File size: 14,101 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import warnings
import numpy as np
import pytest
from sklearn import config_context, datasets
from sklearn.base import BaseEstimator, TransformerMixin, clone
from sklearn.compose import TransformedTargetRegressor
from sklearn.dummy import DummyRegressor
from sklearn.linear_model import LinearRegression, OrthogonalMatchingPursuit
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer, StandardScaler
from sklearn.utils._testing import assert_allclose
friedman = datasets.make_friedman1(random_state=0)
def test_transform_target_regressor_error():
X, y = friedman
# provide a transformer and functions at the same time
regr = TransformedTargetRegressor(
regressor=LinearRegression(),
transformer=StandardScaler(),
func=np.exp,
inverse_func=np.log,
)
with pytest.raises(
ValueError,
match="'transformer' and functions 'func'/'inverse_func' cannot both be set.",
):
regr.fit(X, y)
# fit with sample_weight with a regressor which does not support it
sample_weight = np.ones((y.shape[0],))
regr = TransformedTargetRegressor(
regressor=OrthogonalMatchingPursuit(), transformer=StandardScaler()
)
with pytest.raises(
TypeError,
match=r"fit\(\) got an unexpected " "keyword argument 'sample_weight'",
):
regr.fit(X, y, sample_weight=sample_weight)
# one of (func, inverse_func) is given but the other one is not
regr = TransformedTargetRegressor(func=np.exp)
with pytest.raises(
ValueError,
match="When 'func' is provided, 'inverse_func' must also be provided",
):
regr.fit(X, y)
regr = TransformedTargetRegressor(inverse_func=np.log)
with pytest.raises(
ValueError,
match="When 'inverse_func' is provided, 'func' must also be provided",
):
regr.fit(X, y)
def test_transform_target_regressor_invertible():
X, y = friedman
regr = TransformedTargetRegressor(
regressor=LinearRegression(),
func=np.sqrt,
inverse_func=np.log,
check_inverse=True,
)
with pytest.warns(
UserWarning,
match=(r"The provided functions.* are not strictly inverse of each other"),
):
regr.fit(X, y)
regr = TransformedTargetRegressor(
regressor=LinearRegression(), func=np.sqrt, inverse_func=np.log
)
regr.set_params(check_inverse=False)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
regr.fit(X, y)
def _check_standard_scaled(y, y_pred):
y_mean = np.mean(y, axis=0)
y_std = np.std(y, axis=0)
assert_allclose((y - y_mean) / y_std, y_pred)
def _check_shifted_by_one(y, y_pred):
assert_allclose(y + 1, y_pred)
def test_transform_target_regressor_functions():
X, y = friedman
regr = TransformedTargetRegressor(
regressor=LinearRegression(), func=np.log, inverse_func=np.exp
)
y_pred = regr.fit(X, y).predict(X)
# check the transformer output
y_tran = regr.transformer_.transform(y.reshape(-1, 1)).squeeze()
assert_allclose(np.log(y), y_tran)
assert_allclose(
y, regr.transformer_.inverse_transform(y_tran.reshape(-1, 1)).squeeze()
)
assert y.shape == y_pred.shape
assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X)))
# check the regressor output
lr = LinearRegression().fit(X, regr.func(y))
assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel())
def test_transform_target_regressor_functions_multioutput():
X = friedman[0]
y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T
regr = TransformedTargetRegressor(
regressor=LinearRegression(), func=np.log, inverse_func=np.exp
)
y_pred = regr.fit(X, y).predict(X)
# check the transformer output
y_tran = regr.transformer_.transform(y)
assert_allclose(np.log(y), y_tran)
assert_allclose(y, regr.transformer_.inverse_transform(y_tran))
assert y.shape == y_pred.shape
assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X)))
# check the regressor output
lr = LinearRegression().fit(X, regr.func(y))
assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel())
@pytest.mark.parametrize(
"X,y", [friedman, (friedman[0], np.vstack((friedman[1], friedman[1] ** 2 + 1)).T)]
)
def test_transform_target_regressor_1d_transformer(X, y):
