File size: 41,317 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
"""
This module contains loss classes suitable for fitting.

It is not part of the public API.
Specific losses are used for regression, binary classification or multiclass
classification.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

# Goals:
# - Provide a common private module for loss functions/classes.
# - To be used in:
#   - LogisticRegression
#   - PoissonRegressor, GammaRegressor, TweedieRegressor
#   - HistGradientBoostingRegressor, HistGradientBoostingClassifier
#   - GradientBoostingRegressor, GradientBoostingClassifier
#   - SGDRegressor, SGDClassifier
# - Replace link module of GLMs.

import numbers

import numpy as np
from scipy.special import xlogy

from ..utils import check_scalar
from ..utils.stats import _weighted_percentile
from ._loss import (
    CyAbsoluteError,
    CyExponentialLoss,
    CyHalfBinomialLoss,
    CyHalfGammaLoss,
    CyHalfMultinomialLoss,
    CyHalfPoissonLoss,
    CyHalfSquaredError,
    CyHalfTweedieLoss,
    CyHalfTweedieLossIdentity,
    CyHuberLoss,
    CyPinballLoss,
)
from .link import (
    HalfLogitLink,
    IdentityLink,
    Interval,
    LogitLink,
    LogLink,
    MultinomialLogit,
)


# Note: The shape of raw_prediction for multiclass classifications are
# - GradientBoostingClassifier: (n_samples, n_classes)
# - HistGradientBoostingClassifier: (n_classes, n_samples)
#
# Note: Instead of inheritance like
#
#    class BaseLoss(BaseLink, CyLossFunction):
#    ...
#
#    # Note: Naturally, we would inherit in the following order
#    #     class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
#    #   But because of https://github.com/cython/cython/issues/4350 we set BaseLoss as
#    #   the last one. This, of course, changes the MRO.
#    class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss):
#
# we use composition. This way we improve maintainability by avoiding the above
# mentioned Cython edge case and have easier to understand code (which method calls
# which code).
class BaseLoss:
    """Base class for a loss function of 1-dimensional targets.

    Conventions:

        - y_true.shape = sample_weight.shape = (n_samples,)
        - y_pred.shape = raw_prediction.shape = (n_samples,)
        - If is_multiclass is true (multiclass classification), then
          y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
          Note that this corresponds to the return value of decision_function.

    y_true, y_pred, sample_weight and raw_prediction must either be all float64
    or all float32.
    gradient and hessian must be either both float64 or both float32.

    Note that y_pred = link.inverse(raw_prediction).

    Specific loss classes can inherit specific link classes to satisfy
    BaseLink's abstractmethods.

    Parameters
    ----------
    sample_weight : {None, ndarray}
        If sample_weight is None, the hessian might be constant.
    n_classes : {None, int}
        The number of classes for classification, else None.

    Attributes
    ----------
    closs: CyLossFunction
    link : BaseLink
    interval_y_true : Interval
        Valid interval for y_true
    interval_y_pred : Interval
        Valid Interval for y_pred
    differentiable : bool
        Indicates whether or not loss function is differentiable in
        raw_prediction everywhere.
    need_update_leaves_values : bool
        Indicates whether decision trees in gradient boosting need to uptade
        leave values after having been fit to the (negative) gradients.
    approx_hessian : bool
        Indicates whether the hessian is approximated or exact. If,
        approximated, it should be larger or equal to the exact one.
    constant_hessian : bool
        Indicates whether the hessian is one for this loss.
    is_multiclass : bool
        Indicates whether n_classes > 2 is allowed.
    """

    # For gradient boosted decision trees:
    # This variable indicates whether the loss requires the leaves values to
    # be updated once the tree has been trained. The trees are trained to
    # predict a Newton-Raphson step (see grower._finalize_leaf()). But for
    # some losses (e.g. least absolute deviation) we need to adjust the tree
    # values to account for the "line search" of the gradient descent
    # procedure. See the original paper Greedy Function Approximation: A
    # Gradient Boosting Machine by Friedman
    # (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
    differentiable = True
    need_update_leaves_values = False
    is_multiclass = False

    def __init__(self, closs, link, n_classes=None):
        self.closs = closs
        self.link = link
        self.approx_hessian = False
        self.constant_hessian = False
        self.n_classes = n_classes
        self.interval_y_true = Interval(-np.inf, np.inf, False, False)
        self.interval_y_pred = self.link.interval_y_pred

    def in_y_true_range(self, y):
        """Return True if y is in the valid range of y_true.

