File size: 21,958 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_allclose
from scipy import stats
from scipy.stats import _survival
def _kaplan_meier_reference(times, censored):
# This is a very straightforward implementation of the Kaplan-Meier
# estimator that does almost everything differently from the implementation
# in stats.ecdf.
# Begin by sorting the raw data. Note that the order of death and loss
# at a given time matters: death happens first. See [2] page 461:
# "These conventions may be paraphrased by saying that deaths recorded as
# of an age t are treated as if they occurred slightly before t, and losses
# recorded as of an age t are treated as occurring slightly after t."
# We implement this by sorting the data first by time, then by `censored`,
# (which is 0 when there is a death and 1 when there is only a loss).
dtype = [('time', float), ('censored', int)]
data = np.array([(t, d) for t, d in zip(times, censored)], dtype=dtype)
data = np.sort(data, order=('time', 'censored'))
times = data['time']
died = np.logical_not(data['censored'])
m = times.size
n = np.arange(m, 0, -1) # number at risk
sf = np.cumprod((n - died) / n)
# Find the indices of the *last* occurrence of unique times. The
# corresponding entries of `times` and `sf` are what we want.
_, indices = np.unique(times[::-1], return_index=True)
ref_times = times[-indices - 1]
ref_sf = sf[-indices - 1]
return ref_times, ref_sf
class TestSurvival:
@staticmethod
def get_random_sample(rng, n_unique):
# generate random sample
unique_times = rng.random(n_unique)
# convert to `np.int32` to resolve `np.repeat` failure in 32-bit CI
repeats = rng.integers(1, 4, n_unique).astype(np.int32)
times = rng.permuted(np.repeat(unique_times, repeats))
censored = rng.random(size=times.size) > rng.random()
sample = stats.CensoredData.right_censored(times, censored)
return sample, times, censored
def test_input_validation(self):
message = '`sample` must be a one-dimensional sequence.'
with pytest.raises(ValueError, match=message):
stats.ecdf([[1]])
with pytest.raises(ValueError, match=message):
stats.ecdf(1)
message = '`sample` must not contain nan'
with pytest.raises(ValueError, match=message):
stats.ecdf([np.nan])
message = 'Currently, only uncensored and right-censored data...'
with pytest.raises(NotImplementedError, match=message):
stats.ecdf(stats.CensoredData.left_censored([1], censored=[True]))
message = 'method` must be one of...'
res = stats.ecdf([1, 2, 3])
with pytest.raises(ValueError, match=message):
res.cdf.confidence_interval(method='ekki-ekki')
with pytest.raises(ValueError, match=message):
res.sf.confidence_interval(method='shrubbery')
message = 'confidence_level` must be a scalar between 0 and 1'
with pytest.raises(ValueError, match=message):
res.cdf.confidence_interval(-1)
with pytest.raises(ValueError, match=message):
res.sf.confidence_interval([0.5, 0.6])
message = 'The confidence interval is undefined at some observations.'
with pytest.warns(RuntimeWarning, match=message):
ci = res.cdf.confidence_interval()
message = 'Confidence interval bounds do not implement...'
with pytest.raises(NotImplementedError, match=message):
ci.low.confidence_interval()
with pytest.raises(NotImplementedError, match=message):
ci.high.confidence_interval()
def test_edge_cases(self):
res = stats.ecdf([])
assert_equal(res.cdf.quantiles, [])
assert_equal(res.cdf.probabilities, [])
res = stats.ecdf([1])
assert_equal(res.cdf.quantiles, [1])
assert_equal(res.cdf.probabilities, [1])
def test_unique(self):
# Example with unique observations; `stats.ecdf` ref. [1] page 80
sample = [6.23, 5.58, 7.06, 6.42, 5.20]
res = stats.ecdf(sample)
ref_x = np.sort(np.unique(sample))
ref_cdf = np.arange(1, 6) / 5
ref_sf = 1 - ref_cdf
assert_equal(res.cdf.quantiles, ref_x)
assert_equal(res.cdf.probabilities, ref_cdf)
assert_equal(res.sf.quantiles, ref_x)
assert_equal(res.sf.probabilities, ref_sf)
def test_nonunique(self):
# Example with non-unique observations; `stats.ecdf` ref. [1] page 82
sample = [0, 2, 1, 2, 3, 4]
