File size: 20,473 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
from scipy import stats, linalg, integrate
import numpy as np
from numpy.testing import (assert_almost_equal, assert_, assert_equal,
assert_array_almost_equal,
assert_array_almost_equal_nulp, assert_allclose)
import pytest
from pytest import raises as assert_raises
def test_kde_1d():
#some basic tests comparing to normal distribution
np.random.seed(8765678)
n_basesample = 500
xn = np.random.randn(n_basesample)
xnmean = xn.mean()
xnstd = xn.std(ddof=1)
# get kde for original sample
gkde = stats.gaussian_kde(xn)
# evaluate the density function for the kde for some points
xs = np.linspace(-7,7,501)
kdepdf = gkde.evaluate(xs)
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
intervall = xs[1] - xs[0]
assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01)
prob1 = gkde.integrate_box_1d(xnmean, np.inf)
prob2 = gkde.integrate_box_1d(-np.inf, xnmean)
assert_almost_equal(prob1, 0.5, decimal=1)
assert_almost_equal(prob2, 0.5, decimal=1)
assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13)
assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13)
assert_almost_equal(gkde.integrate_kde(gkde),
(kdepdf**2).sum()*intervall, decimal=2)
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
(kdepdf*normpdf).sum()*intervall, decimal=2)
def test_kde_1d_weighted():
#some basic tests comparing to normal distribution
np.random.seed(8765678)
n_basesample = 500
xn = np.random.randn(n_basesample)
wn = np.random.rand(n_basesample)
xnmean = np.average(xn, weights=wn)
xnstd = np.sqrt(np.average((xn-xnmean)**2, weights=wn))
# get kde for original sample
gkde = stats.gaussian_kde(xn, weights=wn)
# evaluate the density function for the kde for some points
xs = np.linspace(-7,7,501)
kdepdf = gkde.evaluate(xs)
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
intervall = xs[1] - xs[0]
assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01)
prob1 = gkde.integrate_box_1d(xnmean, np.inf)
prob2 = gkde.integrate_box_1d(-np.inf, xnmean)
assert_almost_equal(prob1, 0.5, decimal=1)
assert_almost_equal(prob2, 0.5, decimal=1)
assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13)
assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13)
assert_almost_equal(gkde.integrate_kde(gkde),
(kdepdf**2).sum()*intervall, decimal=2)
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
(kdepdf*normpdf).sum()*intervall, decimal=2)
@pytest.mark.xslow
def test_kde_2d():
#some basic tests comparing to normal distribution
np.random.seed(8765678)
n_basesample = 500
mean = np.array([1.0, 3.0])
covariance = np.array([[1.0, 2.0], [2.0, 6.0]])
# Need transpose (shape (2, 500)) for kde
xn = np.random.multivariate_normal(mean, covariance, size=n_basesample).T
# get kde for original sample
gkde = stats.gaussian_kde(xn)
# evaluate the density function for the kde for some points
x, y = np.mgrid[-7:7:500j, -7:7:500j]
grid_coords = np.vstack([x.ravel(), y.ravel()])
kdepdf = gkde.evaluate(grid_coords)
kdepdf = kdepdf.reshape(500, 500)
normpdf = stats.multivariate_normal.pdf(np.dstack([x, y]),
mean=mean, cov=covariance)
intervall = y.ravel()[1] - y.ravel()[0]
assert_(np.sum((kdepdf - normpdf)**2) * (intervall**2) < 0.01)
small = -1e100
large = 1e100
prob1 = gkde.integrate_box([small, mean[1]], [large, large])
prob2 = gkde.integrate_box([small, small], [large, mean[1]])
assert_almost_equal(prob1, 0.5, decimal=1)
assert_almost_equal(prob2, 0.5, decimal=1)
assert_almost_equal(gkde.integrate_kde(gkde),
(kdepdf**2).sum()*(intervall**2), decimal=2)
assert_almost_equal(gkde.integrate_gaussian(mean, covariance),
(kdepdf*normpdf).sum()*(intervall**2), decimal=2)
@pytest.mark.xslow
def test_kde_2d_weighted():
#some basic tests comparing to normal distribution
np.random.seed(8765678)
n_basesample = 500
mean = np.array([1.0, 3.0])
covariance = np.array([[1.0, 2.0], [2.0, 6.0]])
# Need transpose (shape (2, 500)) for kde
xn = np.random.multivariate_normal(mean, covariance, size=n_basesample).T