        Parameters
        ----------
        y : ndarray
        """
        return self.interval_y_true.includes(y)

    def in_y_pred_range(self, y):
        """Return True if y is in the valid range of y_pred.

        Parameters
        ----------
        y : ndarray
        """
        return self.interval_y_pred.includes(y)

    def loss(
        self,
        y_true,
        raw_prediction,
        sample_weight=None,
        loss_out=None,
        n_threads=1,
    ):
        """Compute the pointwise loss value for each input.

        Parameters
        ----------
        y_true : C-contiguous array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space).
        sample_weight : None or C-contiguous array of shape (n_samples,)
            Sample weights.
        loss_out : None or C-contiguous array of shape (n_samples,)
            A location into which the result is stored. If None, a new array
            might be created.
        n_threads : int, default=1
            Might use openmp thread parallelism.

        Returns
        -------
        loss : array of shape (n_samples,)
            Element-wise loss function.
        """
        if loss_out is None:
            loss_out = np.empty_like(y_true)
        # Be graceful to shape (n_samples, 1) -> (n_samples,)
        if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
            raw_prediction = raw_prediction.squeeze(1)

        self.closs.loss(
            y_true=y_true,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            loss_out=loss_out,
            n_threads=n_threads,
        )
        return loss_out

    def loss_gradient(
        self,
        y_true,
        raw_prediction,
        sample_weight=None,
        loss_out=None,
        gradient_out=None,
        n_threads=1,
    ):
        """Compute loss and gradient w.r.t. raw_prediction for each input.

        Parameters
        ----------
        y_true : C-contiguous array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space).
        sample_weight : None or C-contiguous array of shape (n_samples,)
            Sample weights.
        loss_out : None or C-contiguous array of shape (n_samples,)
            A location into which the loss is stored. If None, a new array
            might be created.
        gradient_out : None or C-contiguous array of shape (n_samples,) or array \
            of shape (n_samples, n_classes)
            A location into which the gradient is stored. If None, a new array
            might be created.
        n_threads : int, default=1
            Might use openmp thread parallelism.

        Returns
        -------
        loss : array of shape (n_samples,)
            Element-wise loss function.

        gradient : array of shape (n_samples,) or (n_samples, n_classes)
            Element-wise gradients.
        """
        if loss_out is None:
            if gradient_out is None:
                loss_out = np.empty_like(y_true)
                gradient_out = np.empty_like(raw_prediction)
            else:
                loss_out = np.empty_like(y_true, dtype=gradient_out.dtype)
        elif gradient_out is None:
            gradient_out = np.empty_like(raw_prediction, dtype=loss_out.dtype)

        # Be graceful to shape (n_samples, 1) -> (n_samples,)
        if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
            raw_prediction = raw_prediction.squeeze(1)
        if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
            gradient_out = gradient_out.squeeze(1)

        self.closs.loss_gradient(
            y_true=y_true,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            loss_out=loss_out,
            gradient_out=gradient_out,
            n_threads=n_threads,
        )
        return loss_out, gradient_out

    def gradient(
        self,
        y_true,
        raw_prediction,
        sample_weight=None,
        gradient_out=None,
        n_threads=1,
    ):
        """Compute gradient of loss w.r.t raw_prediction for each input.

        Parameters
        ----------
        y_true : C-contiguous array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space).
        sample_weight : None or C-contiguous array of shape (n_samples,)
            Sample weights.
        gradient_out : None or C-contiguous array of shape (n_samples,) or array \
            of shape (n_samples, n_classes)
            A location into which the result is stored. If None, a new array
            might be created.
        n_threads : int, default=1
            Might use openmp thread parallelism.

        Returns
        -------
        gradient : array of shape (n_samples,) or (n_samples, n_classes)
            Element-wise gradients.
        """
        if gradient_out is None:
            gradient_out = np.empty_like(raw_prediction)

        # Be graceful to shape (n_samples, 1) -> (n_samples,)
        if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
            raw_prediction = raw_prediction.squeeze(1)
        if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
            gradient_out = gradient_out.squeeze(1)

        self.closs.gradient(
            y_true=y_true,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            gradient_out=gradient_out,
            n_threads=n_threads,
        )
        return gradient_out

    def gradient_hessian(
        self,
        y_true,
        raw_prediction,
        sample_weight=None,
        gradient_out=None,
        hessian_out=None,
        n_threads=1,
    ):
        """Compute gradient and hessian of loss w.r.t raw_prediction.

