File size: 40,035 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 |
"""GraphicalLasso: sparse inverse covariance estimation with an l1-penalized
estimator.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import operator
import sys
import time
import warnings
from numbers import Integral, Real
import numpy as np
from scipy import linalg
from ..base import _fit_context
from ..exceptions import ConvergenceWarning
# mypy error: Module 'sklearn.linear_model' has no attribute '_cd_fast'
from ..linear_model import _cd_fast as cd_fast # type: ignore
from ..linear_model import lars_path_gram
from ..model_selection import check_cv, cross_val_score
from ..utils import Bunch
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_raise_for_params,
_routing_enabled,
process_routing,
)
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
_is_arraylike_not_scalar,
check_random_state,
check_scalar,
validate_data,
)
from . import EmpiricalCovariance, empirical_covariance, log_likelihood
# Helper functions to compute the objective and dual objective functions
# of the l1-penalized estimator
def _objective(mle, precision_, alpha):
"""Evaluation of the graphical-lasso objective function
the objective function is made of a shifted scaled version of the
normalized log-likelihood (i.e. its empirical mean over the samples) and a
penalisation term to promote sparsity
"""
p = precision_.shape[0]
cost = -2.0 * log_likelihood(mle, precision_) + p * np.log(2 * np.pi)
cost += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum())
return cost
def _dual_gap(emp_cov, precision_, alpha):
"""Expression of the dual gap convergence criterion
The specific definition is given in Duchi "Projected Subgradient Methods
for Learning Sparse Gaussians".
"""
gap = np.sum(emp_cov * precision_)
gap -= precision_.shape[0]
gap += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum())
return gap
# The g-lasso algorithm
def _graphical_lasso(
emp_cov,
alpha,
*,
cov_init=None,
mode="cd",
tol=1e-4,
enet_tol=1e-4,
max_iter=100,
verbose=False,
eps=np.finfo(np.float64).eps,
):
_, n_features = emp_cov.shape
if alpha == 0:
# Early return without regularization
precision_ = linalg.inv(emp_cov)
cost = -2.0 * log_likelihood(emp_cov, precision_)
cost += n_features * np.log(2 * np.pi)
d_gap = np.sum(emp_cov * precision_) - n_features
return emp_cov, precision_, (cost, d_gap), 0
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init.copy()
# As a trivial regularization (Tikhonov like), we scale down the
# off-diagonal coefficients of our starting point: This is needed, as
# in the cross-validation the cov_init can easily be
# ill-conditioned, and the CV loop blows. Beside, this takes
# conservative stand-point on the initial conditions, and it tends to
# make the convergence go faster.
covariance_ *= 0.95
diagonal = emp_cov.flat[:: n_features + 1]
covariance_.flat[:: n_features + 1] = diagonal
precision_ = linalg.pinvh(covariance_)
indices = np.arange(n_features)
i = 0 # initialize the counter to be robust to `max_iter=0`
costs = list()
# The different l1 regression solver have different numerical errors
if mode == "cd":
errors = dict(over="raise", invalid="ignore")
else:
errors = dict(invalid="raise")
try:
# be robust to the max_iter=0 edge case, see:
# https://github.com/scikit-learn/scikit-learn/issues/4134
d_gap = np.inf
# set a sub_covariance buffer
sub_covariance = np.copy(covariance_[1:, 1:], order="C")
for i in range(max_iter):
for idx in range(n_features):
# To keep the contiguous matrix `sub_covariance` equal to
# covariance_[indices != idx].T[indices != idx]
# we only need to update 1 column and 1 line when idx changes
if idx > 0:
di = idx - 1
sub_covariance[di] = covariance_[di][indices != idx]
sub_covariance[:, di] = covariance_[:, di][indices != idx]
else:
sub_covariance[:] = covariance_[1:, 1:]
row = emp_cov[idx, indices != idx]
with np.errstate(**errors):
if mode == "cd":
# Use coordinate descent
coefs = -(
precision_[indices != idx, idx]
/ (precision_[idx, idx] + 1000 * eps)
)
coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram(
coefs,
alpha,
0,
sub_covariance,
row,
row,
max_iter,
enet_tol,
check_random_state(None),
False,
)
else: # mode == "lars"
_, _, coefs = lars_path_gram(
Xy=row,
Gram=sub_covariance,
n_samples=row.size,
alpha_min=alpha / (n_features - 1),
copy_Gram=True,
eps=eps,