wn = np.random.rand(n_basesample)
# get kde for original sample
gkde = stats.gaussian_kde(xn, weights=wn)
# evaluate the density function for the kde for some points
x, y = np.mgrid[-7:7:500j, -7:7:500j]
grid_coords = np.vstack([x.ravel(), y.ravel()])
kdepdf = gkde.evaluate(grid_coords)
kdepdf = kdepdf.reshape(500, 500)
normpdf = stats.multivariate_normal.pdf(np.dstack([x, y]),
mean=mean, cov=covariance)
intervall = y.ravel()[1] - y.ravel()[0]
assert_(np.sum((kdepdf - normpdf)**2) * (intervall**2) < 0.01)
small = -1e100
large = 1e100
prob1 = gkde.integrate_box([small, mean[1]], [large, large])
prob2 = gkde.integrate_box([small, small], [large, mean[1]])
assert_almost_equal(prob1, 0.5, decimal=1)
assert_almost_equal(prob2, 0.5, decimal=1)
assert_almost_equal(gkde.integrate_kde(gkde),
(kdepdf**2).sum()*(intervall**2), decimal=2)
assert_almost_equal(gkde.integrate_gaussian(mean, covariance),
(kdepdf*normpdf).sum()*(intervall**2), decimal=2)
def test_kde_bandwidth_method():
def scotts_factor(kde_obj):
"""Same as default, just check that it works."""
return np.power(kde_obj.n, -1./(kde_obj.d+4))
np.random.seed(8765678)
n_basesample = 50
xn = np.random.randn(n_basesample)
# Default
gkde = stats.gaussian_kde(xn)
# Supply a callable
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
# Supply a scalar
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)
xs = np.linspace(-7,7,51)
kdepdf = gkde.evaluate(xs)
kdepdf2 = gkde2.evaluate(xs)
assert_almost_equal(kdepdf, kdepdf2)
kdepdf3 = gkde3.evaluate(xs)
assert_almost_equal(kdepdf, kdepdf3)
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')
def test_kde_bandwidth_method_weighted():
def scotts_factor(kde_obj):
"""Same as default, just check that it works."""
return np.power(kde_obj.neff, -1./(kde_obj.d+4))
np.random.seed(8765678)
n_basesample = 50
xn = np.random.randn(n_basesample)
# Default
gkde = stats.gaussian_kde(xn)
# Supply a callable
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
# Supply a scalar
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)
xs = np.linspace(-7,7,51)
kdepdf = gkde.evaluate(xs)
kdepdf2 = gkde2.evaluate(xs)
assert_almost_equal(kdepdf, kdepdf2)
kdepdf3 = gkde3.evaluate(xs)
assert_almost_equal(kdepdf, kdepdf3)
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')
# Subclasses that should stay working (extracted from various sources).
# Unfortunately the earlier design of gaussian_kde made it necessary for users
# to create these kinds of subclasses, or call _compute_covariance() directly.
class _kde_subclass1(stats.gaussian_kde):
def __init__(self, dataset):
self.dataset = np.atleast_2d(dataset)
self.d, self.n = self.dataset.shape
self.covariance_factor = self.scotts_factor
self._compute_covariance()
class _kde_subclass2(stats.gaussian_kde):
def __init__(self, dataset):
self.covariance_factor = self.scotts_factor
super().__init__(dataset)
class _kde_subclass4(stats.gaussian_kde):
def covariance_factor(self):
return 0.5 * self.silverman_factor()
def test_gaussian_kde_subclassing():
x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
xs = np.linspace(-10, 10, num=50)
# gaussian_kde itself
kde = stats.gaussian_kde(x1)
ys = kde(xs)
# subclass 1
kde1 = _kde_subclass1(x1)
y1 = kde1(xs)
assert_array_almost_equal_nulp(ys, y1, nulp=10)
# subclass 2
kde2 = _kde_subclass2(x1)
y2 = kde2(xs)
assert_array_almost_equal_nulp(ys, y2, nulp=10)
# subclass 3 was removed because we have no obligation to maintain support
# for user invocation of private methods
# subclass 4
kde4 = _kde_subclass4(x1)
y4 = kde4(x1)
y_expected = [0.06292987, 0.06346938, 0.05860291, 0.08657652, 0.07904017]
assert_array_almost_equal(y_expected, y4, decimal=6)
# Not a subclass, but check for use of _compute_covariance()
kde5 = kde
kde5.covariance_factor = lambda: kde.factor
kde5._compute_covariance()
y5 = kde5(xs)
assert_array_almost_equal_nulp(ys, y5, nulp=10)
def test_gaussian_kde_covariance_caching():
x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
xs = np.linspace(-10, 10, num=5)