        Parameters
        ----------
        y_true : C-contiguous array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space).
        sample_weight : None or C-contiguous array of shape (n_samples,)
            Sample weights.
        gradient_out : None or C-contiguous array of shape (n_samples,) or array \
            of shape (n_samples, n_classes)
            A location into which the gradient is stored. If None, a new array
            might be created.
        hessian_out : None or C-contiguous array of shape (n_samples,) or array \
            of shape (n_samples, n_classes)
            A location into which the hessian is stored. If None, a new array
            might be created.
        n_threads : int, default=1
            Might use openmp thread parallelism.

        Returns
        -------
        gradient : arrays of shape (n_samples,) or (n_samples, n_classes)
            Element-wise gradients.

        hessian : arrays of shape (n_samples,) or (n_samples, n_classes)
            Element-wise hessians.
        """
        if gradient_out is None:
            if hessian_out is None:
                gradient_out = np.empty_like(raw_prediction)
                hessian_out = np.empty_like(raw_prediction)
            else:
                gradient_out = np.empty_like(hessian_out)
        elif hessian_out is None:
            hessian_out = np.empty_like(gradient_out)

        # Be graceful to shape (n_samples, 1) -> (n_samples,)
        if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
            raw_prediction = raw_prediction.squeeze(1)
        if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
            gradient_out = gradient_out.squeeze(1)
        if hessian_out.ndim == 2 and hessian_out.shape[1] == 1:
            hessian_out = hessian_out.squeeze(1)

        self.closs.gradient_hessian(
            y_true=y_true,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            gradient_out=gradient_out,
            hessian_out=hessian_out,
            n_threads=n_threads,
        )
        return gradient_out, hessian_out

    def __call__(self, y_true, raw_prediction, sample_weight=None, n_threads=1):
        """Compute the weighted average loss.

        Parameters
        ----------
        y_true : C-contiguous array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space).
        sample_weight : None or C-contiguous array of shape (n_samples,)
            Sample weights.
        n_threads : int, default=1
            Might use openmp thread parallelism.

        Returns
        -------
        loss : float
            Mean or averaged loss function.
        """
        return np.average(
            self.loss(
                y_true=y_true,
                raw_prediction=raw_prediction,
                sample_weight=None,
                loss_out=None,
                n_threads=n_threads,
            ),
            weights=sample_weight,
        )

    def fit_intercept_only(self, y_true, sample_weight=None):
        """Compute raw_prediction of an intercept-only model.

        This can be used as initial estimates of predictions, i.e. before the
        first iteration in fit.

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            Observed, true target values.
        sample_weight : None or array of shape (n_samples,)
            Sample weights.

        Returns
        -------
        raw_prediction : numpy scalar or array of shape (n_classes,)
            Raw predictions of an intercept-only model.
        """
        # As default, take weighted average of the target over the samples
        # axis=0 and then transform into link-scale (raw_prediction).
        y_pred = np.average(y_true, weights=sample_weight, axis=0)
        eps = 10 * np.finfo(y_pred.dtype).eps

        if self.interval_y_pred.low == -np.inf:
            a_min = None
        elif self.interval_y_pred.low_inclusive:
            a_min = self.interval_y_pred.low
        else:
            a_min = self.interval_y_pred.low + eps

        if self.interval_y_pred.high == np.inf:
            a_max = None
        elif self.interval_y_pred.high_inclusive:
            a_max = self.interval_y_pred.high
        else:
            a_max = self.interval_y_pred.high - eps

        if a_min is None and a_max is None:
            return self.link.link(y_pred)
        else:
            return self.link.link(np.clip(y_pred, a_min, a_max))

    def constant_to_optimal_zero(self, y_true, sample_weight=None):
        """Calculate term dropped in loss.

        With this term added, the loss of perfect predictions is zero.
        """
        return np.zeros_like(y_true)

    def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"):
        """Initialize arrays for gradients and hessians.

        Unless hessians are constant, arrays are initialized with undefined values.

        Parameters
        ----------
        n_samples : int
            The number of samples, usually passed to `fit()`.
        dtype : {np.float64, np.float32}, default=np.float64
            The dtype of the arrays gradient and hessian.
        order : {'C', 'F'}, default='F'
            Order of the arrays gradient and hessian. The default 'F' makes the arrays
            contiguous along samples.

