File size: 21,958 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_allclose
from scipy import stats
from scipy.stats import _survival


def _kaplan_meier_reference(times, censored):
    # This is a very straightforward implementation of the Kaplan-Meier
    # estimator that does almost everything differently from the implementation
    # in stats.ecdf.

    # Begin by sorting the raw data. Note that the order of death and loss
    # at a given time matters: death happens first. See [2] page 461:
    # "These conventions may be paraphrased by saying that deaths recorded as
    # of an age t are treated as if they occurred slightly before t, and losses
    # recorded as of an age t are treated as occurring slightly after t."
    # We implement this by sorting the data first by time, then by `censored`,
    # (which is 0 when there is a death and 1 when there is only a loss).
    dtype = [('time', float), ('censored', int)]
    data = np.array([(t, d) for t, d in zip(times, censored)], dtype=dtype)
    data = np.sort(data, order=('time', 'censored'))
    times = data['time']
    died = np.logical_not(data['censored'])

    m = times.size
    n = np.arange(m, 0, -1)  # number at risk
    sf = np.cumprod((n - died) / n)

    # Find the indices of the *last* occurrence of unique times. The
    # corresponding entries of `times` and `sf` are what we want.
    _, indices = np.unique(times[::-1], return_index=True)
    ref_times = times[-indices - 1]
    ref_sf = sf[-indices - 1]
    return ref_times, ref_sf


class TestSurvival:

    @staticmethod
    def get_random_sample(rng, n_unique):
        # generate random sample
        unique_times = rng.random(n_unique)
        # convert to `np.int32` to resolve `np.repeat` failure in 32-bit CI
        repeats = rng.integers(1, 4, n_unique).astype(np.int32)
        times = rng.permuted(np.repeat(unique_times, repeats))
        censored = rng.random(size=times.size) > rng.random()
        sample = stats.CensoredData.right_censored(times, censored)
        return sample, times, censored

    def test_input_validation(self):
        message = '`sample` must be a one-dimensional sequence.'
        with pytest.raises(ValueError, match=message):
            stats.ecdf([[1]])
        with pytest.raises(ValueError, match=message):
            stats.ecdf(1)

        message = '`sample` must not contain nan'
        with pytest.raises(ValueError, match=message):
            stats.ecdf([np.nan])

        message = 'Currently, only uncensored and right-censored data...'
        with pytest.raises(NotImplementedError, match=message):
            stats.ecdf(stats.CensoredData.left_censored([1], censored=[True]))

        message = 'method` must be one of...'
        res = stats.ecdf([1, 2, 3])
        with pytest.raises(ValueError, match=message):
            res.cdf.confidence_interval(method='ekki-ekki')
        with pytest.raises(ValueError, match=message):
            res.sf.confidence_interval(method='shrubbery')

        message = 'confidence_level` must be a scalar between 0 and 1'
        with pytest.raises(ValueError, match=message):
            res.cdf.confidence_interval(-1)
        with pytest.raises(ValueError, match=message):
            res.sf.confidence_interval([0.5, 0.6])

        message = 'The confidence interval is undefined at some observations.'
        with pytest.warns(RuntimeWarning, match=message):
            ci = res.cdf.confidence_interval()

        message = 'Confidence interval bounds do not implement...'
        with pytest.raises(NotImplementedError, match=message):
            ci.low.confidence_interval()
        with pytest.raises(NotImplementedError, match=message):
            ci.high.confidence_interval()

    def test_edge_cases(self):
        res = stats.ecdf([])
        assert_equal(res.cdf.quantiles, [])
        assert_equal(res.cdf.probabilities, [])

        res = stats.ecdf([1])
        assert_equal(res.cdf.quantiles, [1])
        assert_equal(res.cdf.probabilities, [1])