# These expected values are from scipy 0.10, before some changes to
# gaussian_kde. They were not compared with any external reference.
y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475]
# Set the bandwidth, then reset it to the default.
kde = stats.gaussian_kde(x1)
kde.set_bandwidth(bw_method=0.5)
kde.set_bandwidth(bw_method='scott')
y2 = kde(xs)
assert_array_almost_equal(y_expected, y2, decimal=7)
def test_gaussian_kde_monkeypatch():
"""Ugly, but people may rely on this. See scipy pull request 123,
specifically the linked ML thread "Width of the Gaussian in stats.kde".
If it is necessary to break this later on, that is to be discussed on ML.
"""
x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
xs = np.linspace(-10, 10, num=50)
# The old monkeypatched version to get at Silverman's Rule.
kde = stats.gaussian_kde(x1)
kde.covariance_factor = kde.silverman_factor
kde._compute_covariance()
y1 = kde(xs)
# The new saner version.
kde2 = stats.gaussian_kde(x1, bw_method='silverman')
y2 = kde2(xs)
assert_array_almost_equal_nulp(y1, y2, nulp=10)
def test_kde_integer_input():
"""Regression test for #1181."""
x1 = np.arange(5)
kde = stats.gaussian_kde(x1)
y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721]
assert_array_almost_equal(kde(x1), y_expected, decimal=6)
_ftypes = ['float32', 'float64', 'float96', 'float128', 'int32', 'int64']
@pytest.mark.parametrize("bw_type", _ftypes + ["scott", "silverman"])
@pytest.mark.parametrize("dtype", _ftypes)
def test_kde_output_dtype(dtype, bw_type):
# Check whether the datatypes are available
dtype = getattr(np, dtype, None)
if bw_type in ["scott", "silverman"]:
bw = bw_type
else:
bw_type = getattr(np, bw_type, None)
bw = bw_type(3) if bw_type else None
if any(dt is None for dt in [dtype, bw]):
pytest.skip()
weights = np.arange(5, dtype=dtype)
dataset = np.arange(5, dtype=dtype)
k = stats.gaussian_kde(dataset, bw_method=bw, weights=weights)
points = np.arange(5, dtype=dtype)
result = k(points)
# weights are always cast to float64
assert result.dtype == np.result_type(dataset, points, np.float64(weights),
k.factor)
def test_pdf_logpdf_validation():
rng = np.random.default_rng(64202298293133848336925499069837723291)
xn = rng.standard_normal((2, 10))
gkde = stats.gaussian_kde(xn)
xs = rng.standard_normal((3, 10))
msg = "points have dimension 3, dataset has dimension 2"
with pytest.raises(ValueError, match=msg):
gkde.logpdf(xs)
def test_pdf_logpdf():
np.random.seed(1)
n_basesample = 50
xn = np.random.randn(n_basesample)
# Default
gkde = stats.gaussian_kde(xn)
xs = np.linspace(-15, 12, 25)
pdf = gkde.evaluate(xs)
pdf2 = gkde.pdf(xs)
assert_almost_equal(pdf, pdf2, decimal=12)
logpdf = np.log(pdf)
logpdf2 = gkde.logpdf(xs)
assert_almost_equal(logpdf, logpdf2, decimal=12)
# There are more points than data
gkde = stats.gaussian_kde(xs)
pdf = np.log(gkde.evaluate(xn))
pdf2 = gkde.logpdf(xn)
assert_almost_equal(pdf, pdf2, decimal=12)