res = stats.ecdf(sample)
ref_x = np.sort(np.unique(sample))
ref_cdf = np.array([1/6, 2/6, 4/6, 5/6, 1])
ref_sf = 1 - ref_cdf
assert_equal(res.cdf.quantiles, ref_x)
assert_equal(res.cdf.probabilities, ref_cdf)
assert_equal(res.sf.quantiles, ref_x)
assert_equal(res.sf.probabilities, ref_sf)
def test_evaluate_methods(self):
# Test CDF and SF `evaluate` methods
rng = np.random.default_rng(1162729143302572461)
sample, _, _ = self.get_random_sample(rng, 15)
res = stats.ecdf(sample)
x = res.cdf.quantiles
xr = x + np.diff(x, append=x[-1]+1)/2 # right shifted points
assert_equal(res.cdf.evaluate(x), res.cdf.probabilities)
assert_equal(res.cdf.evaluate(xr), res.cdf.probabilities)
assert_equal(res.cdf.evaluate(x[0]-1), 0) # CDF starts at 0
assert_equal(res.cdf.evaluate([-np.inf, np.inf]), [0, 1])
assert_equal(res.sf.evaluate(x), res.sf.probabilities)
assert_equal(res.sf.evaluate(xr), res.sf.probabilities)
assert_equal(res.sf.evaluate(x[0]-1), 1) # SF starts at 1
assert_equal(res.sf.evaluate([-np.inf, np.inf]), [1, 0])
# ref. [1] page 91
t1 = [37, 43, 47, 56, 60, 62, 71, 77, 80, 81] # times
d1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] # 1 means deaths (not censored)
r1 = [1, 1, 0.875, 0.75, 0.75, 0.75, 0.75, 0.5, 0.25, 0] # reference SF
# https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
t2 = [8, 12, 26, 14, 21, 27, 8, 32, 20, 40]
d2 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
r2 = [0.9, 0.788, 0.675, 0.675, 0.54, 0.405, 0.27, 0.27, 0.27]
t3 = [33, 28, 41, 48, 48, 25, 37, 48, 25, 43]
d3 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
r3 = [1, 0.875, 0.75, 0.75, 0.6, 0.6, 0.6]
# https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/bs704_survival4.html
t4 = [24, 3, 11, 19, 24, 13, 14, 2, 18, 17,
24, 21, 12, 1, 10, 23, 6, 5, 9, 17]
d4 = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1]
r4 = [0.95, 0.95, 0.897, 0.844, 0.844, 0.844, 0.844, 0.844, 0.844,
0.844, 0.76, 0.676, 0.676, 0.676, 0.676, 0.507, 0.507]
# https://www.real-statistics.com/survival-analysis/kaplan-meier-procedure/confidence-interval-for-the-survival-function/
t5 = [3, 5, 8, 10, 5, 5, 8, 12, 15, 14, 2, 11, 10, 9, 12, 5, 8, 11]
d5 = [1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1]
r5 = [0.944, 0.889, 0.722, 0.542, 0.542, 0.542, 0.361, 0.181, 0.181, 0.181]
@pytest.mark.parametrize("case", [(t1, d1, r1), (t2, d2, r2), (t3, d3, r3),
(t4, d4, r4), (t5, d5, r5)])
def test_right_censored_against_examples(self, case):
# test `ecdf` against other implementations on example problems
times, died, ref = case
sample = stats.CensoredData.right_censored(times, np.logical_not(died))
res = stats.ecdf(sample)
assert_allclose(res.sf.probabilities, ref, atol=1e-3)
assert_equal(res.sf.quantiles, np.sort(np.unique(times)))
# test reference implementation against other implementations
res = _kaplan_meier_reference(times, np.logical_not(died))
assert_equal(res[0], np.sort(np.unique(times)))
assert_allclose(res[1], ref, atol=1e-3)
@pytest.mark.parametrize('seed', [182746786639392128, 737379171436494115,
576033618403180168, 308115465002673650])
def test_right_censored_against_reference_implementation(self, seed):
# test `ecdf` against reference implementation on random problems
rng = np.random.default_rng(seed)
n_unique = rng.integers(10, 100)
sample, times, censored = self.get_random_sample(rng, n_unique)
res = stats.ecdf(sample)
ref = _kaplan_meier_reference(times, censored)
assert_allclose(res.sf.quantiles, ref[0])
assert_allclose(res.sf.probabilities, ref[1])
# If all observations are uncensored, the KM estimate should match
# the usual estimate for uncensored data
sample = stats.CensoredData(uncensored=times)
res = _survival._ecdf_right_censored(sample) # force Kaplan-Meier
ref = stats.ecdf(times)
assert_equal(res[0], ref.sf.quantiles)
assert_allclose(res[1], ref.cdf.probabilities, rtol=1e-14)
assert_allclose(res[2], ref.sf.probabilities, rtol=1e-14)
def test_right_censored_ci(self):