    def test_unique(self):
        # Example with unique observations; `stats.ecdf` ref. [1] page 80
        sample = [6.23, 5.58, 7.06, 6.42, 5.20]
        res = stats.ecdf(sample)
        ref_x = np.sort(np.unique(sample))
        ref_cdf = np.arange(1, 6) / 5
        ref_sf = 1 - ref_cdf
        assert_equal(res.cdf.quantiles, ref_x)
        assert_equal(res.cdf.probabilities, ref_cdf)
        assert_equal(res.sf.quantiles, ref_x)
        assert_equal(res.sf.probabilities, ref_sf)

    def test_nonunique(self):
        # Example with non-unique observations; `stats.ecdf` ref. [1] page 82
        sample = [0, 2, 1, 2, 3, 4]
        res = stats.ecdf(sample)
        ref_x = np.sort(np.unique(sample))
        ref_cdf = np.array([1/6, 2/6, 4/6, 5/6, 1])
        ref_sf = 1 - ref_cdf
        assert_equal(res.cdf.quantiles, ref_x)
        assert_equal(res.cdf.probabilities, ref_cdf)
        assert_equal(res.sf.quantiles, ref_x)
        assert_equal(res.sf.probabilities, ref_sf)

    def test_evaluate_methods(self):
        # Test CDF and SF `evaluate` methods
        rng = np.random.default_rng(1162729143302572461)
        sample, _, _ = self.get_random_sample(rng, 15)
        res = stats.ecdf(sample)
        x = res.cdf.quantiles
        xr = x + np.diff(x, append=x[-1]+1)/2  # right shifted points

        assert_equal(res.cdf.evaluate(x), res.cdf.probabilities)
        assert_equal(res.cdf.evaluate(xr), res.cdf.probabilities)
        assert_equal(res.cdf.evaluate(x[0]-1), 0)  # CDF starts at 0
        assert_equal(res.cdf.evaluate([-np.inf, np.inf]), [0, 1])

        assert_equal(res.sf.evaluate(x), res.sf.probabilities)
        assert_equal(res.sf.evaluate(xr), res.sf.probabilities)
        assert_equal(res.sf.evaluate(x[0]-1), 1)  # SF starts at 1
        assert_equal(res.sf.evaluate([-np.inf, np.inf]), [1, 0])

    # ref. [1] page 91
    t1 = [37, 43, 47, 56, 60, 62, 71, 77, 80, 81]  # times
    d1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1]  # 1 means deaths (not censored)
    r1 = [1, 1, 0.875, 0.75, 0.75, 0.75, 0.75, 0.5, 0.25, 0]  # reference SF

    # https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
    t2 = [8, 12, 26, 14, 21, 27, 8, 32, 20, 40]
    d2 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
    r2 = [0.9, 0.788, 0.675, 0.675, 0.54, 0.405, 0.27, 0.27, 0.27]
    t3 = [33, 28, 41, 48, 48, 25, 37, 48, 25, 43]
    d3 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
    r3 = [1, 0.875, 0.75, 0.75, 0.6, 0.6, 0.6]

    # https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/bs704_survival4.html
    t4 = [24, 3, 11, 19, 24, 13, 14, 2, 18, 17,
          24, 21, 12, 1, 10, 23, 6, 5, 9, 17]
    d4 = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1]
    r4 = [0.95, 0.95, 0.897, 0.844, 0.844, 0.844, 0.844, 0.844, 0.844,
          0.844, 0.76, 0.676, 0.676, 0.676, 0.676, 0.507, 0.507]

    # https://www.real-statistics.com/survival-analysis/kaplan-meier-procedure/confidence-interval-for-the-survival-function/
    t5 = [3, 5, 8, 10, 5, 5, 8, 12, 15, 14, 2, 11, 10, 9, 12, 5, 8, 11]
    d5 = [1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1]
    r5 = [0.944, 0.889, 0.722, 0.542, 0.542, 0.542, 0.361, 0.181, 0.181, 0.181]