# All transformer in scikit-learn expect 2D data. FunctionTransformer with
# validate=False lift this constraint without checking that the input is a
# 2D vector. We check the consistency of the data shape using a 1D and 2D y
# array.
transformer = FunctionTransformer(
func=lambda x: x + 1, inverse_func=lambda x: x - 1
)
regr = TransformedTargetRegressor(
regressor=LinearRegression(), transformer=transformer
)
y_pred = regr.fit(X, y).predict(X)
assert y.shape == y_pred.shape
# consistency forward transform
y_tran = regr.transformer_.transform(y)
_check_shifted_by_one(y, y_tran)
assert y.shape == y_pred.shape
# consistency inverse transform
assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
# consistency of the regressor
lr = LinearRegression()
transformer2 = clone(transformer)
lr.fit(X, transformer2.fit_transform(y))
y_lr_pred = lr.predict(X)
assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
assert_allclose(regr.regressor_.coef_, lr.coef_)
@pytest.mark.parametrize(
"X,y", [friedman, (friedman[0], np.vstack((friedman[1], friedman[1] ** 2 + 1)).T)]
)
def test_transform_target_regressor_2d_transformer(X, y):
# Check consistency with transformer accepting only 2D array and a 1D/2D y
# array.
transformer = StandardScaler()
regr = TransformedTargetRegressor(
regressor=LinearRegression(), transformer=transformer
)
y_pred = regr.fit(X, y).predict(X)
assert y.shape == y_pred.shape
# consistency forward transform
if y.ndim == 1: # create a 2D array and squeeze results
y_tran = regr.transformer_.transform(y.reshape(-1, 1))
else:
y_tran = regr.transformer_.transform(y)
_check_standard_scaled(y, y_tran.squeeze())
assert y.shape == y_pred.shape
# consistency inverse transform
assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
# consistency of the regressor
lr = LinearRegression()
transformer2 = clone(transformer)
if y.ndim == 1: # create a 2D array and squeeze results
lr.fit(X, transformer2.fit_transform(y.reshape(-1, 1)).squeeze())
y_lr_pred = lr.predict(X).reshape(-1, 1)
y_pred2 = transformer2.inverse_transform(y_lr_pred).squeeze()
else:
lr.fit(X, transformer2.fit_transform(y))
y_lr_pred = lr.predict(X)
y_pred2 = transformer2.inverse_transform(y_lr_pred)
assert_allclose(y_pred, y_pred2)
assert_allclose(regr.regressor_.coef_, lr.coef_)
def test_transform_target_regressor_2d_transformer_multioutput():
# Check consistency with transformer accepting only 2D array and a 2D y
# array.
X = friedman[0]
y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T
transformer = StandardScaler()
regr = TransformedTargetRegressor(
regressor=LinearRegression(), transformer=transformer
)
y_pred = regr.fit(X, y).predict(X)
assert y.shape == y_pred.shape
# consistency forward transform
y_tran = regr.transformer_.transform(y)
_check_standard_scaled(y, y_tran)
assert y.shape == y_pred.shape
# consistency inverse transform
assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
# consistency of the regressor
lr = LinearRegression()
transformer2 = clone(transformer)
lr.fit(X, transformer2.fit_transform(y))
y_lr_pred = lr.predict(X)
assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
assert_allclose(regr.regressor_.coef_, lr.coef_)
def test_transform_target_regressor_3d_target():
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/18866
# Check with a 3D target with a transformer that reshapes the target
X = friedman[0]
y = np.tile(friedman[1].reshape(-1, 1, 1), [1, 3, 2])
def flatten_data(data):
return data.reshape(data.shape[0], -1)
def unflatten_data(data):
return data.reshape(data.shape[0], -1, 2)
transformer = FunctionTransformer(func=flatten_data, inverse_func=unflatten_data)
regr = TransformedTargetRegressor(
regressor=LinearRegression(), transformer=transformer
)
y_pred = regr.fit(X, y).predict(X)
assert y.shape == y_pred.shape
def test_transform_target_regressor_multi_to_single():
X = friedman[0]
y = np.transpose([friedman[1], (friedman[1] ** 2 + 1)])
def func(y):
out = np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
return out[:, np.newaxis]
def inverse_func(y):
return y
tt = TransformedTargetRegressor(
func=func, inverse_func=inverse_func, check_inverse=False
)
tt.fit(X, y)
y_pred_2d_func = tt.predict(X)
assert y_pred_2d_func.shape == (100, 1)
# force that the function only return a 1D array
def func(y):
return np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
tt = TransformedTargetRegressor(
func=func, inverse_func=inverse_func, check_inverse=False
)
tt.fit(X, y)
y_pred_1d_func = tt.predict(X)
assert y_pred_1d_func.shape == (100, 1)
assert_allclose(y_pred_1d_func, y_pred_2d_func)
class DummyCheckerArrayTransformer(TransformerMixin, BaseEstimator):
def fit(self, X, y=None):
assert isinstance(X, np.ndarray)
return self
def transform(self, X):
assert isinstance(X, np.ndarray)
return X
def inverse_transform(self, X):
assert isinstance(X, np.ndarray)
return X
class DummyCheckerListRegressor(DummyRegressor):
def fit(self, X, y, sample_weight=None):
assert isinstance(X, list)
return super().fit(X, y, sample_weight)
def predict(self, X):
assert isinstance(X, list)
return super().predict(X)
def test_transform_target_regressor_ensure_y_array():
