File size: 11,793 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import numpy as np
from numpy.testing import assert_equal, assert_array_equal
import pytest

from scipy.conftest import skip_xp_invalid_arg
from scipy.stats import rankdata, tiecorrect
from scipy._lib._util import np_long


class TestTieCorrect:

    def test_empty(self):
        """An empty array requires no correction, should return 1.0."""
        ranks = np.array([], dtype=np.float64)
        c = tiecorrect(ranks)
        assert_equal(c, 1.0)

    def test_one(self):
        """A single element requires no correction, should return 1.0."""
        ranks = np.array([1.0], dtype=np.float64)
        c = tiecorrect(ranks)
        assert_equal(c, 1.0)

    def test_no_correction(self):
        """Arrays with no ties require no correction."""
        ranks = np.arange(2.0)
        c = tiecorrect(ranks)
        assert_equal(c, 1.0)
        ranks = np.arange(3.0)
        c = tiecorrect(ranks)
        assert_equal(c, 1.0)

    def test_basic(self):
        """Check a few basic examples of the tie correction factor."""
        # One tie of two elements
        ranks = np.array([1.0, 2.5, 2.5])
        c = tiecorrect(ranks)
        T = 2.0
        N = ranks.size
        expected = 1.0 - (T**3 - T) / (N**3 - N)
        assert_equal(c, expected)

        # One tie of two elements (same as above, but tie is not at the end)
        ranks = np.array([1.5, 1.5, 3.0])
        c = tiecorrect(ranks)
        T = 2.0
        N = ranks.size
        expected = 1.0 - (T**3 - T) / (N**3 - N)
        assert_equal(c, expected)

        # One tie of three elements
        ranks = np.array([1.0, 3.0, 3.0, 3.0])
        c = tiecorrect(ranks)
        T = 3.0
        N = ranks.size
        expected = 1.0 - (T**3 - T) / (N**3 - N)
        assert_equal(c, expected)

        # Two ties, lengths 2 and 3.
        ranks = np.array([1.5, 1.5, 4.0, 4.0, 4.0])
        c = tiecorrect(ranks)
        T1 = 2.0
        T2 = 3.0
        N = ranks.size
        expected = 1.0 - ((T1**3 - T1) + (T2**3 - T2)) / (N**3 - N)
        assert_equal(c, expected)

    def test_overflow(self):
        ntie, k = 2000, 5
        a = np.repeat(np.arange(k), ntie)
        n = a.size  # ntie * k
        out = tiecorrect(rankdata(a))
        assert_equal(out, 1.0 - k * (ntie**3 - ntie) / float(n**3 - n))


class TestRankData:

    def test_empty(self):
        """stats.rankdata([]) should return an empty array."""
        a = np.array([], dtype=int)
        r = rankdata(a)
        assert_array_equal(r, np.array([], dtype=np.float64))
        r = rankdata([])
        assert_array_equal(r, np.array([], dtype=np.float64))

    @pytest.mark.parametrize("shape", [(0, 1, 2)])
    @pytest.mark.parametrize("axis", [None, *range(3)])
    def test_empty_multidim(self, shape, axis):
        a = np.empty(shape, dtype=int)
        r = rankdata(a, axis=axis)
        expected_shape = (0,) if axis is None else shape
        assert_equal(r.shape, expected_shape)
        assert_equal(r.dtype, np.float64)

    def test_one(self):
        """Check stats.rankdata with an array of length 1."""
        data = [100]
        a = np.array(data, dtype=int)
        r = rankdata(a)
        assert_array_equal(r, np.array([1.0], dtype=np.float64))
        r = rankdata(data)
        assert_array_equal(r, np.array([1.0], dtype=np.float64))

    def test_basic(self):
        """Basic tests of stats.rankdata."""
        data = [100, 10, 50]
        expected = np.array([3.0, 1.0, 2.0], dtype=np.float64)
        a = np.array(data, dtype=int)
        r = rankdata(a)
        assert_array_equal(r, expected)
        r = rankdata(data)
        assert_array_equal(r, expected)

        data = [40, 10, 30, 10, 50]
        expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64)
        a = np.array(data, dtype=int)
        r = rankdata(a)
        assert_array_equal(r, expected)
        r = rankdata(data)
        assert_array_equal(r, expected)

        data = [20, 20, 20, 10, 10, 10]
        expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64)
        a = np.array(data, dtype=int)
        r = rankdata(a)
        assert_array_equal(r, expected)
        r = rankdata(data)
        assert_array_equal(r, expected)
        # The docstring states explicitly that the argument is flattened.
        a2d = a.reshape(2, 3)
        r = rankdata(a2d)
        assert_array_equal(r, expected)