    @pytest.mark.parametrize("case", [(t1, d1, r1), (t2, d2, r2), (t3, d3, r3),
                                      (t4, d4, r4), (t5, d5, r5)])
    def test_right_censored_against_examples(self, case):
        # test `ecdf` against other implementations on example problems
        times, died, ref = case
        sample = stats.CensoredData.right_censored(times, np.logical_not(died))
        res = stats.ecdf(sample)
        assert_allclose(res.sf.probabilities, ref, atol=1e-3)
        assert_equal(res.sf.quantiles, np.sort(np.unique(times)))

        # test reference implementation against other implementations
        res = _kaplan_meier_reference(times, np.logical_not(died))
        assert_equal(res[0], np.sort(np.unique(times)))
        assert_allclose(res[1], ref, atol=1e-3)

    @pytest.mark.parametrize('seed', [182746786639392128, 737379171436494115,
                                      576033618403180168, 308115465002673650])
    def test_right_censored_against_reference_implementation(self, seed):
        # test `ecdf` against reference implementation on random problems
        rng = np.random.default_rng(seed)
        n_unique = rng.integers(10, 100)
        sample, times, censored = self.get_random_sample(rng, n_unique)
        res = stats.ecdf(sample)
        ref = _kaplan_meier_reference(times, censored)
        assert_allclose(res.sf.quantiles, ref[0])
        assert_allclose(res.sf.probabilities, ref[1])

        # If all observations are uncensored, the KM estimate should match
        # the usual estimate for uncensored data
        sample = stats.CensoredData(uncensored=times)
        res = _survival._ecdf_right_censored(sample)  # force Kaplan-Meier
        ref = stats.ecdf(times)
        assert_equal(res[0], ref.sf.quantiles)
        assert_allclose(res[1], ref.cdf.probabilities, rtol=1e-14)
        assert_allclose(res[2], ref.sf.probabilities, rtol=1e-14)

    def test_right_censored_ci(self):
        # test "greenwood" confidence interval against example 4 (URL above).
        times, died = self.t4, self.d4
        sample = stats.CensoredData.right_censored(times, np.logical_not(died))
        res = stats.ecdf(sample)
        ref_allowance = [0.096, 0.096, 0.135, 0.162, 0.162, 0.162, 0.162,
                         0.162, 0.162, 0.162, 0.214, 0.246, 0.246, 0.246,
                         0.246, 0.341, 0.341]

        sf_ci = res.sf.confidence_interval()
        cdf_ci = res.cdf.confidence_interval()
        allowance = res.sf.probabilities - sf_ci.low.probabilities

        assert_allclose(allowance, ref_allowance, atol=1e-3)
        assert_allclose(sf_ci.low.probabilities,
                        np.clip(res.sf.probabilities - allowance, 0, 1))
        assert_allclose(sf_ci.high.probabilities,
                        np.clip(res.sf.probabilities + allowance, 0, 1))
        assert_allclose(cdf_ci.low.probabilities,
                        np.clip(res.cdf.probabilities - allowance, 0, 1))
        assert_allclose(cdf_ci.high.probabilities,
                        np.clip(res.cdf.probabilities + allowance, 0, 1))

        # test "log-log" confidence interval against Mathematica
        # e = {24, 3, 11, 19, 24, 13, 14, 2, 18, 17, 24, 21, 12, 1, 10, 23, 6, 5,
        #      9, 17}
        # ci = {1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0}
        # R = EventData[e, ci]
        # S = SurvivalModelFit[R]
        # S["PointwiseIntervals", ConfidenceLevel->0.95,
        #   ConfidenceTransform->"LogLog"]