method="lars",
return_path=False,
)
# Update the precision matrix
precision_[idx, idx] = 1.0 / (
covariance_[idx, idx]
- np.dot(covariance_[indices != idx, idx], coefs)
)
precision_[indices != idx, idx] = -precision_[idx, idx] * coefs
precision_[idx, indices != idx] = -precision_[idx, idx] * coefs
coefs = np.dot(sub_covariance, coefs)
covariance_[idx, indices != idx] = coefs
covariance_[indices != idx, idx] = coefs
if not np.isfinite(precision_.sum()):
raise FloatingPointError(
"The system is too ill-conditioned for this solver"
)
d_gap = _dual_gap(emp_cov, precision_, alpha)
cost = _objective(emp_cov, precision_, alpha)
if verbose:
print(
"[graphical_lasso] Iteration % 3i, cost % 3.2e, dual gap %.3e"
% (i, cost, d_gap)
)
costs.append((cost, d_gap))
if np.abs(d_gap) < tol:
break
if not np.isfinite(cost) and i > 0:
raise FloatingPointError(
"Non SPD result: the system is too ill-conditioned for this solver"
)
else:
warnings.warn(
"graphical_lasso: did not converge after %i iteration: dual gap: %.3e"
% (max_iter, d_gap),
ConvergenceWarning,
)
except FloatingPointError as e:
e.args = (e.args[0] + ". The system is too ill-conditioned for this solver",)
raise e
return covariance_, precision_, costs, i + 1
def alpha_max(emp_cov):
"""Find the maximum alpha for which there are some non-zeros off-diagonal.
Parameters
----------
emp_cov : ndarray of shape (n_features, n_features)
The sample covariance matrix.
Notes
-----
This results from the bound for the all the Lasso that are solved
in GraphicalLasso: each time, the row of cov corresponds to Xy. As the
bound for alpha is given by `max(abs(Xy))`, the result follows.
"""
A = np.copy(emp_cov)
A.flat[:: A.shape[0] + 1] = 0
return np.max(np.abs(A))
@validate_params(
{
"emp_cov": ["array-like"],
"return_costs": ["boolean"],
"return_n_iter": ["boolean"],
},
prefer_skip_nested_validation=False,
)
def graphical_lasso(
emp_cov,
alpha,
*,
mode="cd",
tol=1e-4,
enet_tol=1e-4,
max_iter=100,
verbose=False,
return_costs=False,
eps=np.finfo(np.float64).eps,
return_n_iter=False,
):
"""L1-penalized covariance estimator.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
.. versionchanged:: v0.20
graph_lasso has been renamed to graphical_lasso
Parameters
----------
emp_cov : array-like of shape (n_features, n_features)
Empirical covariance from which to compute the covariance estimate.
alpha : float
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
Range is (0, inf].
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. Range is (0, inf].
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. Range is (0, inf].
max_iter : int, default=100
The maximum number of iterations.
verbose : bool, default=False
If verbose is True, the objective function and dual gap are
printed at each iteration.
return_costs : bool, default=False
If return_costs is True, the objective function and dual gap
at each iteration are returned.
eps : float, default=eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Default is `np.finfo(np.float64).eps`.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
Returns
-------
covariance : ndarray of shape (n_features, n_features)
The estimated covariance matrix.
precision : ndarray of shape (n_features, n_features)
The estimated (sparse) precision matrix.
costs : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True.
n_iter : int
Number of iterations. Returned only if `return_n_iter` is set to True.
See Also
--------
GraphicalLasso : Sparse inverse covariance estimation
with an l1-penalized estimator.
GraphicalLassoCV : Sparse inverse covariance with
cross-validated choice of the l1 penalty.
Notes
-----
The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm
as in the R `glasso` package.
One possible difference with the `glasso` R package is that the
diagonal coefficients are not penalized.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_sparse_spd_matrix
>>> from sklearn.covariance import empirical_covariance, graphical_lasso
>>> true_cov = make_sparse_spd_matrix(n_dim=3,random_state=42)
>>> rng = np.random.RandomState(42)
>>> X = rng.multivariate_normal(mean=np.zeros(3), cov=true_cov, size=3)
>>> emp_cov = empirical_covariance(X, assume_centered=True)
>>> emp_cov, _ = graphical_lasso(emp_cov, alpha=0.05)
>>> emp_cov
array([[ 1.68..., 0.21..., -0.20...],
[ 0.21..., 0.22..., -0.08...],
[-0.20..., -0.08..., 0.23...]])
