File size: 20,541 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
"""Affinity Propagation clustering algorithm."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from numbers import Integral, Real
import numpy as np
from .._config import config_context
from ..base import BaseEstimator, ClusterMixin, _fit_context
from ..exceptions import ConvergenceWarning
from ..metrics import euclidean_distances, pairwise_distances_argmin
from ..utils import check_random_state
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.validation import check_is_fitted, validate_data
def _equal_similarities_and_preferences(S, preference):
def all_equal_preferences():
return np.all(preference == preference.flat[0])
def all_equal_similarities():
# Create mask to ignore diagonal of S
mask = np.ones(S.shape, dtype=bool)
np.fill_diagonal(mask, 0)
return np.all(S[mask].flat == S[mask].flat[0])
return all_equal_preferences() and all_equal_similarities()
def _affinity_propagation(
S,
*,
preference,
convergence_iter,
max_iter,
damping,
verbose,
return_n_iter,
random_state,
):
"""Main affinity propagation algorithm."""
n_samples = S.shape[0]
if n_samples == 1 or _equal_similarities_and_preferences(S, preference):
# It makes no sense to run the algorithm in this case, so return 1 or
# n_samples clusters, depending on preferences
warnings.warn(
"All samples have mutually equal similarities. "
"Returning arbitrary cluster center(s)."
)
if preference.flat[0] > S.flat[n_samples - 1]:
return (
(np.arange(n_samples), np.arange(n_samples), 0)
if return_n_iter
else (np.arange(n_samples), np.arange(n_samples))
)
else:
return (
(np.array([0]), np.array([0] * n_samples), 0)
if return_n_iter
else (np.array([0]), np.array([0] * n_samples))
)
# Place preference on the diagonal of S
S.flat[:: (n_samples + 1)] = preference
A = np.zeros((n_samples, n_samples))
R = np.zeros((n_samples, n_samples)) # Initialize messages
# Intermediate results
tmp = np.zeros((n_samples, n_samples))
# Remove degeneracies
S += (
np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100
) * random_state.standard_normal(size=(n_samples, n_samples))
# Execute parallel affinity propagation updates
e = np.zeros((n_samples, convergence_iter))
ind = np.arange(n_samples)
for it in range(max_iter):
# tmp = A + S; compute responsibilities
np.add(A, S, tmp)
I = np.argmax(tmp, axis=1)
Y = tmp[ind, I] # np.max(A + S, axis=1)
tmp[ind, I] = -np.inf
Y2 = np.max(tmp, axis=1)
# tmp = Rnew
np.subtract(S, Y[:, None], tmp)
tmp[ind, I] = S[ind, I] - Y2
# Damping
tmp *= 1 - damping
R *= damping
R += tmp
# tmp = Rp; compute availabilities
np.maximum(R, 0, tmp)
tmp.flat[:: n_samples + 1] = R.flat[:: n_samples + 1]
# tmp = -Anew
tmp -= np.sum(tmp, axis=0)
dA = np.diag(tmp).copy()
tmp.clip(0, np.inf, tmp)
tmp.flat[:: n_samples + 1] = dA
# Damping
tmp *= 1 - damping
A *= damping
A -= tmp
# Check for convergence
E = (np.diag(A) + np.diag(R)) > 0
e[:, it % convergence_iter] = E
K = np.sum(E, axis=0)
if it >= convergence_iter:
se = np.sum(e, axis=1)
unconverged = np.sum((se == convergence_iter) + (se == 0)) != n_samples
if (not unconverged and (K > 0)) or (it == max_iter):
never_converged = False
if verbose:
print("Converged after %d iterations." % it)
break
else:
never_converged = True
if verbose:
print("Did not converge")
I = np.flatnonzero(E)
K = I.size # Identify exemplars
if K > 0:
if never_converged:
warnings.warn(
(
"Affinity propagation did not converge, this model "
"may return degenerate cluster centers and labels."
),
ConvergenceWarning,
)
c = np.argmax(S[:, I], axis=1)
c[I] = np.arange(K) # Identify clusters
# Refine the final set of exemplars and clusters and return results
for k in range(K):
ii = np.where(c == k)[0]
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
I[k] = ii[j]
c = np.argmax(S[:, I], axis=1)
c[I] = np.arange(K)
labels = I[c]
# Reduce labels to a sorted, gapless, list
cluster_centers_indices = np.unique(labels)
labels = np.searchsorted(cluster_centers_indices, labels)
else:
warnings.warn(
(
"Affinity propagation did not converge and this model "
"will not have any cluster centers."
),
ConvergenceWarning,
)
labels = np.array([-1] * n_samples)
cluster_centers_indices = []
if return_n_iter:
return cluster_centers_indices, labels, it + 1
else:
return cluster_centers_indices, labels
###############################################################################
# Public API
@validate_params(
{
"S": ["array-like"],
"return_n_iter": ["boolean"],
},
prefer_skip_nested_validation=False,
)
def affinity_propagation(
S,
*,
preference=None,
convergence_iter=15,
max_iter=200,
damping=0.5,
copy=True,
verbose=False,
return_n_iter=False,
random_state=None,
):
"""Perform Affinity Propagation Clustering of data.