        ref_low = [0.694743, 0.694743, 0.647529, 0.591142, 0.591142, 0.591142,
                   0.591142, 0.591142, 0.591142, 0.591142, 0.464605, 0.370359,
                   0.370359, 0.370359, 0.370359, 0.160489, 0.160489]
        ref_high = [0.992802, 0.992802, 0.973299, 0.947073, 0.947073, 0.947073,
                    0.947073, 0.947073, 0.947073, 0.947073, 0.906422, 0.856521,
                    0.856521, 0.856521, 0.856521, 0.776724, 0.776724]
        sf_ci = res.sf.confidence_interval(method='log-log')
        assert_allclose(sf_ci.low.probabilities, ref_low, atol=1e-6)
        assert_allclose(sf_ci.high.probabilities, ref_high, atol=1e-6)

    def test_right_censored_ci_example_5(self):
        # test "exponential greenwood" confidence interval against example 5
        times, died = self.t5, self.d5
        sample = stats.CensoredData.right_censored(times, np.logical_not(died))
        res = stats.ecdf(sample)
        lower = np.array([0.66639, 0.624174, 0.456179, 0.287822, 0.287822,
                          0.287822, 0.128489, 0.030957, 0.030957, 0.030957])
        upper = np.array([0.991983, 0.970995, 0.87378, 0.739467, 0.739467,
                          0.739467, 0.603133, 0.430365, 0.430365, 0.430365])

        sf_ci = res.sf.confidence_interval(method='log-log')
        cdf_ci = res.cdf.confidence_interval(method='log-log')

        assert_allclose(sf_ci.low.probabilities, lower, atol=1e-5)
        assert_allclose(sf_ci.high.probabilities, upper, atol=1e-5)
        assert_allclose(cdf_ci.low.probabilities, 1-upper, atol=1e-5)
        assert_allclose(cdf_ci.high.probabilities, 1-lower, atol=1e-5)

        # Test against R's `survival` library `survfit` function, 90%CI
        # library(survival)
        # options(digits=16)
        # time = c(3, 5, 8, 10, 5, 5, 8, 12, 15, 14, 2, 11, 10, 9, 12, 5, 8, 11)
        # status = c(1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1)
        # res = survfit(Surv(time, status)
        # ~1, conf.type = "log-log", conf.int = 0.90)
        # res$time; res$lower; res$upper
        low = [0.74366748406861172, 0.68582332289196246, 0.50596835651480121,
               0.32913131413336727, 0.32913131413336727, 0.32913131413336727,
               0.15986912028781664, 0.04499539918147757, 0.04499539918147757,
               0.04499539918147757]
        high = [0.9890291867238429, 0.9638835422144144, 0.8560366823086629,
                0.7130167643978450, 0.7130167643978450, 0.7130167643978450,
                0.5678602982997164, 0.3887616766886558, 0.3887616766886558,
                0.3887616766886558]
        sf_ci = res.sf.confidence_interval(method='log-log',
                                           confidence_level=0.9)
        assert_allclose(sf_ci.low.probabilities, low)
        assert_allclose(sf_ci.high.probabilities, high)

        # And with conf.type = "plain"
        low = [0.8556383113628162, 0.7670478794850761, 0.5485720663578469,
               0.3441515412527123, 0.3441515412527123, 0.3441515412527123,
               0.1449184105424544, 0., 0., 0.]
        high = [1., 1., 0.8958723780865975, 0.7391817920806210,
                0.7391817920806210, 0.7391817920806210, 0.5773038116797676,
                0.3642270254596720, 0.3642270254596720, 0.3642270254596720]
        sf_ci = res.sf.confidence_interval(confidence_level=0.9)
        assert_allclose(sf_ci.low.probabilities, low)
        assert_allclose(sf_ci.high.probabilities, high)

    def test_right_censored_ci_nans(self):
        # test `ecdf` confidence interval on a problem that results in NaNs
        times, died = self.t1, self.d1
        sample = stats.CensoredData.right_censored(times, np.logical_not(died))
        res = stats.ecdf(sample)