        Returns
        -------
        gradient : C-contiguous array of shape (n_samples,) or array of shape \
            (n_samples, n_classes)
            Empty array (allocated but not initialized) to be used as argument
            gradient_out.
        hessian : C-contiguous array of shape (n_samples,), array of shape
            (n_samples, n_classes) or shape (1,)
            Empty (allocated but not initialized) array to be used as argument
            hessian_out.
            If constant_hessian is True (e.g. `HalfSquaredError`), the array is
            initialized to ``1``.
        """
        if dtype not in (np.float32, np.float64):
            raise ValueError(
                "Valid options for 'dtype' are np.float32 and np.float64. "
                f"Got dtype={dtype} instead."
            )

        if self.is_multiclass:
            shape = (n_samples, self.n_classes)
        else:
            shape = (n_samples,)
        gradient = np.empty(shape=shape, dtype=dtype, order=order)

        if self.constant_hessian:
            # If the hessians are constant, we consider them equal to 1.
            # - This is correct for HalfSquaredError
            # - For AbsoluteError, hessians are actually 0, but they are
            #   always ignored anyway.
            hessian = np.ones(shape=(1,), dtype=dtype)
        else:
            hessian = np.empty(shape=shape, dtype=dtype, order=order)

        return gradient, hessian


# Note: Naturally, we would inherit in the following order
#         class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
#       But because of https://github.com/cython/cython/issues/4350 we
#       set BaseLoss as the last one. This, of course, changes the MRO.
class HalfSquaredError(BaseLoss):
    """Half squared error with identity link, for regression.

    Domain:
    y_true and y_pred all real numbers

    Link:
    y_pred = raw_prediction

    For a given sample x_i, half squared error is defined as::

        loss(x_i) = 0.5 * (y_true_i - raw_prediction_i)**2

    The factor of 0.5 simplifies the computation of gradients and results in a
    unit hessian (and is consistent with what is done in LightGBM). It is also
    half the Normal distribution deviance.
    """

    def __init__(self, sample_weight=None):
        super().__init__(closs=CyHalfSquaredError(), link=IdentityLink())
        self.constant_hessian = sample_weight is None


class AbsoluteError(BaseLoss):
    """Absolute error with identity link, for regression.

    Domain:
    y_true and y_pred all real numbers

    Link:
    y_pred = raw_prediction

    For a given sample x_i, the absolute error is defined as::

        loss(x_i) = |y_true_i - raw_prediction_i|

    Note that the exact hessian = 0 almost everywhere (except at one point, therefore
    differentiable = False). Optimization routines like in HGBT, however, need a
    hessian > 0. Therefore, we assign 1.
    """

    differentiable = False
    need_update_leaves_values = True

    def __init__(self, sample_weight=None):
        super().__init__(closs=CyAbsoluteError(), link=IdentityLink())
        self.approx_hessian = True
        self.constant_hessian = sample_weight is None

    def fit_intercept_only(self, y_true, sample_weight=None):
        """Compute raw_prediction of an intercept-only model.

        This is the weighted median of the target, i.e. over the samples
        axis=0.
        """
        if sample_weight is None:
            return np.median(y_true, axis=0)
        else:
            return _weighted_percentile(y_true, sample_weight, 50)


class PinballLoss(BaseLoss):
    """Quantile loss aka pinball loss, for regression.

    Domain:
    y_true and y_pred all real numbers
    quantile in (0, 1)

    Link:
    y_pred = raw_prediction

    For a given sample x_i, the pinball loss is defined as::

        loss(x_i) = rho_{quantile}(y_true_i - raw_prediction_i)

        rho_{quantile}(u) = u * (quantile - 1_{u<0})
                          = -u *(1 - quantile)  if u < 0
                             u * quantile       if u >= 0

    Note: 2 * PinballLoss(quantile=0.5) equals AbsoluteError().

    Note that the exact hessian = 0 almost everywhere (except at one point, therefore
    differentiable = False). Optimization routines like in HGBT, however, need a
    hessian > 0. Therefore, we assign 1.

    Additional Attributes
    ---------------------
    quantile : float
        The quantile level of the quantile to be estimated. Must be in range (0, 1).
    """

    differentiable = False
    need_update_leaves_values = True

    def __init__(self, sample_weight=None, quantile=0.5):
        check_scalar(
            quantile,
            "quantile",
            target_type=numbers.Real,
            min_val=0,
            max_val=1,
            include_boundaries="neither",
        )
        super().__init__(
            closs=CyPinballLoss(quantile=float(quantile)),
            link=IdentityLink(),
        )
        self.approx_hessian = True
        self.constant_hessian = sample_weight is None

    def fit_intercept_only(self, y_true, sample_weight=None):
        """Compute raw_prediction of an intercept-only model.