# test "greenwood" confidence interval against example 4 (URL above).
times, died = self.t4, self.d4
sample = stats.CensoredData.right_censored(times, np.logical_not(died))
res = stats.ecdf(sample)
ref_allowance = [0.096, 0.096, 0.135, 0.162, 0.162, 0.162, 0.162,
0.162, 0.162, 0.162, 0.214, 0.246, 0.246, 0.246,
0.246, 0.341, 0.341]
sf_ci = res.sf.confidence_interval()
cdf_ci = res.cdf.confidence_interval()
allowance = res.sf.probabilities - sf_ci.low.probabilities
assert_allclose(allowance, ref_allowance, atol=1e-3)
assert_allclose(sf_ci.low.probabilities,
np.clip(res.sf.probabilities - allowance, 0, 1))
assert_allclose(sf_ci.high.probabilities,
np.clip(res.sf.probabilities + allowance, 0, 1))
assert_allclose(cdf_ci.low.probabilities,
np.clip(res.cdf.probabilities - allowance, 0, 1))
assert_allclose(cdf_ci.high.probabilities,
np.clip(res.cdf.probabilities + allowance, 0, 1))
# test "log-log" confidence interval against Mathematica
# e = {24, 3, 11, 19, 24, 13, 14, 2, 18, 17, 24, 21, 12, 1, 10, 23, 6, 5,
# 9, 17}
# ci = {1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0}
# R = EventData[e, ci]
# S = SurvivalModelFit[R]
# S["PointwiseIntervals", ConfidenceLevel->0.95,
# ConfidenceTransform->"LogLog"]
ref_low = [0.694743, 0.694743, 0.647529, 0.591142, 0.591142, 0.591142,
0.591142, 0.591142, 0.591142, 0.591142, 0.464605, 0.370359,
0.370359, 0.370359, 0.370359, 0.160489, 0.160489]
ref_high = [0.992802, 0.992802, 0.973299, 0.947073, 0.947073, 0.947073,
0.947073, 0.947073, 0.947073, 0.947073, 0.906422, 0.856521,
0.856521, 0.856521, 0.856521, 0.776724, 0.776724]
sf_ci = res.sf.confidence_interval(method='log-log')
assert_allclose(sf_ci.low.probabilities, ref_low, atol=1e-6)
assert_allclose(sf_ci.high.probabilities, ref_high, atol=1e-6)
def test_right_censored_ci_example_5(self):
# test "exponential greenwood" confidence interval against example 5
times, died = self.t5, self.d5
sample = stats.CensoredData.right_censored(times, np.logical_not(died))
res = stats.ecdf(sample)
lower = np.array([0.66639, 0.624174, 0.456179, 0.287822, 0.287822,
0.287822, 0.128489, 0.030957, 0.030957, 0.030957])
upper = np.array([0.991983, 0.970995, 0.87378, 0.739467, 0.739467,
0.739467, 0.603133, 0.430365, 0.430365, 0.430365])
sf_ci = res.sf.confidence_interval(method='log-log')
cdf_ci = res.cdf.confidence_interval(method='log-log')
assert_allclose(sf_ci.low.probabilities, lower, atol=1e-5)
assert_allclose(sf_ci.high.probabilities, upper, atol=1e-5)
assert_allclose(cdf_ci.low.probabilities, 1-upper, atol=1e-5)
assert_allclose(cdf_ci.high.probabilities, 1-lower, atol=1e-5)
# Test against R's `survival` library `survfit` function, 90%CI
# library(survival)
# options(digits=16)
# time = c(3, 5, 8, 10, 5, 5, 8, 12, 15, 14, 2, 11, 10, 9, 12, 5, 8, 11)
# status = c(1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1)
# res = survfit(Surv(time, status)
# ~1, conf.type = "log-log", conf.int = 0.90)
# res$time; res$lower; res$upper
low = [0.74366748406861172, 0.68582332289196246, 0.50596835651480121,
0.32913131413336727, 0.32913131413336727, 0.32913131413336727,
0.15986912028781664, 0.04499539918147757, 0.04499539918147757,
0.04499539918147757]
high = [0.9890291867238429, 0.9638835422144144, 0.8560366823086629,
0.7130167643978450, 0.7130167643978450, 0.7130167643978450,
0.5678602982997164, 0.3887616766886558, 0.3887616766886558,
0.3887616766886558]
sf_ci = res.sf.confidence_interval(method='log-log',
confidence_level=0.9)
assert_allclose(sf_ci.low.probabilities, low)
assert_allclose(sf_ci.high.probabilities, high)
# And with conf.type = "plain"
low = [0.8556383113628162, 0.7670478794850761, 0.5485720663578469,
0.3441515412527123, 0.3441515412527123, 0.3441515412527123,
0.1449184105424544, 0., 0., 0.]
