File size: 24,062 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings

import numpy as np
import pytest

from sklearn.cluster import DBSCAN, OPTICS
from sklearn.cluster._optics import _extend_region, _extract_xi_labels
from sklearn.cluster.tests.common import generate_clustered_data
from sklearn.datasets import make_blobs
from sklearn.exceptions import DataConversionWarning, EfficiencyWarning
from sklearn.metrics.cluster import contingency_matrix
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.utils import shuffle
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.utils.fixes import CSR_CONTAINERS

rng = np.random.RandomState(0)
n_points_per_cluster = 10
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2)
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2)
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2)
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, C6))


@pytest.mark.parametrize(
    ("r_plot", "end"),
    [
        [[10, 8.9, 8.8, 8.7, 7, 10], 3],
        [[10, 8.9, 8.8, 8.7, 8.6, 7, 10], 0],
        [[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
        [[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
    ],
)
def test_extend_downward(r_plot, end):
    r_plot = np.array(r_plot)
    ratio = r_plot[:-1] / r_plot[1:]
    steep_downward = ratio >= 1 / 0.9
    upward = ratio < 1

    e = _extend_region(steep_downward, upward, 0, 2)
    assert e == end


@pytest.mark.parametrize(
    ("r_plot", "end"),
    [
        [[1, 2, 2.1, 2.2, 4, 8, 8, np.inf], 6],
        [[1, 2, 2.1, 2.2, 2.3, 4, 8, 8, np.inf], 0],
        [[1, 2, 2.1, 2, np.inf], 0],
        [[1, 2, 2.1, np.inf], 2],
    ],
)
def test_extend_upward(r_plot, end):
    r_plot = np.array(r_plot)
    ratio = r_plot[:-1] / r_plot[1:]
    steep_upward = ratio <= 0.9
    downward = ratio > 1

    e = _extend_region(steep_upward, downward, 0, 2)
    assert e == end


@pytest.mark.parametrize(
    ("ordering", "clusters", "expected"),
    [
        [[0, 1, 2, 3], [[0, 1], [2, 3]], [0, 0, 1, 1]],
        [[0, 1, 2, 3], [[0, 1], [3, 3]], [0, 0, -1, 1]],
        [[0, 1, 2, 3], [[0, 1], [3, 3], [0, 3]], [0, 0, -1, 1]],
        [[3, 1, 2, 0], [[0, 1], [3, 3], [0, 3]], [1, 0, -1, 0]],
    ],
)
def test_the_extract_xi_labels(ordering, clusters, expected):
    labels = _extract_xi_labels(ordering, clusters)

    assert_array_equal(labels, expected)


def test_extract_xi(global_dtype):
    # small and easy test (no clusters around other clusters)
    # but with a clear noise data.
    rng = np.random.RandomState(0)
    n_points_per_cluster = 5

    C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2)
    C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2)
    C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
    C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2)
    C5 = [3, -2] + 0.6 * rng.randn(n_points_per_cluster, 2)
    C6 = [5, 6] + 0.2 * rng.randn(n_points_per_cluster, 2)

    X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6)).astype(
        global_dtype, copy=False
    )
    expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5, -1, [4] * 5]
    X, expected_labels = shuffle(X, expected_labels, random_state=rng)

    clust = OPTICS(
        min_samples=3, min_cluster_size=2, max_eps=20, cluster_method="xi", xi=0.4
    ).fit(X)
    assert_array_equal(clust.labels_, expected_labels)

    # check float min_samples and min_cluster_size
    clust = OPTICS(
        min_samples=0.1, min_cluster_size=0.08, max_eps=20, cluster_method="xi", xi=0.4
    ).fit(X)
    assert_array_equal(clust.labels_, expected_labels)

    X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6)).astype(
        global_dtype, copy=False
    )
    expected_labels = np.r_[
        [1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5, -1, -1, [4] * 5
    ]
    X, expected_labels = shuffle(X, expected_labels, random_state=rng)

    clust = OPTICS(
        min_samples=3, min_cluster_size=3, max_eps=20, cluster_method="xi", xi=0.3
    ).fit(X)
    # this may fail if the predecessor correction is not at work!
    assert_array_equal(clust.labels_, expected_labels)