Read more in the :ref:`User Guide <affinity_propagation>`.
Parameters
----------
S : array-like of shape (n_samples, n_samples)
Matrix of similarities between points.
preference : array-like of shape (n_samples,) or float, default=None
Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number of
exemplars, i.e. of clusters, is influenced by the input preferences
value. If the preferences are not passed as arguments, they will be
set to the median of the input similarities (resulting in a moderate
number of clusters). For a smaller amount of clusters, this can be set
to the minimum value of the similarities.
convergence_iter : int, default=15
Number of iterations with no change in the number
of estimated clusters that stops the convergence.
max_iter : int, default=200
Maximum number of iterations.
damping : float, default=0.5
Damping factor between 0.5 and 1.
copy : bool, default=True
If copy is False, the affinity matrix is modified inplace by the
algorithm, for memory efficiency.
verbose : bool, default=False
The verbosity level.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the starting state.
Use an int for reproducible results across function calls.
See the :term:`Glossary <random_state>`.
.. versionadded:: 0.23
this parameter was previously hardcoded as 0.
Returns
-------
cluster_centers_indices : ndarray of shape (n_clusters,)
Index of clusters centers.
labels : ndarray of shape (n_samples,)
Cluster labels for each point.
n_iter : int
Number of iterations run. Returned only if `return_n_iter` is
set to True.
Notes
-----
For an example usage,
see :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`.
You may also check out,
:ref:`sphx_glr_auto_examples_applications_plot_stock_market.py`
When the algorithm does not converge, it will still return a arrays of
``cluster_center_indices`` and labels if there are any exemplars/clusters,
however they may be degenerate and should be used with caution.
When all training samples have equal similarities and equal preferences,
the assignment of cluster centers and labels depends on the preference.
If the preference is smaller than the similarities, a single cluster center
and label ``0`` for every sample will be returned. Otherwise, every
training sample becomes its own cluster center and is assigned a unique
label.
References
----------
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import affinity_propagation
>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> S = -euclidean_distances(X, squared=True)
>>> cluster_centers_indices, labels = affinity_propagation(S, random_state=0)
>>> cluster_centers_indices
array([0, 3])
>>> labels
array([0, 0, 0, 1, 1, 1])
"""
estimator = AffinityPropagation(
damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
copy=copy,
preference=preference,
affinity="precomputed",
verbose=verbose,
random_state=random_state,
).fit(S)
if return_n_iter:
return estimator.cluster_centers_indices_, estimator.labels_, estimator.n_iter_
return estimator.cluster_centers_indices_, estimator.labels_
class AffinityPropagation(ClusterMixin, BaseEstimator):
"""Perform Affinity Propagation Clustering of data.
Read more in the :ref:`User Guide <affinity_propagation>`.
Parameters
----------
damping : float, default=0.5
Damping factor in the range `[0.5, 1.0)` is the extent to
which the current value is maintained relative to
incoming values (weighted 1 - damping). This in order
to avoid numerical oscillations when updating these
values (messages).
max_iter : int, default=200
Maximum number of iterations.
convergence_iter : int, default=15
Number of iterations with no change in the number
of estimated clusters that stops the convergence.
copy : bool, default=True
Make a copy of input data.
preference : array-like of shape (n_samples,) or float, default=None
Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number
of exemplars, ie of clusters, is influenced by the input
preferences value. If the preferences are not passed as arguments,
they will be set to the median of the input similarities.
affinity : {'euclidean', 'precomputed'}, default='euclidean'
Which affinity to use. At the moment 'precomputed' and
``euclidean`` are supported. 'euclidean' uses the
negative squared euclidean distance between points.
verbose : bool, default=False
Whether to be verbose.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the starting state.
Use an int for reproducible results across function calls.
See the :term:`Glossary <random_state>`.
.. versionadded:: 0.23
this parameter was previously hardcoded as 0.
Attributes
----------
cluster_centers_indices_ : ndarray of shape (n_clusters,)
Indices of cluster centers.
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Cluster centers (if affinity != ``precomputed``).
labels_ : ndarray of shape (n_samples,)
Labels of each point.
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
Stores the affinity matrix used in ``fit``.
n_iter_ : int
Number of iterations taken to converge.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
AgglomerativeClustering : Recursively merges the pair of
clusters that minimally increases a given linkage distance.
FeatureAgglomeration : Similar to AgglomerativeClustering,
but recursively merges features instead of samples.
KMeans : K-Means clustering.
MiniBatchKMeans : Mini-Batch K-Means clustering.
MeanShift : Mean shift clustering using a flat kernel.
SpectralClustering : Apply clustering to a projection
of the normalized Laplacian.
