, 10, 10, 0.9999998403241203, 'two-sided', 0],
[50, 15, 1, 1, 0.09920321053409643, 'two-sided', .05],
[3, 100, 20, 300, 0.12202725450896404, 'two-sided', 0],
[3, 12, 4, 20, 0.40416087318539173, 'greater', 0],
[4, 20, 3, 100, 0.008053640402974236, 'greater', 0],
# publishing paper does not include a `less` alternative,
# so it was calculated with switched argument order and
# alternative="greater"
[4, 20, 3, 10, 0.3083216325432898, 'less', 0],
[1, 1, 50, 15, 0.09322998607245102, 'less', 0]
))
def test_fortran_authors(self, c1, n1, c2, n2, p_expect, alt, d):
res = stats.poisson_means_test(c1, n1, c2, n2, alternative=alt, diff=d)
assert_allclose(res.pvalue, p_expect, atol=2e-6, rtol=1e-16)
def test_different_results(self):
# The implementation in Fortran is known to break down at higher
# counts and observations, so we expect different results. By
# inspection we can infer the p-value to be near one.
count1, count2 = 10000, 10000
nobs1, nobs2 = 10000, 10000
res = stats.poisson_means_test(count1, nobs1, count2, nobs2)
assert_allclose(res.pvalue, 1)
def test_less_than_zero_lambda_hat2(self):
# demonstrates behavior that fixes a known fault from original Fortran.
# p-value should clearly be near one.
count1, count2 = 0, 0
nobs1, nobs2 = 1, 1
res = stats.poisson_means_test(count1, nobs1, count2, nobs2)
assert_allclose(res.pvalue, 1)
def test_input_validation(self):
count1, count2 = 0, 0
nobs1, nobs2 = 1, 1
# test non-integral events
message = '`k1` and `k2` must be integers.'
with assert_raises(TypeError, match=message):
stats.poisson_means_test(.7, nobs1, count2, nobs2)
with assert_raises(TypeError, match=message):
stats.poisson_means_test(count1, nobs1, .7, nobs2)
# test negative events
message = '`k1` and `k2` must be greater than or equal to 0.'
with assert_raises(ValueError, match=message):
stats.poisson_means_test(-1, nobs1, count2, nobs2)
with assert_raises(ValueError, match=message):
stats.poisson_means_test(count1, nobs1, -1, nobs2)
# test negative sample size
message = '`n1` and `n2` must be greater than 0.'
with assert_raises(ValueError, match=message):
stats.poisson_means_test(count1, -1, count2, nobs2)
with assert_raises(ValueError, match=message):
stats.poisson_means_test(count1, nobs1, count2, -1)
# test negative difference
message = 'diff must be greater than or equal to 0.'
with assert_raises(ValueError, match=message):
stats.poisson_means_test(count1, nobs1, count2, nobs2, diff=-1)
# test invalid alternative
message = 'Alternative must be one of ...'
with assert_raises(ValueError, match=message):
stats.poisson_means_test(1, 2, 1, 2, alternative='error')
class TestBWSTest:
def test_bws_input_validation(self):
rng = np.random.default_rng(4571775098104213308)
x, y = rng.random(size=(2, 7))
message = '`x` and `y` must be exactly one-dimensional.'
with pytest.raises(ValueError, match=message):
stats.bws_test([x, x], [y, y])
message = '`x` and `y` must not contain NaNs.'
with pytest.raises(ValueError, match=message):
stats.bws_test([np.nan], y)
message = '`x` and `y` must be of nonzero size.'
with pytest.raises(ValueError, match=message):
stats.bws_test(x, [])
message = 'alternative` must be one of...'
with pytest.raises(ValueError, match=message):
stats.bws_test(x, y, alternative='ekki-ekki')
message = 'method` must be an instance of...'
with pytest.raises(ValueError, match=message):
stats.bws_test(x, y, method=42)
def test_against_published_reference(self):
# Test against Example 2 in bws_test Reference [1], pg 9
# https://link.springer.com/content/pdf/10.1007/BF02762032.pdf
x = [1, 2, 3, 4, 6, 7, 8]
y = [5, 9, 10, 11, 12, 13, 14]
res = stats.bws_test(x, y, alternative='two-sided')
assert_allclose(res.statistic, 5.132, atol=1e-3)
assert_equal(res.pvalue, 10/3432)
@pytest.mark.parametrize(('alternative', 'statistic', 'pvalue'),
[('two-sided', 1.7510204081633, 0.1264422777777),
('less', -1.7510204081633, 0.05754662004662),
('greater', -1.7510204081633, 0.9424533799534)])
def test_against_R(self, alternative, statistic, pvalue):
# Test against R library BWStest function bws_test
# library(BWStest)
# options(digits=16)
# x = c(...)
# y = c(...)
# bws_test(x, y, alternative='two.sided')
rng = np.random.default_rng(4571775098104213308)
x, y = rng.random(size=(2, 7))
res = stats.bws_test(x, y, alternative=alternative)
assert_allclose(res.statistic, statistic, rtol=1e-13)
assert_allclose(res.pvalue, pvalue, atol=1e-2, rtol=1e-1)
@pytest.mark.parametrize(('alternative', 'statistic', 'pvalue'),
[('two-sided', 1.142629265891, 0.2903950180801),
('less', 0.99629665877411, 0.8545660222131),
('greater', 0.99629665877411, 0.1454339777869)])
def test_against_R_imbalanced(self, alternative, statistic, pvalue):
# Test against R library BWStest function bws_test
# library(BWStest)
# options(digits=16)
# x = c(...)
# y = c(...)
# bws_test(x, y, alternative='two.sided')
rng = np.random.default_rng(5429015622386364034)
x = rng.random(size=9)
y = rng.random(size=8)
res = stats.bws_test(x, y, alternative=alternative)
assert_allclose(res.statistic, statistic, rtol=1e-13)
assert_allclose(res.pvalue, pvalue, atol=1e-2, rtol=1e-1)
def test_method(self):
# Test that `method` parameter has the desired effect
rng = np.random.default_rng(1520514347193347862)
x, y = rng.random(size=(2, 10))
rng = np.random.default_rng(1520514347193347862)
method = stats.PermutationMethod(n_resamples=10, rng=rng)
res1 = stats.bws_test(x, y, method=method)
assert len(res1.null_distribution) == 10
rng = np.random.default_rng(1520514347193347862)
method = stats.PermutationMethod(n_resamples=10, rng=rng)
res2 = stats.bws_test(x, y, method=method)
assert_allclose(res1.null_distribution, res2.null_distribution)
rng = np.random.default_rng(5205143471933478621)
method = stats.PermutationMethod(n_resamples=10, rng=rng)
res3 = stats.bws_test(x, y, method=method)
assert not np.allclose(res3.null_distribution, res1.null_distribution)
def test_directions(self):
# Sanity check of the sign of the one-sided statistic
rng = np.random.default_rng(1520514347193347862)
x = rng.random(size=5)
y = x - 1
res = stats.bws_test(x, y, alternative='greater')
assert res.statistic > 0
assert_equal(res.pvalue, 1 / len(res.null_distribution))
res = stats.bws_test(x, y, alternative='less')
assert res.statistic > 0
assert_equal(res.pvalue, 1)
res = stats.bws_test(y, x, alternative='less')
assert res.statistic < 0
assert_equal(res.pvalue, 1 / len(res.null_distribution))
res = stats.bws_test(y, x, alternative='greater')
assert res.statistic < 0
assert_equal(res.pvalue, 1)
|