    C1 = [[0, 0], [0, 0.1], [0, -0.1], [0.1, 0]]
    C2 = [[10, 10], [10, 9], [10, 11], [9, 10]]
    C3 = [[100, 100], [100, 90], [100, 110], [90, 100]]
    X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False)
    expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4]
    X, expected_labels = shuffle(X, expected_labels, random_state=rng)

    clust = OPTICS(
        min_samples=2, min_cluster_size=2, max_eps=np.inf, cluster_method="xi", xi=0.04
    ).fit(X)
    assert_array_equal(clust.labels_, expected_labels)


def test_cluster_hierarchy_(global_dtype):
    rng = np.random.RandomState(0)
    n_points_per_cluster = 100
    C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2).astype(
        global_dtype, copy=False
    )
    C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2).astype(
        global_dtype, copy=False
    )
    X = np.vstack((C1, C2))
    X = shuffle(X, random_state=0)

    clusters = OPTICS(min_samples=20, xi=0.1).fit(X).cluster_hierarchy_
    assert clusters.shape == (2, 2)
    diff = np.sum(clusters - np.array([[0, 99], [0, 199]]))
    assert diff / len(X) < 0.05


@pytest.mark.parametrize(
    "csr_container, metric",
    [(None, "minkowski")] + [(container, "euclidean") for container in CSR_CONTAINERS],
)
def test_correct_number_of_clusters(metric, csr_container):
    # in 'auto' mode

    n_clusters = 3
    X = generate_clustered_data(n_clusters=n_clusters)
    # Parameters chosen specifically for this task.
    # Compute OPTICS
    clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=0.1, metric=metric)
    clust.fit(csr_container(X) if csr_container is not None else X)
    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_)
    assert n_clusters_1 == n_clusters

    # check attribute types and sizes
    assert clust.labels_.shape == (len(X),)
    assert clust.labels_.dtype.kind == "i"

    assert clust.reachability_.shape == (len(X),)
    assert clust.reachability_.dtype.kind == "f"

    assert clust.core_distances_.shape == (len(X),)
    assert clust.core_distances_.dtype.kind == "f"

    assert clust.ordering_.shape == (len(X),)
    assert clust.ordering_.dtype.kind == "i"
    assert set(clust.ordering_) == set(range(len(X)))


def test_minimum_number_of_sample_check():
    # test that we check a minimum number of samples
    msg = "min_samples must be no greater than"

    # Compute OPTICS
    X = [[1, 1]]
    clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1.0)

    # Run the fit
    with pytest.raises(ValueError, match=msg):
        clust.fit(X)


def test_bad_extract():
    # Test an extraction of eps too close to original eps
    msg = "Specify an epsilon smaller than 0.15. Got 0.3."
    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(
        n_samples=750, centers=centers, cluster_std=0.4, random_state=0
    )

    # Compute OPTICS
    clust = OPTICS(max_eps=5.0 * 0.03, cluster_method="dbscan", eps=0.3, min_samples=10)
    with pytest.raises(ValueError, match=msg):
        clust.fit(X)


def test_bad_reachability():
    msg = "All reachability values are inf. Set a larger max_eps."
    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(
        n_samples=750, centers=centers, cluster_std=0.4, random_state=0
    )

    with pytest.warns(UserWarning, match=msg):
        clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
        clust.fit(X)


def test_nowarn_if_metric_bool_data_bool():
    # make sure no warning is raised if metric and data are both boolean
    # non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/18996

    pairwise_metric = "rogerstanimoto"
    X = np.random.randint(2, size=(5, 2), dtype=bool)

    with warnings.catch_warnings():
        warnings.simplefilter("error", DataConversionWarning)

        OPTICS(metric=pairwise_metric).fit(X)


def test_warn_if_metric_bool_data_no_bool():
    # make sure a *single* conversion warning is raised if metric is boolean
    # but data isn't
    # non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/18996

    pairwise_metric = "rogerstanimoto"
    X = np.random.randint(2, size=(5, 2), dtype=np.int32)
    msg = f"Data will be converted to boolean for metric {pairwise_metric}"

    with pytest.warns(DataConversionWarning, match=msg) as warn_record:
        OPTICS(metric=pairwise_metric).fit(X)
        assert len(warn_record) == 1


def test_nowarn_if_metric_no_bool():
    # make sure no conversion warning is raised if
    # metric isn't boolean, no matter what the data type is
    pairwise_metric = "minkowski"
    X_bool = np.random.randint(2, size=(5, 2), dtype=bool)
    X_num = np.random.randint(2, size=(5, 2), dtype=np.int32)

    with warnings.catch_warnings():
        warnings.simplefilter("error", DataConversionWarning)