"""
model = GraphicalLasso(
alpha=alpha,
mode=mode,
covariance="precomputed",
tol=tol,
enet_tol=enet_tol,
max_iter=max_iter,
verbose=verbose,
eps=eps,
assume_centered=True,
).fit(emp_cov)
output = [model.covariance_, model.precision_]
if return_costs:
output.append(model.costs_)
if return_n_iter:
output.append(model.n_iter_)
return tuple(output)
class BaseGraphicalLasso(EmpiricalCovariance):
_parameter_constraints: dict = {
**EmpiricalCovariance._parameter_constraints,
"tol": [Interval(Real, 0, None, closed="right")],
"enet_tol": [Interval(Real, 0, None, closed="right")],
"max_iter": [Interval(Integral, 0, None, closed="left")],
"mode": [StrOptions({"cd", "lars"})],
"verbose": ["verbose"],
"eps": [Interval(Real, 0, None, closed="both")],
}
_parameter_constraints.pop("store_precision")
def __init__(
self,
tol=1e-4,
enet_tol=1e-4,
max_iter=100,
mode="cd",
verbose=False,
eps=np.finfo(np.float64).eps,
assume_centered=False,
):
super().__init__(assume_centered=assume_centered)
self.tol = tol
self.enet_tol = enet_tol
self.max_iter = max_iter
self.mode = mode
self.verbose = verbose
self.eps = eps
class GraphicalLasso(BaseGraphicalLasso):
"""Sparse inverse covariance estimation with an l1-penalized estimator.
For a usage example see
:ref:`sphx_glr_auto_examples_applications_plot_stock_market.py`.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
.. versionchanged:: v0.20
GraphLasso has been renamed to GraphicalLasso
Parameters
----------
alpha : float, default=0.01
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
Range is (0, inf].
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
covariance : "precomputed", default=None
If covariance is "precomputed", the input data in `fit` is assumed
to be the covariance matrix. If `None`, the empirical covariance
is estimated from the data `X`.
.. versionadded:: 1.3
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. Range is (0, inf].
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. Range is (0, inf].
max_iter : int, default=100
The maximum number of iterations.
verbose : bool, default=False
If verbose is True, the objective function and dual gap are
plotted at each iteration.
eps : float, default=eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Default is `np.finfo(np.float64).eps`.
.. versionadded:: 1.3
assume_centered : bool, default=False
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix
precision_ : ndarray of shape (n_features, n_features)
Estimated pseudo inverse matrix.
n_iter_ : int
Number of iterations run.
costs_ : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True.
.. versionadded:: 1.3
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
graphical_lasso : L1-penalized covariance estimator.
GraphicalLassoCV : Sparse inverse covariance with
cross-validated choice of the l1 penalty.
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import GraphicalLasso
>>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.2, 0.0, 0.3, 0.1],
... [0.0, 0.0, 0.1, 0.7]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
... cov=true_cov,
... size=200)
>>> cov = GraphicalLasso().fit(X)
>>> np.around(cov.covariance_, decimals=3)
array([[0.816, 0.049, 0.218, 0.019],
[0.049, 0.364, 0.017, 0.034],
[0.218, 0.017, 0.322, 0.093],
[0.019, 0.034, 0.093, 0.69 ]])
>>> np.around(cov.location_, decimals=3)
array([0.073, 0.04 , 0.038, 0.143])
"""
_parameter_constraints: dict = {
**BaseGraphicalLasso._parameter_constraints,
"alpha": [Interval(Real, 0, None, closed="both")],
"covariance": [StrOptions({"precomputed"}), None],
}
def __init__(
self,
alpha=0.01,
*,
mode="cd",
covariance=None,
tol=1e-4,
enet_tol=1e-4,
max_iter=100,
verbose=False,
eps=np.finfo(np.float64).eps,
assume_centered=False,
):
super().__init__(
tol=tol,
enet_tol=enet_tol,
max_iter=max_iter,
mode=mode,
verbose=verbose,
eps=eps,
assume_centered=assume_centered,
)
self.alpha = alpha
self.covariance = covariance
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the GraphicalLasso model to X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the covariance estimate.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Returns the instance itself.