        # Reference values generated with Matlab
        # format long
        # t = [37 43 47 56 60 62 71 77 80 81];
        # d = [0 0 1 1 0 0 0 1 1 1];
        # censored = ~d1;
        # [f, x, flo, fup] = ecdf(t, 'Censoring', censored, 'Alpha', 0.05);
        x = [37, 47, 56, 77, 80, 81]
        flo = [np.nan, 0, 0, 0.052701464070711, 0.337611126231790, np.nan]
        fup = [np.nan, 0.35417230377, 0.5500569798, 0.9472985359, 1.0, np.nan]
        i = np.searchsorted(res.cdf.quantiles, x)

        message = "The confidence interval is undefined at some observations"
        with pytest.warns(RuntimeWarning, match=message):
            ci = res.cdf.confidence_interval()

        # Matlab gives NaN as the first element of the CIs. Mathematica agrees,
        # but R's survfit does not. It makes some sense, but it's not what the
        # formula gives, so skip that element.
        assert_allclose(ci.low.probabilities[i][1:], flo[1:])
        assert_allclose(ci.high.probabilities[i][1:], fup[1:])

        # [f, x, flo, fup] = ecdf(t, 'Censoring', censored, 'Function',
        #                        'survivor', 'Alpha', 0.05);
        flo = [np.nan, 0.64582769623, 0.449943020228, 0.05270146407, 0, np.nan]
        fup = [np.nan, 1.0, 1.0, 0.947298535929289, 0.662388873768210, np.nan]
        i = np.searchsorted(res.cdf.quantiles, x)

        with pytest.warns(RuntimeWarning, match=message):
            ci = res.sf.confidence_interval()

        assert_allclose(ci.low.probabilities[i][1:], flo[1:])
        assert_allclose(ci.high.probabilities[i][1:], fup[1:])

        # With the same data, R's `survival` library `survfit` function
        # doesn't produce the leading NaN
        # library(survival)
        # options(digits=16)
        # time = c(37, 43, 47, 56, 60, 62, 71, 77, 80, 81)
        # status = c(0, 0, 1, 1, 0, 0, 0, 1, 1, 1)
        # res = survfit(Surv(time, status)
        # ~1, conf.type = "plain", conf.int = 0.95)
        # res$time
        # res$lower
        # res$upper
        low = [1., 1., 0.64582769623233816, 0.44994302022779326,
               0.44994302022779326, 0.44994302022779326, 0.44994302022779326,
               0.05270146407071086, 0., np.nan]
        high = [1., 1., 1., 1., 1., 1., 1., 0.9472985359292891,
                0.6623888737682101, np.nan]
        assert_allclose(ci.low.probabilities, low)
        assert_allclose(ci.high.probabilities, high)

        # It does with conf.type="log-log", as do we
        with pytest.warns(RuntimeWarning, match=message):
            ci = res.sf.confidence_interval(method='log-log')
        low = [np.nan, np.nan, 0.38700001403202522, 0.31480711370551911,
               0.31480711370551911, 0.31480711370551911, 0.31480711370551911,
               0.08048821148507734, 0.01049958986680601, np.nan]
        high = [np.nan, np.nan, 0.9813929658789660, 0.9308983170906275,
                0.9308983170906275, 0.9308983170906275, 0.9308983170906275,
                0.8263946341076415, 0.6558775085110887, np.nan]
        assert_allclose(ci.low.probabilities, low)
        assert_allclose(ci.high.probabilities, high)

    def test_right_censored_against_uncensored(self):
        rng = np.random.default_rng(7463952748044886637)
        sample = rng.integers(10, 100, size=1000)
        censored = np.zeros_like(sample)
        censored[np.argmax(sample)] = True
        res = stats.ecdf(sample)
        ref = stats.ecdf(stats.CensoredData.right_censored(sample, censored))
        assert_equal(res.sf.quantiles, ref.sf.quantiles)
        assert_equal(res.sf._n, ref.sf._n)
        assert_equal(res.sf._d[:-1], ref.sf._d[:-1])  # difference @ [-1]
        assert_allclose(res.sf._sf[:-1], ref.sf._sf[:-1], rtol=1e-14)