        # fit boolean data
        OPTICS(metric=pairwise_metric).fit(X_bool)
        # fit numeric data
        OPTICS(metric=pairwise_metric).fit(X_num)


def test_close_extract():
    # Test extract where extraction eps is close to scaled max_eps

    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(
        n_samples=750, centers=centers, cluster_std=0.4, random_state=0
    )

    # Compute OPTICS
    clust = OPTICS(max_eps=1.0, cluster_method="dbscan", eps=0.3, min_samples=10).fit(X)
    # Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
    assert max(clust.labels_) == 2


@pytest.mark.parametrize("eps", [0.1, 0.3, 0.5])
@pytest.mark.parametrize("min_samples", [3, 10, 20])
@pytest.mark.parametrize(
    "csr_container, metric",
    [(None, "minkowski"), (None, "euclidean")]
    + [(container, "euclidean") for container in CSR_CONTAINERS],
)
def test_dbscan_optics_parity(eps, min_samples, metric, global_dtype, csr_container):
    # Test that OPTICS clustering labels are <= 5% difference of DBSCAN

    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(
        n_samples=150, centers=centers, cluster_std=0.4, random_state=0
    )
    X = csr_container(X) if csr_container is not None else X

    X = X.astype(global_dtype, copy=False)

    # calculate optics with dbscan extract at 0.3 epsilon
    op = OPTICS(
        min_samples=min_samples, cluster_method="dbscan", eps=eps, metric=metric
    ).fit(X)

    # calculate dbscan labels
    db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)

    contingency = contingency_matrix(db.labels_, op.labels_)
    agree = min(
        np.sum(np.max(contingency, axis=0)), np.sum(np.max(contingency, axis=1))
    )
    disagree = X.shape[0] - agree

    percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)

    # verify label mismatch is <= 5% labels
    assert percent_mismatch <= 0.05


def test_min_samples_edge_case(global_dtype):
    C1 = [[0, 0], [0, 0.1], [0, -0.1]]
    C2 = [[10, 10], [10, 9], [10, 11]]
    C3 = [[100, 100], [100, 96], [100, 106]]
    X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False)

    expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3]
    clust = OPTICS(min_samples=3, max_eps=7, cluster_method="xi", xi=0.04).fit(X)
    assert_array_equal(clust.labels_, expected_labels)

    expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3]
    clust = OPTICS(min_samples=3, max_eps=3, cluster_method="xi", xi=0.04).fit(X)
    assert_array_equal(clust.labels_, expected_labels)

    expected_labels = np.r_[[-1] * 9]
    with pytest.warns(UserWarning, match="All reachability values"):
        clust = OPTICS(min_samples=4, max_eps=3, cluster_method="xi", xi=0.04).fit(X)
        assert_array_equal(clust.labels_, expected_labels)


# try arbitrary minimum sizes
@pytest.mark.parametrize("min_cluster_size", range(2, X.shape[0] // 10, 23))
def test_min_cluster_size(min_cluster_size, global_dtype):
    redX = X[::2].astype(global_dtype, copy=False)  # reduce for speed
    clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX)
    cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1])
    if cluster_sizes.size:
        assert min(cluster_sizes) >= min_cluster_size
    # check behaviour is the same when min_cluster_size is a fraction
    clust_frac = OPTICS(
        min_samples=9,
        min_cluster_size=min_cluster_size / redX.shape[0],
    )
    clust_frac.fit(redX)
    assert_array_equal(clust.labels_, clust_frac.labels_)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_min_cluster_size_invalid2(csr_container):
    clust = OPTICS(min_cluster_size=len(X) + 1)
    with pytest.raises(ValueError, match="must be no greater than the "):
        clust.fit(X)

    clust = OPTICS(min_cluster_size=len(X) + 1, metric="euclidean")
    with pytest.raises(ValueError, match="must be no greater than the "):
        clust.fit(csr_container(X))


def test_processing_order():
    # Ensure that we consider all unprocessed points,
    # not only direct neighbors. when picking the next point.
    Y = [[0], [10], [-10], [25]]

    clust = OPTICS(min_samples=3, max_eps=15).fit(Y)
    assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15])
    assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf])
    assert_array_equal(clust.ordering_, [0, 1, 2, 3])