    @skip_xp_invalid_arg
    def test_rankdata_object_string(self):

        def min_rank(a):
            return [1 + sum(i < j for i in a) for j in a]

        def max_rank(a):
            return [sum(i <= j for i in a) for j in a]

        def ordinal_rank(a):
            return min_rank([(x, i) for i, x in enumerate(a)])

        def average_rank(a):
            return [(i + j) / 2.0 for i, j in zip(min_rank(a), max_rank(a))]

        def dense_rank(a):
            b = np.unique(a)
            return [1 + sum(i < j for i in b) for j in a]

        rankf = dict(min=min_rank, max=max_rank, ordinal=ordinal_rank,
                     average=average_rank, dense=dense_rank)

        def check_ranks(a):
            for method in 'min', 'max', 'dense', 'ordinal', 'average':
                out = rankdata(a, method=method)
                assert_array_equal(out, rankf[method](a))

        val = ['foo', 'bar', 'qux', 'xyz', 'abc', 'efg', 'ace', 'qwe', 'qaz']
        check_ranks(np.random.choice(val, 200))
        check_ranks(np.random.choice(val, 200).astype('object'))

        val = np.array([0, 1, 2, 2.718, 3, 3.141], dtype='object')
        check_ranks(np.random.choice(val, 200).astype('object'))

    def test_large_int(self):
        data = np.array([2**60, 2**60+1], dtype=np.uint64)
        r = rankdata(data)
        assert_array_equal(r, [1.0, 2.0])

        data = np.array([2**60, 2**60+1], dtype=np.int64)
        r = rankdata(data)
        assert_array_equal(r, [1.0, 2.0])

        data = np.array([2**60, -2**60+1], dtype=np.int64)
        r = rankdata(data)
        assert_array_equal(r, [2.0, 1.0])

    def test_big_tie(self):
        for n in [10000, 100000, 1000000]:
            data = np.ones(n, dtype=int)
            r = rankdata(data)
            expected_rank = 0.5 * (n + 1)
            assert_array_equal(r, expected_rank * data,
                               "test failed with n=%d" % n)

    def test_axis(self):
        data = [[0, 2, 1],
                [4, 2, 2]]
        expected0 = [[1., 1.5, 1.],
                     [2., 1.5, 2.]]
        r0 = rankdata(data, axis=0)
        assert_array_equal(r0, expected0)
        expected1 = [[1., 3., 2.],
                     [3., 1.5, 1.5]]
        r1 = rankdata(data, axis=1)
        assert_array_equal(r1, expected1)

    methods = ["average", "min", "max", "dense", "ordinal"]
    dtypes = [np.float64] + [np_long]*4

    @pytest.mark.parametrize("axis", [0, 1])
    @pytest.mark.parametrize("method, dtype", zip(methods, dtypes))
    def test_size_0_axis(self, axis, method, dtype):
        shape = (3, 0)
        data = np.zeros(shape)
        r = rankdata(data, method=method, axis=axis)
        assert_equal(r.shape, shape)
        assert_equal(r.dtype, dtype)

    @pytest.mark.parametrize('axis', range(3))
    @pytest.mark.parametrize('method', methods)
    def test_nan_policy_omit_3d(self, axis, method):
        shape = (20, 21, 22)
        rng = np.random.RandomState(23983242)

        a = rng.random(size=shape)
        i = rng.random(size=shape) < 0.4
        j = rng.random(size=shape) < 0.1
        k = rng.random(size=shape) < 0.1
        a[i] = np.nan
        a[j] = -np.inf
        a[k] - np.inf

        def rank_1d_omit(a, method):
            out = np.zeros_like(a)
            i = np.isnan(a)
            a_compressed = a[~i]
            res = rankdata(a_compressed, method)
            out[~i] = res
            out[i] = np.nan
            return out

        def rank_omit(a, method, axis):
            return np.apply_along_axis(lambda a: rank_1d_omit(a, method),
                                       axis, a)

        res = rankdata(a, method, axis=axis, nan_policy='omit')
        res0 = rank_omit(a, method, axis=axis)

        assert_array_equal(res, res0)

    def test_nan_policy_2d_axis_none(self):
        # 2 2d-array test with axis=None
        data = [[0, np.nan, 3],
                [4, 2, np.nan],
                [1, 2, 2]]
        assert_array_equal(rankdata(data, axis=None, nan_policy='omit'),
                           [1., np.nan, 6., 7., 4., np.nan, 2., 4., 4.])
        assert_array_equal(rankdata(data, axis=None, nan_policy='propagate'),
                           [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan,
                            np.nan, np.nan, np.nan])

    def test_nan_policy_raise(self):
        # 1 1d-array test
        data = [0, 2, 3, -2, np.nan, np.nan]
        with pytest.raises(ValueError, match="The input contains nan"):
            rankdata(data, nan_policy='raise')