def test_pdf_logpdf_weighted():
np.random.seed(1)
n_basesample = 50
xn = np.random.randn(n_basesample)
wn = np.random.rand(n_basesample)
# Default
gkde = stats.gaussian_kde(xn, weights=wn)
xs = np.linspace(-15, 12, 25)
pdf = gkde.evaluate(xs)
pdf2 = gkde.pdf(xs)
assert_almost_equal(pdf, pdf2, decimal=12)
logpdf = np.log(pdf)
logpdf2 = gkde.logpdf(xs)
assert_almost_equal(logpdf, logpdf2, decimal=12)
# There are more points than data
gkde = stats.gaussian_kde(xs, weights=np.random.rand(len(xs)))
pdf = np.log(gkde.evaluate(xn))
pdf2 = gkde.logpdf(xn)
assert_almost_equal(pdf, pdf2, decimal=12)
def test_marginal_1_axis():
rng = np.random.default_rng(6111799263660870475)
n_data = 50
n_dim = 10
dataset = rng.normal(size=(n_dim, n_data))
points = rng.normal(size=(n_dim, 3))
dimensions = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # dimensions to keep
kde = stats.gaussian_kde(dataset)
marginal = kde.marginal(dimensions)
pdf = marginal.pdf(points[dimensions])
def marginal_pdf_single(point):
def f(x):
x = np.concatenate(([x], point[dimensions]))
return kde.pdf(x)[0]
return integrate.quad(f, -np.inf, np.inf)[0]
def marginal_pdf(points):
return np.apply_along_axis(marginal_pdf_single, axis=0, arr=points)
ref = marginal_pdf(points)
assert_allclose(pdf, ref, rtol=1e-6)
@pytest.mark.xslow
def test_marginal_2_axis():
rng = np.random.default_rng(6111799263660870475)
n_data = 30
n_dim = 4
dataset = rng.normal(size=(n_dim, n_data))
points = rng.normal(size=(n_dim, 3))
dimensions = np.array([1, 3]) # dimensions to keep
kde = stats.gaussian_kde(dataset)
marginal = kde.marginal(dimensions)
pdf = marginal.pdf(points[dimensions])
def marginal_pdf(points):
def marginal_pdf_single(point):
def f(y, x):
w, z = point[dimensions]
x = np.array([x, w, y, z])
return kde.pdf(x)[0]
return integrate.dblquad(f, -np.inf, np.inf, -np.inf, np.inf)[0]
return np.apply_along_axis(marginal_pdf_single, axis=0, arr=points)
ref = marginal_pdf(points)
assert_allclose(pdf, ref, rtol=1e-6)
def test_marginal_iv():
# test input validation
rng = np.random.default_rng(6111799263660870475)
n_data = 30
n_dim = 4
dataset = rng.normal(size=(n_dim, n_data))
points = rng.normal(size=(n_dim, 3))
kde = stats.gaussian_kde(dataset)
# check that positive and negative indices are equivalent
dimensions1 = [-1, 1]
marginal1 = kde.marginal(dimensions1)
pdf1 = marginal1.pdf(points[dimensions1])
dimensions2 = [3, -3]
marginal2 = kde.marginal(dimensions2)
pdf2 = marginal2.pdf(points[dimensions2])
assert_equal(pdf1, pdf2)
# IV for non-integer dimensions
message = "Elements of `dimensions` must be integers..."
with pytest.raises(ValueError, match=message):
kde.marginal([1, 2.5])
# IV for uniqueness
message = "All elements of `dimensions` must be unique."
with pytest.raises(ValueError, match=message):
kde.marginal([1, 2, 2])
# IV for non-integer dimensions
message = (r"Dimensions \[-5 6\] are invalid for a distribution in 4...")