def test_compare_to_ELKI():
    # Expected values, computed with (future) ELKI 0.7.5 using:
    # java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter
    #   -algorithm clustering.optics.OPTICSHeap -optics.minpts 5
    # where the FixedDBIDsFilter gives 0-indexed ids.
    r1 = [
        np.inf,
        1.0574896366427478,
        0.7587934993548423,
        0.7290174038973836,
        0.7290174038973836,
        0.7290174038973836,
        0.6861627576116127,
        0.7587934993548423,
        0.9280118450166668,
        1.1748022534146194,
        3.3355455741292257,
        0.49618389254482587,
        0.2552805046961355,
        0.2552805046961355,
        0.24944622248445714,
        0.24944622248445714,
        0.24944622248445714,
        0.2552805046961355,
        0.2552805046961355,
        0.3086779122185853,
        4.163024452756142,
        1.623152630340929,
        0.45315840475822655,
        0.25468325192031926,
        0.2254004358159971,
        0.18765711877083036,
        0.1821471333893275,
        0.1821471333893275,
        0.18765711877083036,
        0.18765711877083036,
        0.2240202988740153,
        1.154337614548715,
        1.342604473837069,
        1.323308536402633,
        0.8607514948648837,
        0.27219111215810565,
        0.13260875220533205,
        0.13260875220533205,
        0.09890587675958984,
        0.09890587675958984,
        0.13548790801634494,
        0.1575483940837384,
        0.17515137170530226,
        0.17575920159442388,
        0.27219111215810565,
        0.6101447895405373,
        1.3189208094864302,
        1.323308536402633,
        2.2509184159764577,
        2.4517810628594527,
        3.675977064404973,
        3.8264795626020365,
        2.9130735341510614,
        2.9130735341510614,
        2.9130735341510614,
        2.9130735341510614,
        2.8459300127258036,
        2.8459300127258036,
        2.8459300127258036,
        3.0321982337972537,
    ]
    o1 = [
        0,
        3,
        6,
        4,
        7,
        8,
        2,
        9,
        5,
        1,
        31,
        30,
        32,
        34,
        33,
        38,
        39,
        35,
        37,
        36,
        44,
        21,
        23,
        24,
        22,
        25,
        27,
        29,
        26,
        28,
        20,
        40,
        45,
        46,
        10,
        15,
        11,
        13,
        17,
        19,
        18,
        12,
        16,
        14,
        47,
        49,
        43,
        48,
        42,
        41,
        53,
        57,
        51,
        52,
        56,
        59,
        54,
        55,
        58,
        50,
    ]
    p1 = [
        -1,
        0,
        3,
        6,
        6,
        6,
        8,
        3,
        7,
        5,
        1,
        31,
        30,
        30,
        34,
        34,
        34,
        32,
        32,
        37,
        36,
        44,
        21,
        23,
        24,
        22,
        25,
        25,
        22,
        22,
        22,
        21,
        40,
        45,
        46,
        10,
        15,
        15,
        13,
        13,
        15,
        11,
        19,
        15,
        10,
        47,
        12,
        45,
        14,
        43,
        42,
        53,
        57,
        57,
        57,
        57,
        59,
        59,
        59,
        58,
    ]

    # Tests against known extraction array
    # Does NOT work with metric='euclidean', because sklearn euclidean has
    # worse numeric precision. 'minkowski' is slower but more accurate.
    clust1 = OPTICS(min_samples=5).fit(X)

    assert_array_equal(clust1.ordering_, np.array(o1))
    assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1))
    assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1))
    # ELKI currently does not print the core distances (which are not used much
    # in literature, but we can at least ensure to have this consistency:
    for i in clust1.ordering_[1:]:
        assert clust1.reachability_[i] >= clust1.core_distances_[clust1.predecessor_[i]]