        This is the weighted median of the target, i.e. over the samples
        axis=0.
        """
        if sample_weight is None:
            return np.percentile(y_true, 100 * self.closs.quantile, axis=0)
        else:
            return _weighted_percentile(
                y_true, sample_weight, 100 * self.closs.quantile
            )


class HuberLoss(BaseLoss):
    """Huber loss, for regression.

    Domain:
    y_true and y_pred all real numbers
    quantile in (0, 1)

    Link:
    y_pred = raw_prediction

    For a given sample x_i, the Huber loss is defined as::

        loss(x_i) = 1/2 * abserr**2            if abserr <= delta
                    delta * (abserr - delta/2) if abserr > delta

        abserr = |y_true_i - raw_prediction_i|
        delta = quantile(abserr, self.quantile)

    Note: HuberLoss(quantile=1) equals HalfSquaredError and HuberLoss(quantile=0)
    equals delta * (AbsoluteError() - delta/2).

    Additional Attributes
    ---------------------
    quantile : float
        The quantile level which defines the breaking point `delta` to distinguish
        between absolute error and squared error. Must be in range (0, 1).

     Reference
    ---------
    .. [1] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient
      boosting machine <10.1214/aos/1013203451>`.
      Annals of Statistics, 29, 1189-1232.
    """

    differentiable = False
    need_update_leaves_values = True

    def __init__(self, sample_weight=None, quantile=0.9, delta=0.5):
        check_scalar(
            quantile,
            "quantile",
            target_type=numbers.Real,
            min_val=0,
            max_val=1,
            include_boundaries="neither",
        )
        self.quantile = quantile  # This is better stored outside of Cython.
        super().__init__(
            closs=CyHuberLoss(delta=float(delta)),
            link=IdentityLink(),
        )
        self.approx_hessian = True
        self.constant_hessian = False

    def fit_intercept_only(self, y_true, sample_weight=None):
        """Compute raw_prediction of an intercept-only model.

        This is the weighted median of the target, i.e. over the samples
        axis=0.
        """
        # See formula before algo 4 in Friedman (2001), but we apply it to y_true,
        # not to the residual y_true - raw_prediction. An estimator like
        # HistGradientBoostingRegressor might then call it on the residual, e.g.
        # fit_intercept_only(y_true - raw_prediction).
        if sample_weight is None:
            median = np.percentile(y_true, 50, axis=0)
        else:
            median = _weighted_percentile(y_true, sample_weight, 50)
        diff = y_true - median
        term = np.sign(diff) * np.minimum(self.closs.delta, np.abs(diff))
        return median + np.average(term, weights=sample_weight)


class HalfPoissonLoss(BaseLoss):
    """Half Poisson deviance loss with log-link, for regression.

    Domain:
    y_true in non-negative real numbers
    y_pred in positive real numbers

    Link:
    y_pred = exp(raw_prediction)

    For a given sample x_i, half the Poisson deviance is defined as::

        loss(x_i) = y_true_i * log(y_true_i/exp(raw_prediction_i))
                    - y_true_i + exp(raw_prediction_i)

    Half the Poisson deviance is actually the negative log-likelihood up to
    constant terms (not involving raw_prediction) and simplifies the
    computation of the gradients.
    We also skip the constant term `y_true_i * log(y_true_i) - y_true_i`.
    """

    def __init__(self, sample_weight=None):
        super().__init__(closs=CyHalfPoissonLoss(), link=LogLink())
        self.interval_y_true = Interval(0, np.inf, True, False)

    def constant_to_optimal_zero(self, y_true, sample_weight=None):
        term = xlogy(y_true, y_true) - y_true
        if sample_weight is not None:
            term *= sample_weight
        return term


class HalfGammaLoss(BaseLoss):
    """Half Gamma deviance loss with log-link, for regression.

    Domain:
    y_true and y_pred in positive real numbers

    Link:
    y_pred = exp(raw_prediction)

    For a given sample x_i, half Gamma deviance loss is defined as::

        loss(x_i) = log(exp(raw_prediction_i)/y_true_i)
                    + y_true/exp(raw_prediction_i) - 1

    Half the Gamma deviance is actually proportional to the negative log-
    likelihood up to constant terms (not involving raw_prediction) and
    simplifies the computation of the gradients.
    We also skip the constant term `-log(y_true_i) - 1`.
    """

    def __init__(self, sample_weight=None):
        super().__init__(closs=CyHalfGammaLoss(), link=LogLink())
        self.interval_y_true = Interval(0, np.inf, False, False)

    def constant_to_optimal_zero(self, y_true, sample_weight=None):
        term = -np.log(y_true) - 1
        if sample_weight is not None:
            term *= sample_weight
        return term


class HalfTweedieLoss(BaseLoss):
    """Half Tweedie deviance loss with log-link, for regression.