high = [1., 1., 0.8958723780865975, 0.7391817920806210,
0.7391817920806210, 0.7391817920806210, 0.5773038116797676,
0.3642270254596720, 0.3642270254596720, 0.3642270254596720]
sf_ci = res.sf.confidence_interval(confidence_level=0.9)
assert_allclose(sf_ci.low.probabilities, low)
assert_allclose(sf_ci.high.probabilities, high)
def test_right_censored_ci_nans(self):
# test `ecdf` confidence interval on a problem that results in NaNs
times, died = self.t1, self.d1
sample = stats.CensoredData.right_censored(times, np.logical_not(died))
res = stats.ecdf(sample)
# Reference values generated with Matlab
# format long
# t = [37 43 47 56 60 62 71 77 80 81];
# d = [0 0 1 1 0 0 0 1 1 1];
# censored = ~d1;
# [f, x, flo, fup] = ecdf(t, 'Censoring', censored, 'Alpha', 0.05);
x = [37, 47, 56, 77, 80, 81]
flo = [np.nan, 0, 0, 0.052701464070711, 0.337611126231790, np.nan]
fup = [np.nan, 0.35417230377, 0.5500569798, 0.9472985359, 1.0, np.nan]
i = np.searchsorted(res.cdf.quantiles, x)
message = "The confidence interval is undefined at some observations"
with pytest.warns(RuntimeWarning, match=message):
ci = res.cdf.confidence_interval()
# Matlab gives NaN as the first element of the CIs. Mathematica agrees,
# but R's survfit does not. It makes some sense, but it's not what the
# formula gives, so skip that element.
assert_allclose(ci.low.probabilities[i][1:], flo[1:])
assert_allclose(ci.high.probabilities[i][1:], fup[1:])
# [f, x, flo, fup] = ecdf(t, 'Censoring', censored, 'Function',
# 'survivor', 'Alpha', 0.05);
flo = [np.nan, 0.64582769623, 0.449943020228, 0.05270146407, 0, np.nan]
fup = [np.nan, 1.0, 1.0, 0.947298535929289, 0.662388873768210, np.nan]
i = np.searchsorted(res.cdf.quantiles, x)
with pytest.warns(RuntimeWarning, match=message):
ci = res.sf.confidence_interval()
assert_allclose(ci.low.probabilities[i][1:], flo[1:])
assert_allclose(ci.high.probabilities[i][1:], fup[1:])
# With the same data, R's `survival` library `survfit` function
# doesn't produce the leading NaN
# library(survival)
# options(digits=16)
# time = c(37, 43, 47, 56, 60, 62, 71, 77, 80, 81)
# status = c(0, 0, 1, 1, 0, 0, 0, 1, 1, 1)
# res = survfit(Surv(time, status)
# ~1, conf.type = "plain", conf.int = 0.95)
# res$time
# res$lower
# res$upper
low = [1., 1., 0.64582769623233816, 0.44994302022779326,
0.44994302022779326, 0.44994302022779326, 0.44994302022779326,
0.05270146407071086, 0., np.nan]
high = [1., 1., 1., 1., 1., 1., 1., 0.9472985359292891,
0.6623888737682101, np.nan]
assert_allclose(ci.low.probabilities, low)
assert_allclose(ci.high.probabilities, high)
# It does with conf.type="log-log", as do we
with pytest.warns(RuntimeWarning, match=message):
ci = res.sf.confidence_interval(method='log-log')
low = [np.nan, np.nan, 0.38700001403202522, 0.31480711370551911,
0.31480711370551911, 0.31480711370551911, 0.31480711370551911,
0.08048821148507734, 0.01049958986680601, np.nan]
high = [np.nan, np.nan, 0.9813929658789660, 0.9308983170906275,
0.9308983170906275, 0.9308983170906275, 0.9308983170906275,
0.8263946341076415, 0.6558775085110887, np.nan]
assert_allclose(ci.low.probabilities, low)
assert_allclose(ci.high.probabilities, high)
def test_right_censored_against_uncensored(self):
rng = np.random.default_rng(7463952748044886637)
sample = rng.integers(10, 100, size=1000)
censored = np.zeros_like(sample)