with pytest.raises(ValueError, match=message):
kde.marginal([1, -5, 6])
@pytest.mark.xslow
def test_logpdf_overflow():
# regression test for gh-12988; testing against linalg instability for
# very high dimensionality kde
np.random.seed(1)
n_dimensions = 2500
n_samples = 5000
xn = np.array([np.random.randn(n_samples) + (n) for n in range(
0, n_dimensions)])
# Default
gkde = stats.gaussian_kde(xn)
logpdf = gkde.logpdf(np.arange(0, n_dimensions))
np.testing.assert_equal(np.isneginf(logpdf[0]), False)
np.testing.assert_equal(np.isnan(logpdf[0]), False)
def test_weights_intact():
# regression test for gh-9709: weights are not modified
np.random.seed(12345)
vals = np.random.lognormal(size=100)
weights = np.random.choice([1.0, 10.0, 100], size=vals.size)
orig_weights = weights.copy()
stats.gaussian_kde(np.log10(vals), weights=weights)
assert_allclose(weights, orig_weights, atol=1e-14, rtol=1e-14)
def test_weights_integer():
# integer weights are OK, cf gh-9709 (comment)
np.random.seed(12345)
values = [0.2, 13.5, 21.0, 75.0, 99.0]
weights = [1, 2, 4, 8, 16] # a list of integers
pdf_i = stats.gaussian_kde(values, weights=weights)
pdf_f = stats.gaussian_kde(values, weights=np.float64(weights))
xn = [0.3, 11, 88]
assert_allclose(pdf_i.evaluate(xn),
pdf_f.evaluate(xn), atol=1e-14, rtol=1e-14)
def test_seed():
# Test the seed option of the resample method
def test_seed_sub(gkde_trail):
n_sample = 200
# The results should be different without using seed
samp1 = gkde_trail.resample(n_sample)
samp2 = gkde_trail.resample(n_sample)
assert_raises(
AssertionError, assert_allclose, samp1, samp2, atol=1e-13
)
# Use integer seed
seed = 831
samp1 = gkde_trail.resample(n_sample, seed=seed)
samp2 = gkde_trail.resample(n_sample, seed=seed)
assert_allclose(samp1, samp2, atol=1e-13)
# Use RandomState
rstate1 = np.random.RandomState(seed=138)
samp1 = gkde_trail.resample(n_sample, seed=rstate1)
rstate2 = np.random.RandomState(seed=138)
samp2 = gkde_trail.resample(n_sample, seed=rstate2)
assert_allclose(samp1, samp2, atol=1e-13)
# check that np.random.Generator can be used (numpy >= 1.17)
if hasattr(np.random, 'default_rng'):
# obtain a np.random.Generator object
rng = np.random.default_rng(1234)
gkde_trail.resample(n_sample, seed=rng)
np.random.seed(8765678)
n_basesample = 500
wn = np.random.rand(n_basesample)
# Test 1D case
xn_1d = np.random.randn(n_basesample)
gkde_1d = stats.gaussian_kde(xn_1d)
test_seed_sub(gkde_1d)
gkde_1d_weighted = stats.gaussian_kde(xn_1d, weights=wn)
test_seed_sub(gkde_1d_weighted)
# Test 2D case
mean = np.array([1.0, 3.0])
covariance = np.array([[1.0, 2.0], [2.0, 6.0]])
xn_2d = np.random.multivariate_normal(mean, covariance, size=n_basesample).T
gkde_2d = stats.gaussian_kde(xn_2d)
test_seed_sub(gkde_2d)
gkde_2d_weighted = stats.gaussian_kde(xn_2d, weights=wn)
test_seed_sub(gkde_2d_weighted)
def test_singular_data_covariance_gh10205():
# When the data lie in a lower-dimensional subspace and this causes
# and exception, check that the error message is informative.
rng = np.random.default_rng(2321583144339784787)
mu = np.array([1, 10, 20])
sigma = np.array([[4, 10, 0], [10, 25, 0], [0, 0, 100]])
data = rng.multivariate_normal(mu, sigma, 1000)
try: # doesn't raise any error on some platforms, and that's OK
stats.gaussian_kde(data.T)
except linalg.LinAlgError:
msg = "The data appears to lie in a lower-dimensional subspace..."
with assert_raises(linalg.LinAlgError, match=msg):
stats.gaussian_kde(data.T)
def test_fewer_points_than_dimensions_gh17436():
# When the number of points is fewer than the number of dimensions, the
# the covariance matrix would be singular, and the exception tested in
# test_singular_data_covariance_gh10205 would occur. However, sometimes
# this occurs when the user passes in the transpose of what `gaussian_kde`
# expects. This can result in a huge covariance matrix, so bail early.
rng = np.random.default_rng(2046127537594925772)
rvs = rng.multivariate_normal(np.zeros(3), np.eye(3), size=5)
message = "Number of dimensions is greater than number of samples..."
with pytest.raises(ValueError, match=message):
stats.gaussian_kde(rvs)
|