        # 2 2d-array test
        data = [[0, np.nan, 3],
                [4, 2, np.nan],
                [np.nan, 2, 2]]

        with pytest.raises(ValueError, match="The input contains nan"):
            rankdata(data, axis=0, nan_policy="raise")

        with pytest.raises(ValueError, match="The input contains nan"):
            rankdata(data, axis=1, nan_policy="raise")

    def test_nan_policy_propagate(self):
        # 1 1d-array test
        data = [0, 2, 3, -2, np.nan, np.nan]
        assert_array_equal(rankdata(data, nan_policy='propagate'),
                           [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan])

        # 2 2d-array test
        data = [[0, np.nan, 3],
                [4, 2, np.nan],
                [1, 2, 2]]
        assert_array_equal(rankdata(data, axis=0, nan_policy='propagate'),
                           [[1, np.nan, np.nan],
                            [3, np.nan, np.nan],
                            [2, np.nan, np.nan]])
        assert_array_equal(rankdata(data, axis=1, nan_policy='propagate'),
                           [[np.nan, np.nan, np.nan],
                            [np.nan, np.nan, np.nan],
                            [1, 2.5, 2.5]])


_cases = (
    # values, method, expected
    ([], 'average', []),
    ([], 'min', []),
    ([], 'max', []),
    ([], 'dense', []),
    ([], 'ordinal', []),
    #
    ([100], 'average', [1.0]),
    ([100], 'min', [1.0]),
    ([100], 'max', [1.0]),
    ([100], 'dense', [1.0]),
    ([100], 'ordinal', [1.0]),
    #
    ([100, 100, 100], 'average', [2.0, 2.0, 2.0]),
    ([100, 100, 100], 'min', [1.0, 1.0, 1.0]),
    ([100, 100, 100], 'max', [3.0, 3.0, 3.0]),
    ([100, 100, 100], 'dense', [1.0, 1.0, 1.0]),
    ([100, 100, 100], 'ordinal', [1.0, 2.0, 3.0]),
    #
    ([100, 300, 200], 'average', [1.0, 3.0, 2.0]),
    ([100, 300, 200], 'min', [1.0, 3.0, 2.0]),
    ([100, 300, 200], 'max', [1.0, 3.0, 2.0]),
    ([100, 300, 200], 'dense', [1.0, 3.0, 2.0]),
    ([100, 300, 200], 'ordinal', [1.0, 3.0, 2.0]),
    #
    ([100, 200, 300, 200], 'average', [1.0, 2.5, 4.0, 2.5]),
    ([100, 200, 300, 200], 'min', [1.0, 2.0, 4.0, 2.0]),
    ([100, 200, 300, 200], 'max', [1.0, 3.0, 4.0, 3.0]),
    ([100, 200, 300, 200], 'dense', [1.0, 2.0, 3.0, 2.0]),
    ([100, 200, 300, 200], 'ordinal', [1.0, 2.0, 4.0, 3.0]),
    #
    ([100, 200, 300, 200, 100], 'average', [1.5, 3.5, 5.0, 3.5, 1.5]),
    ([100, 200, 300, 200, 100], 'min', [1.0, 3.0, 5.0, 3.0, 1.0]),
    ([100, 200, 300, 200, 100], 'max', [2.0, 4.0, 5.0, 4.0, 2.0]),
    ([100, 200, 300, 200, 100], 'dense', [1.0, 2.0, 3.0, 2.0, 1.0]),
    ([100, 200, 300, 200, 100], 'ordinal', [1.0, 3.0, 5.0, 4.0, 2.0]),
    #
    ([10] * 30, 'ordinal', np.arange(1.0, 31.0)),
)


def test_cases():
    for values, method, expected in _cases:
        r = rankdata(values, method=method)
        assert_array_equal(r, expected)