Notes
-----
For an example usage,
see :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`.
The algorithmic complexity of affinity propagation is quadratic
in the number of points.
When the algorithm does not converge, it will still return a arrays of
``cluster_center_indices`` and labels if there are any exemplars/clusters,
however they may be degenerate and should be used with caution.
When ``fit`` does not converge, ``cluster_centers_`` is still populated
however it may be degenerate. In such a case, proceed with caution.
If ``fit`` does not converge and fails to produce any ``cluster_centers_``
then ``predict`` will label every sample as ``-1``.
When all training samples have equal similarities and equal preferences,
the assignment of cluster centers and labels depends on the preference.
If the preference is smaller than the similarities, ``fit`` will result in
a single cluster center and label ``0`` for every sample. Otherwise, every
training sample becomes its own cluster center and is assigned a unique
label.
References
----------
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
Examples
--------
>>> from sklearn.cluster import AffinityPropagation
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AffinityPropagation(random_state=5).fit(X)
>>> clustering
AffinityPropagation(random_state=5)
>>> clustering.labels_
array([0, 0, 0, 1, 1, 1])
>>> clustering.predict([[0, 0], [4, 4]])
array([0, 1])
>>> clustering.cluster_centers_
array([[1, 2],
[4, 2]])
"""
_parameter_constraints: dict = {
"damping": [Interval(Real, 0.5, 1.0, closed="left")],
"max_iter": [Interval(Integral, 1, None, closed="left")],
"convergence_iter": [Interval(Integral, 1, None, closed="left")],
"copy": ["boolean"],
"preference": [
"array-like",
Interval(Real, None, None, closed="neither"),
None,
],
"affinity": [StrOptions({"euclidean", "precomputed"})],
"verbose": ["verbose"],
"random_state": ["random_state"],
}
def __init__(
self,
*,
damping=0.5,
max_iter=200,
convergence_iter=15,
copy=True,
preference=None,
affinity="euclidean",
verbose=False,
random_state=None,
):
self.damping = damping
self.max_iter = max_iter
self.convergence_iter = convergence_iter
self.copy = copy
self.verbose = verbose
self.preference = preference
self.affinity = affinity
self.random_state = random_state
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.pairwise = self.affinity == "precomputed"
tags.input_tags.sparse = self.affinity != "precomputed"
return tags
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the clustering from features, or affinity matrix.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
array-like of shape (n_samples, n_samples)
Training instances to cluster, or similarities / affinities between
instances if ``affinity='precomputed'``. If a sparse feature matrix
is provided, it will be converted into a sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self
Returns the instance itself.
"""
if self.affinity == "precomputed":
X = validate_data(self, X, copy=self.copy, force_writeable=True)
self.affinity_matrix_ = X
else: # self.affinity == "euclidean"
X = validate_data(self, X, accept_sparse="csr")
self.affinity_matrix_ = -euclidean_distances(X, squared=True)
if self.affinity_matrix_.shape[0] != self.affinity_matrix_.shape[1]:
raise ValueError(
"The matrix of similarities must be a square array. "
f"Got {self.affinity_matrix_.shape} instead."
)
if self.preference is None:
preference = np.median(self.affinity_matrix_)
else:
preference = self.preference
preference = np.asarray(preference)
random_state = check_random_state(self.random_state)
(
self.cluster_centers_indices_,
self.labels_,
self.n_iter_,
) = _affinity_propagation(
self.affinity_matrix_,
max_iter=self.max_iter,
convergence_iter=self.convergence_iter,
preference=preference,
damping=self.damping,
verbose=self.verbose,
return_n_iter=True,
random_state=random_state,
)
if self.affinity != "precomputed":
self.cluster_centers_ = X[self.cluster_centers_indices_].copy()
return self
def predict(self, X):
"""Predict the closest cluster each sample in X belongs to.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to predict. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
labels : ndarray of shape (n_samples,)
Cluster labels.
"""
check_is_fitted(self)
X = validate_data(self, X, reset=False, accept_sparse="csr")
if not hasattr(self, "cluster_centers_"):
raise ValueError(
"Predict method is not supported when affinity='precomputed'."
)
if self.cluster_centers_.shape[0] > 0:
with config_context(assume_finite=True):
return pairwise_distances_argmin(X, self.cluster_centers_)
else:
warnings.warn(
(
"This model does not have any cluster centers "
"because affinity propagation did not converge. "
"Labeling every sample as '-1'."
),
ConvergenceWarning,
)
return np.array([-1] * X.shape[0])
def fit_predict(self, X, y=None):
"""Fit clustering from features/affinity matrix; return cluster labels.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
array-like of shape (n_samples, n_samples)
Training instances to cluster, or similarities / affinities between
instances if ``affinity='precomputed'``. If a sparse feature matrix
is provided, it will be converted into a sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
labels : ndarray of shape (n_samples,)
Cluster labels.
"""
return super().fit_predict(X, y)
|