    # Expected values, computed with (future) ELKI 0.7.5 using
    r2 = [
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        0.27219111215810565,
        0.13260875220533205,
        0.13260875220533205,
        0.09890587675958984,
        0.09890587675958984,
        0.13548790801634494,
        0.1575483940837384,
        0.17515137170530226,
        0.17575920159442388,
        0.27219111215810565,
        0.4928068613197889,
        np.inf,
        0.2666183922512113,
        0.18765711877083036,
        0.1821471333893275,
        0.1821471333893275,
        0.1821471333893275,
        0.18715928772277457,
        0.18765711877083036,
        0.18765711877083036,
        0.25468325192031926,
        np.inf,
        0.2552805046961355,
        0.2552805046961355,
        0.24944622248445714,
        0.24944622248445714,
        0.24944622248445714,
        0.2552805046961355,
        0.2552805046961355,
        0.3086779122185853,
        0.34466409325984865,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
        np.inf,
    ]
    o2 = [
        0,
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        15,
        11,
        13,
        17,
        19,
        18,
        12,
        16,
        14,
        47,
        46,
        20,
        22,
        25,
        23,
        27,
        29,
        24,
        26,
        28,
        21,
        30,
        32,
        34,
        33,
        38,
        39,
        35,
        37,
        36,
        31,
        40,
        41,
        42,
        43,
        44,
        45,
        48,
        49,
        50,
        51,
        52,
        53,
        54,
        55,
        56,
        57,
        58,
        59,
    ]
    p2 = [
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        10,
        15,
        15,
        13,
        13,
        15,
        11,
        19,
        15,
        10,
        47,
        -1,
        20,
        22,
        25,
        25,
        25,
        25,
        22,
        22,
        23,
        -1,
        30,
        30,
        34,
        34,
        34,
        32,
        32,
        37,
        38,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
        -1,
    ]
    clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X)

    assert_array_equal(clust2.ordering_, np.array(o2))
    assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2))
    assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2))

    index = np.where(clust1.core_distances_ <= 0.5)[0]
    assert_allclose(clust1.core_distances_[index], clust2.core_distances_[index])


def test_extract_dbscan(global_dtype):
    # testing an easy dbscan case. Not including clusters with different
    # densities.
    rng = np.random.RandomState(0)
    n_points_per_cluster = 20
    C1 = [-5, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
    C2 = [4, -1] + 0.2 * rng.randn(n_points_per_cluster, 2)
    C3 = [1, 2] + 0.2 * rng.randn(n_points_per_cluster, 2)
    C4 = [-2, 3] + 0.2 * rng.randn(n_points_per_cluster, 2)
    X = np.vstack((C1, C2, C3, C4)).astype(global_dtype, copy=False)

    clust = OPTICS(cluster_method="dbscan", eps=0.5).fit(X)
    assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])


@pytest.mark.parametrize("csr_container", [None] + CSR_CONTAINERS)
def test_precomputed_dists(global_dtype, csr_container):
    redX = X[::2].astype(global_dtype, copy=False)
    dists = pairwise_distances(redX, metric="euclidean")
    dists = csr_container(dists) if csr_container is not None else dists
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", EfficiencyWarning)
        clust1 = OPTICS(min_samples=10, algorithm="brute", metric="precomputed").fit(
            dists
        )
    clust2 = OPTICS(min_samples=10, algorithm="brute", metric="euclidean").fit(redX)

    assert_allclose(clust1.reachability_, clust2.reachability_)
    assert_array_equal(clust1.labels_, clust2.labels_)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_optics_input_not_modified_precomputed_sparse_nodiag(csr_container):
    """Check that we don't modify in-place the pre-computed sparse matrix.
    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/27508
    """
    X = np.random.RandomState(0).rand(6, 6)
    # Add zeros on the diagonal that will be implicit when creating
    # the sparse matrix. If `X` is modified in-place, the zeros from
    # the diagonal will be made explicit.
    np.fill_diagonal(X, 0)
    X = csr_container(X)
    assert all(row != col for row, col in zip(*X.nonzero()))
    X_copy = X.copy()
    OPTICS(metric="precomputed").fit(X)
    # Make sure that we did not modify `X` in-place even by creating
    # explicit 0s values.
    assert X.nnz == X_copy.nnz
    assert_array_equal(X.toarray(), X_copy.toarray())


def test_optics_predecessor_correction_ordering():
    """Check that cluster correction using predecessor is working as expected.

    In the following example, the predecessor correction was not working properly
    since it was not using the right indices.

    This non-regression test check that reordering the data does not change the results.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/26324
    """
    X_1 = np.array([1, 2, 3, 1, 8, 8, 7, 100]).reshape(-1, 1)
    reorder = [0, 1, 2, 4, 5, 6, 7, 3]
    X_2 = X_1[reorder]

    optics_1 = OPTICS(min_samples=3, metric="euclidean").fit(X_1)
    optics_2 = OPTICS(min_samples=3, metric="euclidean").fit(X_2)

    assert_array_equal(optics_1.labels_[reorder], optics_2.labels_)