    Domain:
    y_true in real numbers for power <= 0
    y_true in non-negative real numbers for 0 < power < 2
    y_true in positive real numbers for 2 <= power
    y_pred in positive real numbers
    power in real numbers

    Link:
    y_pred = exp(raw_prediction)

    For a given sample x_i, half Tweedie deviance loss with p=power is defined
    as::

        loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
                    - y_true_i * exp(raw_prediction_i)**(1-p) / (1-p)
                    + exp(raw_prediction_i)**(2-p) / (2-p)

    Taking the limits for p=0, 1, 2 gives HalfSquaredError with a log link,
    HalfPoissonLoss and HalfGammaLoss.

    We also skip constant terms, but those are different for p=0, 1, 2.
    Therefore, the loss is not continuous in `power`.

    Note furthermore that although no Tweedie distribution exists for
    0 < power < 1, it still gives a strictly consistent scoring function for
    the expectation.
    """

    def __init__(self, sample_weight=None, power=1.5):
        super().__init__(
            closs=CyHalfTweedieLoss(power=float(power)),
            link=LogLink(),
        )
        if self.closs.power <= 0:
            self.interval_y_true = Interval(-np.inf, np.inf, False, False)
        elif self.closs.power < 2:
            self.interval_y_true = Interval(0, np.inf, True, False)
        else:
            self.interval_y_true = Interval(0, np.inf, False, False)

    def constant_to_optimal_zero(self, y_true, sample_weight=None):
        if self.closs.power == 0:
            return HalfSquaredError().constant_to_optimal_zero(
                y_true=y_true, sample_weight=sample_weight
            )
        elif self.closs.power == 1:
            return HalfPoissonLoss().constant_to_optimal_zero(
                y_true=y_true, sample_weight=sample_weight
            )
        elif self.closs.power == 2:
            return HalfGammaLoss().constant_to_optimal_zero(
                y_true=y_true, sample_weight=sample_weight
            )
        else:
            p = self.closs.power
            term = np.power(np.maximum(y_true, 0), 2 - p) / (1 - p) / (2 - p)
            if sample_weight is not None:
                term *= sample_weight
            return term


class HalfTweedieLossIdentity(BaseLoss):
    """Half Tweedie deviance loss with identity link, for regression.

    Domain:
    y_true in real numbers for power <= 0
    y_true in non-negative real numbers for 0 < power < 2
    y_true in positive real numbers for 2 <= power
    y_pred in positive real numbers for power != 0
    y_pred in real numbers for power = 0
    power in real numbers

    Link:
    y_pred = raw_prediction

    For a given sample x_i, half Tweedie deviance loss with p=power is defined
    as::

        loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
                    - y_true_i * raw_prediction_i**(1-p) / (1-p)
                    + raw_prediction_i**(2-p) / (2-p)

    Note that the minimum value of this loss is 0.

    Note furthermore that although no Tweedie distribution exists for
    0 < power < 1, it still gives a strictly consistent scoring function for
    the expectation.
    """

    def __init__(self, sample_weight=None, power=1.5):
        super().__init__(
            closs=CyHalfTweedieLossIdentity(power=float(power)),
            link=IdentityLink(),
        )
        if self.closs.power <= 0:
            self.interval_y_true = Interval(-np.inf, np.inf, False, False)
        elif self.closs.power < 2:
            self.interval_y_true = Interval(0, np.inf, True, False)
        else:
            self.interval_y_true = Interval(0, np.inf, False, False)

        if self.closs.power == 0:
            self.interval_y_pred = Interval(-np.inf, np.inf, False, False)
        else:
            self.interval_y_pred = Interval(0, np.inf, False, False)


class HalfBinomialLoss(BaseLoss):
    """Half Binomial deviance loss with logit link, for binary classification.

    This is also know as binary cross entropy, log-loss and logistic loss.

    Domain:
    y_true in [0, 1], i.e. regression on the unit interval
    y_pred in (0, 1), i.e. boundaries excluded

    Link:
    y_pred = expit(raw_prediction)

    For a given sample x_i, half Binomial deviance is defined as the negative
    log-likelihood of the Binomial/Bernoulli distribution and can be expressed
    as::

        loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i

    See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman,
    section 4.4.1 (about logistic regression).