"""
# Covariance does not make sense for a single feature
X = validate_data(self, X, ensure_min_features=2, ensure_min_samples=2)
if self.covariance == "precomputed":
emp_cov = X.copy()
self.location_ = np.zeros(X.shape[1])
else:
emp_cov = empirical_covariance(X, assume_centered=self.assume_centered)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
self.covariance_, self.precision_, self.costs_, self.n_iter_ = _graphical_lasso(
emp_cov,
alpha=self.alpha,
cov_init=None,
mode=self.mode,
tol=self.tol,
enet_tol=self.enet_tol,
max_iter=self.max_iter,
verbose=self.verbose,
eps=self.eps,
)
return self
# Cross-validation with GraphicalLasso
def graphical_lasso_path(
X,
alphas,
cov_init=None,
X_test=None,
mode="cd",
tol=1e-4,
enet_tol=1e-4,
max_iter=100,
verbose=False,
eps=np.finfo(np.float64).eps,
):
"""l1-penalized covariance estimator along a path of decreasing alphas
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data from which to compute the covariance estimate.
alphas : array-like of shape (n_alphas,)
The list of regularization parameters, decreasing order.
cov_init : array of shape (n_features, n_features), default=None
The initial guess for the covariance.
X_test : array of shape (n_test_samples, n_features), default=None
Optional test matrix to measure generalisation error.
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. The tolerance must be a positive
number.
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. The tolerance must be a positive number.
max_iter : int, default=100
The maximum number of iterations. This parameter should be a strictly
positive integer.
verbose : int or bool, default=False
The higher the verbosity flag, the more information is printed
during the fitting.
eps : float, default=eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Default is `np.finfo(np.float64).eps`.
.. versionadded:: 1.3
Returns
-------
covariances_ : list of shape (n_alphas,) of ndarray of shape \
(n_features, n_features)
The estimated covariance matrices.
precisions_ : list of shape (n_alphas,) of ndarray of shape \
(n_features, n_features)
The estimated (sparse) precision matrices.
scores_ : list of shape (n_alphas,), dtype=float
The generalisation error (log-likelihood) on the test data.
Returned only if test data is passed.
"""
inner_verbose = max(0, verbose - 1)
emp_cov = empirical_covariance(X)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init
covariances_ = list()
precisions_ = list()
scores_ = list()
if X_test is not None:
test_emp_cov = empirical_covariance(X_test)
for alpha in alphas:
try:
# Capture the errors, and move on
covariance_, precision_, _, _ = _graphical_lasso(
emp_cov,
alpha=alpha,
cov_init=covariance_,
mode=mode,
tol=tol,
enet_tol=enet_tol,
max_iter=max_iter,
verbose=inner_verbose,
eps=eps,
)
covariances_.append(covariance_)
precisions_.append(precision_)
if X_test is not None:
this_score = log_likelihood(test_emp_cov, precision_)
except FloatingPointError:
this_score = -np.inf
covariances_.append(np.nan)
precisions_.append(np.nan)
if X_test is not None:
if not np.isfinite(this_score):
this_score = -np.inf
scores_.append(this_score)
if verbose == 1:
sys.stderr.write(".")
elif verbose > 1:
if X_test is not None:
print(
"[graphical_lasso_path] alpha: %.2e, score: %.2e"
% (alpha, this_score)
)
else:
print("[graphical_lasso_path] alpha: %.2e" % alpha)
if X_test is not None:
return covariances_, precisions_, scores_
return covariances_, precisions_
class GraphicalLassoCV(BaseGraphicalLasso):
"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
.. versionchanged:: v0.20
GraphLassoCV has been renamed to GraphicalLassoCV
Parameters
----------
alphas : int or array-like of shape (n_alphas,), dtype=float, default=4
If an integer is given, it fixes the number of points on the
grids of alpha to be used. If a list is given, it gives the
grid to be used. See the notes in the class docstring for
more details. Range is [1, inf) for an integer.
Range is (0, inf] for an array-like of floats.
n_refinements : int, default=4
The number of times the grid is refined. Not used if explicit
values of alphas are passed. Range is [1, inf).
cv : int, cross-validation generator or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None changed from 3-fold to 5-fold.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. Range is (0, inf].