# check that the target ``y`` passed to the transformer will always be a
# numpy array. Similarly, if ``X`` is passed as a list, we check that the
# predictor receive as it is.
X, y = friedman
tt = TransformedTargetRegressor(
transformer=DummyCheckerArrayTransformer(),
regressor=DummyCheckerListRegressor(),
check_inverse=False,
)
tt.fit(X.tolist(), y.tolist())
tt.predict(X.tolist())
with pytest.raises(AssertionError):
tt.fit(X, y.tolist())
with pytest.raises(AssertionError):
tt.predict(X)
class DummyTransformer(TransformerMixin, BaseEstimator):
"""Dummy transformer which count how many time fit was called."""
def __init__(self, fit_counter=0):
self.fit_counter = fit_counter
def fit(self, X, y=None):
self.fit_counter += 1
return self
def transform(self, X):
return X
def inverse_transform(self, X):
return X
@pytest.mark.parametrize("check_inverse", [False, True])
def test_transform_target_regressor_count_fit(check_inverse):
# regression test for gh-issue #11618
# check that we only call a single time fit for the transformer
X, y = friedman
ttr = TransformedTargetRegressor(
transformer=DummyTransformer(), check_inverse=check_inverse
)
ttr.fit(X, y)
assert ttr.transformer_.fit_counter == 1
class DummyRegressorWithExtraFitParams(DummyRegressor):
def fit(self, X, y, sample_weight=None, check_input=True):
# on the test below we force this to false, we make sure this is
# actually passed to the regressor
assert not check_input
return super().fit(X, y, sample_weight)
def test_transform_target_regressor_pass_fit_parameters():
X, y = friedman
regr = TransformedTargetRegressor(
regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer()
)
regr.fit(X, y, check_input=False)
assert regr.transformer_.fit_counter == 1
def test_transform_target_regressor_route_pipeline():
X, y = friedman
regr = TransformedTargetRegressor(
regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer()
)
estimators = [("normalize", StandardScaler()), ("est", regr)]
pip = Pipeline(estimators)
pip.fit(X, y, **{"est__check_input": False})
assert regr.transformer_.fit_counter == 1
class DummyRegressorWithExtraPredictParams(DummyRegressor):
def predict(self, X, check_input=True):
# In the test below we make sure that the check input parameter is
# passed as false
self.predict_called = True
assert not check_input
return super().predict(X)
def test_transform_target_regressor_pass_extra_predict_parameters():
# Checks that predict kwargs are passed to regressor.
X, y = friedman
regr = TransformedTargetRegressor(
regressor=DummyRegressorWithExtraPredictParams(), transformer=DummyTransformer()
)
regr.fit(X, y)
regr.predict(X, check_input=False)
assert regr.regressor_.predict_called
@pytest.mark.parametrize("output_format", ["pandas", "polars"])
def test_transform_target_regressor_not_warns_with_global_output_set(output_format):
"""Test that TransformedTargetRegressor will not raise warnings if
set_config(transform_output="pandas"/"polars") is set globally; regression test for
issue #29361."""
X, y = datasets.make_regression()
y = np.abs(y) + 1
with config_context(transform_output=output_format):
with warnings.catch_warnings():
warnings.simplefilter("error")
TransformedTargetRegressor(
regressor=LinearRegression(), func=np.log, inverse_func=np.exp
).fit(X, y)
|