    Note that the formulation works for classification, y = {0, 1}, as well as
    logistic regression, y = [0, 1].
    If you add `constant_to_optimal_zero` to the loss, you get half the
    Bernoulli/binomial deviance.

    More details: Inserting the predicted probability y_pred = expit(raw_prediction)
    in the loss gives the well known::

        loss(x_i) = - y_true_i * log(y_pred_i) - (1 - y_true_i) * log(1 - y_pred_i)
    """

    def __init__(self, sample_weight=None):
        super().__init__(
            closs=CyHalfBinomialLoss(),
            link=LogitLink(),
            n_classes=2,
        )
        self.interval_y_true = Interval(0, 1, True, True)

    def constant_to_optimal_zero(self, y_true, sample_weight=None):
        # This is non-zero only if y_true is neither 0 nor 1.
        term = xlogy(y_true, y_true) + xlogy(1 - y_true, 1 - y_true)
        if sample_weight is not None:
            term *= sample_weight
        return term

    def predict_proba(self, raw_prediction):
        """Predict probabilities.

        Parameters
        ----------
        raw_prediction : array of shape (n_samples,) or (n_samples, 1)
            Raw prediction values (in link space).

        Returns
        -------
        proba : array of shape (n_samples, 2)
            Element-wise class probabilities.
        """
        # Be graceful to shape (n_samples, 1) -> (n_samples,)
        if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
            raw_prediction = raw_prediction.squeeze(1)
        proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
        proba[:, 1] = self.link.inverse(raw_prediction)
        proba[:, 0] = 1 - proba[:, 1]
        return proba


class HalfMultinomialLoss(BaseLoss):
    """Categorical cross-entropy loss, for multiclass classification.

    Domain:
    y_true in {0, 1, 2, 3, .., n_classes - 1}
    y_pred has n_classes elements, each element in (0, 1)

    Link:
    y_pred = softmax(raw_prediction)

    Note: We assume y_true to be already label encoded. The inverse link is
    softmax. But the full link function is the symmetric multinomial logit
    function.

    For a given sample x_i, the categorical cross-entropy loss is defined as
    the negative log-likelihood of the multinomial distribution, it
    generalizes the binary cross-entropy to more than 2 classes::

        loss_i = log(sum(exp(raw_pred_{i, k}), k=0..n_classes-1))
                - sum(y_true_{i, k} * raw_pred_{i, k}, k=0..n_classes-1)

    See [1].

    Note that for the hessian, we calculate only the diagonal part in the
    classes: If the full hessian for classes k and l and sample i is H_i_k_l,
    we calculate H_i_k_k, i.e. k=l.

    Reference
    ---------
    .. [1] :arxiv:`Simon, Noah, J. Friedman and T. Hastie.
        "A Blockwise Descent Algorithm for Group-penalized Multiresponse and
        Multinomial Regression".
        <1311.6529>`
    """

    is_multiclass = True

    def __init__(self, sample_weight=None, n_classes=3):
        super().__init__(
            closs=CyHalfMultinomialLoss(),
            link=MultinomialLogit(),
            n_classes=n_classes,
        )
        self.interval_y_true = Interval(0, np.inf, True, False)
        self.interval_y_pred = Interval(0, 1, False, False)

    def in_y_true_range(self, y):
        """Return True if y is in the valid range of y_true.

        Parameters
        ----------
        y : ndarray
        """
        return self.interval_y_true.includes(y) and np.all(y.astype(int) == y)

    def fit_intercept_only(self, y_true, sample_weight=None):
        """Compute raw_prediction of an intercept-only model.

        This is the softmax of the weighted average of the target, i.e. over
        the samples axis=0.
        """
        out = np.zeros(self.n_classes, dtype=y_true.dtype)
        eps = np.finfo(y_true.dtype).eps
        for k in range(self.n_classes):
            out[k] = np.average(y_true == k, weights=sample_weight, axis=0)
            out[k] = np.clip(out[k], eps, 1 - eps)
        return self.link.link(out[None, :]).reshape(-1)

    def predict_proba(self, raw_prediction):
        """Predict probabilities.

        Parameters
        ----------
        raw_prediction : array of shape (n_samples, n_classes)
            Raw prediction values (in link space).

        Returns
        -------
        proba : array of shape (n_samples, n_classes)
            Element-wise class probabilities.
        """
        return self.link.inverse(raw_prediction)

    def gradient_proba(
        self,
        y_true,
        raw_prediction,
        sample_weight=None,
        gradient_out=None,
        proba_out=None,
        n_threads=1,
    ):
        """Compute gradient and class probabilities fow raw_prediction.