censored[np.argmax(sample)] = True
res = stats.ecdf(sample)
ref = stats.ecdf(stats.CensoredData.right_censored(sample, censored))
assert_equal(res.sf.quantiles, ref.sf.quantiles)
assert_equal(res.sf._n, ref.sf._n)
assert_equal(res.sf._d[:-1], ref.sf._d[:-1]) # difference @ [-1]
assert_allclose(res.sf._sf[:-1], ref.sf._sf[:-1], rtol=1e-14)
def test_plot_iv(self):
rng = np.random.default_rng(1769658657308472721)
n_unique = rng.integers(10, 100)
sample, _, _ = self.get_random_sample(rng, n_unique)
res = stats.ecdf(sample)
try:
import matplotlib.pyplot as plt # noqa: F401
res.sf.plot() # no other errors occur
except (ModuleNotFoundError, ImportError):
message = r"matplotlib must be installed to use method `plot`."
with pytest.raises(ModuleNotFoundError, match=message):
res.sf.plot()
class TestLogRank:
@pytest.mark.parametrize(
"x, y, statistic, pvalue",
# Results validate with R
# library(survival)
# options(digits=16)
#
# futime_1 <- c(8, 12, 26, 14, 21, 27, 8, 32, 20, 40)
# fustat_1 <- c(1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
# rx_1 <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
#
# futime_2 <- c(33, 28, 41, 48, 48, 25, 37, 48, 25, 43)
# fustat_2 <- c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
# rx_2 <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
#
# futime <- c(futime_1, futime_2)
# fustat <- c(fustat_1, fustat_2)
# rx <- c(rx_1, rx_2)
#
# survdiff(formula = Surv(futime, fustat) ~ rx)
#
# Also check against another library which handle alternatives
# library(nph)
# logrank.test(futime, fustat, rx, alternative = "two.sided")
# res["test"]
[(
# https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
# uncensored, censored
[[8, 12, 26, 14, 21, 27], [8, 32, 20, 40]],
[[33, 28, 41], [48, 48, 25, 37, 48, 25, 43]],
# chi2, ["two-sided", "less", "greater"]
6.91598157449,
[0.008542873404, 0.9957285632979385, 0.004271436702061537]
),
(
# https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
[[19, 6, 5, 4], [20, 19, 17, 14]],
[[16, 21, 7], [21, 15, 18, 18, 5]],
0.835004855038,
[0.3608293039, 0.8195853480676912, 0.1804146519323088]
),
(
# Bland, Altman, "The logrank test", BMJ, 2004
# https://www.bmj.com/content/328/7447/1073.short
[[6, 13, 21, 30, 37, 38, 49, 50, 63, 79, 86, 98, 202, 219],
[31, 47, 80, 82, 82, 149]],
[[10, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 24, 25, 28, 30,
33, 35, 37, 40, 40, 46, 48, 76, 81, 82, 91, 112, 181],
[34, 40, 70]],
7.49659416854,
[0.006181578637, 0.003090789318730882, 0.9969092106812691]
)]
)
def test_log_rank(self, x, y, statistic, pvalue):
x = stats.CensoredData(uncensored=x[0], right=x[1])
y = stats.CensoredData(uncensored=y[0], right=y[1])
for i, alternative in enumerate(["two-sided", "less", "greater"]):
res = stats.logrank(x=x, y=y, alternative=alternative)
# we return z and use the normal distribution while other framework
# return z**2. The p-value are directly comparable, but we have to
# square the statistic
assert_allclose(res.statistic**2, statistic, atol=1e-10)
assert_allclose(res.pvalue, pvalue[i], atol=1e-10)
def test_raises(self):
sample = stats.CensoredData([1, 2])
msg = r"`y` must be"
with pytest.raises(ValueError, match=msg):
stats.logrank(x=sample, y=[[1, 2]])
msg = r"`x` must be"
with pytest.raises(ValueError, match=msg):
stats.logrank(x=[[1, 2]], y=sample)
|