    def test_plot_iv(self):
        rng = np.random.default_rng(1769658657308472721)
        n_unique = rng.integers(10, 100)
        sample, _, _ = self.get_random_sample(rng, n_unique)
        res = stats.ecdf(sample)

        try:
            import matplotlib.pyplot as plt  # noqa: F401
            res.sf.plot()  # no other errors occur
        except (ModuleNotFoundError, ImportError):
            message = r"matplotlib must be installed to use method `plot`."
            with pytest.raises(ModuleNotFoundError, match=message):
                res.sf.plot()


class TestLogRank:

    @pytest.mark.parametrize(
        "x, y, statistic, pvalue",
        # Results validate with R
        # library(survival)
        # options(digits=16)
        #
        # futime_1 <- c(8, 12, 26, 14, 21, 27, 8, 32, 20, 40)
        # fustat_1 <- c(1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
        # rx_1 <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
        #
        # futime_2 <- c(33, 28, 41, 48, 48, 25, 37, 48, 25, 43)
        # fustat_2 <- c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
        # rx_2 <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
        #
        # futime <- c(futime_1, futime_2)
        # fustat <- c(fustat_1, fustat_2)
        # rx <- c(rx_1, rx_2)
        #
        # survdiff(formula = Surv(futime, fustat) ~ rx)
        #
        # Also check against another library which handle alternatives
        # library(nph)
        # logrank.test(futime, fustat, rx, alternative = "two.sided")
        # res["test"]
        [(
              # https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
              # uncensored, censored
              [[8, 12, 26, 14, 21, 27], [8, 32, 20, 40]],
              [[33, 28, 41], [48, 48, 25, 37, 48, 25, 43]],
              # chi2, ["two-sided", "less", "greater"]
              6.91598157449,
              [0.008542873404, 0.9957285632979385, 0.004271436702061537]
         ),
         (
              # https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
              [[19, 6, 5, 4], [20, 19, 17, 14]],
              [[16, 21, 7], [21, 15, 18, 18, 5]],
              0.835004855038,
              [0.3608293039, 0.8195853480676912, 0.1804146519323088]
         ),
         (
              # Bland, Altman, "The logrank test", BMJ, 2004
              # https://www.bmj.com/content/328/7447/1073.short
              [[6, 13, 21, 30, 37, 38, 49, 50, 63, 79, 86, 98, 202, 219],
               [31, 47, 80, 82, 82, 149]],
              [[10, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 24, 25, 28, 30,
                33, 35, 37, 40, 40, 46, 48, 76, 81, 82, 91, 112, 181],
               [34, 40, 70]],
              7.49659416854,
              [0.006181578637, 0.003090789318730882, 0.9969092106812691]
         )]
    )
    def test_log_rank(self, x, y, statistic, pvalue):
        x = stats.CensoredData(uncensored=x[0], right=x[1])
        y = stats.CensoredData(uncensored=y[0], right=y[1])

        for i, alternative in enumerate(["two-sided", "less", "greater"]):
            res = stats.logrank(x=x, y=y, alternative=alternative)

            # we return z and use the normal distribution while other framework
            # return z**2. The p-value are directly comparable, but we have to
            # square the statistic
            assert_allclose(res.statistic**2, statistic, atol=1e-10)
            assert_allclose(res.pvalue, pvalue[i], atol=1e-10)

    def test_raises(self):
        sample = stats.CensoredData([1, 2])

        msg = r"`y` must be"
        with pytest.raises(ValueError, match=msg):
            stats.logrank(x=sample, y=[[1, 2]])

        msg = r"`x` must be"
        with pytest.raises(ValueError, match=msg):
            stats.logrank(x=[[1, 2]], y=sample)