        Parameters
        ----------
        y_true : C-contiguous array of shape (n_samples,)
            Observed, true target values.
        raw_prediction : array of shape (n_samples, n_classes)
            Raw prediction values (in link space).
        sample_weight : None or C-contiguous array of shape (n_samples,)
            Sample weights.
        gradient_out : None or array of shape (n_samples, n_classes)
            A location into which the gradient is stored. If None, a new array
            might be created.
        proba_out : None or array of shape (n_samples, n_classes)
            A location into which the class probabilities are stored. If None,
            a new array might be created.
        n_threads : int, default=1
            Might use openmp thread parallelism.

        Returns
        -------
        gradient : array of shape (n_samples, n_classes)
            Element-wise gradients.

        proba : array of shape (n_samples, n_classes)
            Element-wise class probabilities.
        """
        if gradient_out is None:
            if proba_out is None:
                gradient_out = np.empty_like(raw_prediction)
                proba_out = np.empty_like(raw_prediction)
            else:
                gradient_out = np.empty_like(proba_out)
        elif proba_out is None:
            proba_out = np.empty_like(gradient_out)

        self.closs.gradient_proba(
            y_true=y_true,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            gradient_out=gradient_out,
            proba_out=proba_out,
            n_threads=n_threads,
        )
        return gradient_out, proba_out


class ExponentialLoss(BaseLoss):
    """Exponential loss with (half) logit link, for binary classification.

    This is also know as boosting loss.

    Domain:
    y_true in [0, 1], i.e. regression on the unit interval
    y_pred in (0, 1), i.e. boundaries excluded

    Link:
    y_pred = expit(2 * raw_prediction)

    For a given sample x_i, the exponential loss is defined as::

        loss(x_i) = y_true_i * exp(-raw_pred_i)) + (1 - y_true_i) * exp(raw_pred_i)

    See:
    - J. Friedman, T. Hastie, R. Tibshirani.
      "Additive logistic regression: a statistical view of boosting (With discussion
      and a rejoinder by the authors)." Ann. Statist. 28 (2) 337 - 407, April 2000.
      https://doi.org/10.1214/aos/1016218223
    - A. Buja, W. Stuetzle, Y. Shen. (2005).
      "Loss Functions for Binary Class Probability Estimation and Classification:
      Structure and Applications."

    Note that the formulation works for classification, y = {0, 1}, as well as
    "exponential logistic" regression, y = [0, 1].
    Note that this is a proper scoring rule, but without it's canonical link.

    More details: Inserting the predicted probability
    y_pred = expit(2 * raw_prediction) in the loss gives::

        loss(x_i) = y_true_i * sqrt((1 - y_pred_i) / y_pred_i)
            + (1 - y_true_i) * sqrt(y_pred_i / (1 - y_pred_i))
    """

    def __init__(self, sample_weight=None):
        super().__init__(
            closs=CyExponentialLoss(),
            link=HalfLogitLink(),
            n_classes=2,
        )
        self.interval_y_true = Interval(0, 1, True, True)

    def constant_to_optimal_zero(self, y_true, sample_weight=None):
        # This is non-zero only if y_true is neither 0 nor 1.
        term = -2 * np.sqrt(y_true * (1 - y_true))
        if sample_weight is not None:
            term *= sample_weight
        return term

    def predict_proba(self, raw_prediction):
        """Predict probabilities.

        Parameters
        ----------
        raw_prediction : array of shape (n_samples,) or (n_samples, 1)
            Raw prediction values (in link space).

        Returns
        -------
        proba : array of shape (n_samples, 2)
            Element-wise class probabilities.
        """
        # Be graceful to shape (n_samples, 1) -> (n_samples,)
        if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
            raw_prediction = raw_prediction.squeeze(1)
        proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
        proba[:, 1] = self.link.inverse(raw_prediction)
        proba[:, 0] = 1 - proba[:, 1]
        return proba


_LOSSES = {
    "squared_error": HalfSquaredError,
    "absolute_error": AbsoluteError,
    "pinball_loss": PinballLoss,
    "huber_loss": HuberLoss,
    "poisson_loss": HalfPoissonLoss,
    "gamma_loss": HalfGammaLoss,
    "tweedie_loss": HalfTweedieLoss,
    "binomial_loss": HalfBinomialLoss,
    "multinomial_loss": HalfMultinomialLoss,
    "exponential_loss": ExponentialLoss,
}