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. Range is (0, inf].
max_iter : int, default=100
Maximum number of iterations.
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where number of features is greater
than number of samples. Elsewhere prefer cd which is more numerically
stable.
n_jobs : int, default=None
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionchanged:: v0.20
`n_jobs` default changed from 1 to None
verbose : bool, default=False
If verbose is True, the objective function and duality gap are
printed at each iteration.
eps : float, default=eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Default is `np.finfo(np.float64).eps`.
.. versionadded:: 1.3
assume_centered : bool, default=False
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix.
precision_ : ndarray of shape (n_features, n_features)
Estimated precision matrix (inverse covariance).
costs_ : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True.
.. versionadded:: 1.3
alpha_ : float
Penalization parameter selected.
cv_results_ : dict of ndarrays
A dict with keys:
alphas : ndarray of shape (n_alphas,)
All penalization parameters explored.
split(k)_test_score : ndarray of shape (n_alphas,)
Log-likelihood score on left-out data across (k)th fold.
.. versionadded:: 1.0
mean_test_score : ndarray of shape (n_alphas,)
Mean of scores over the folds.
.. versionadded:: 1.0
std_test_score : ndarray of shape (n_alphas,)
Standard deviation of scores over the folds.
.. versionadded:: 1.0
n_iter_ : int
Number of iterations run for the optimal alpha.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
graphical_lasso : L1-penalized covariance estimator.
GraphicalLasso : Sparse inverse covariance estimation
with an l1-penalized estimator.
Notes
-----
The search for the optimal penalization parameter (`alpha`) is done on an
iteratively refined grid: first the cross-validated scores on a grid are
computed, then a new refined grid is centered around the maximum, and so
on.
One of the challenges which is faced here is that the solvers can
fail to converge to a well-conditioned estimate. The corresponding
values of `alpha` then come out as missing values, but the optimum may
be close to these missing values.
In `fit`, once the best parameter `alpha` is found through
cross-validation, the model is fit again using the entire training set.
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import GraphicalLassoCV
>>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.2, 0.0, 0.3, 0.1],
... [0.0, 0.0, 0.1, 0.7]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
... cov=true_cov,
... size=200)
>>> cov = GraphicalLassoCV().fit(X)
>>> np.around(cov.covariance_, decimals=3)
array([[0.816, 0.051, 0.22 , 0.017],
[0.051, 0.364, 0.018, 0.036],
[0.22 , 0.018, 0.322, 0.094],
[0.017, 0.036, 0.094, 0.69 ]])
>>> np.around(cov.location_, decimals=3)
array([0.073, 0.04 , 0.038, 0.143])
"""
_parameter_constraints: dict = {
**BaseGraphicalLasso._parameter_constraints,
"alphas": [Interval(Integral, 0, None, closed="left"), "array-like"],
"n_refinements": [Interval(Integral, 1, None, closed="left")],
"cv": ["cv_object"],
"n_jobs": [Integral, None],
}
def __init__(
self,
*,
alphas=4,
n_refinements=4,
cv=None,
tol=1e-4,
enet_tol=1e-4,
max_iter=100,
mode="cd",
n_jobs=None,
verbose=False,
eps=np.finfo(np.float64).eps,
assume_centered=False,
):
super().__init__(
tol=tol,
enet_tol=enet_tol,
max_iter=max_iter,
mode=mode,
verbose=verbose,
eps=eps,
assume_centered=assume_centered,
)
self.alphas = alphas
self.n_refinements = n_refinements
self.cv = cv
self.n_jobs = n_jobs
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None, **params):
"""Fit the GraphicalLasso covariance model to X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the covariance estimate.
y : Ignored
Not used, present for API consistency by convention.
**params : dict, default=None
Parameters to be passed to the CV splitter and the
cross_val_score function.
.. versionadded:: 1.5
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Returns the instance itself.
"""
# Covariance does not make sense for a single feature
_raise_for_params(params, self, "fit")
X = validate_data(self, X, ensure_min_features=2)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
emp_cov = empirical_covariance(X, assume_centered=self.assume_centered)
cv = check_cv(self.cv, y, classifier=False)
# List of (alpha, scores, covs)
path = list()
n_alphas = self.alphas
inner_verbose = max(0, self.verbose - 1)
if _is_arraylike_not_scalar(n_alphas):
for alpha in self.alphas:
check_scalar(
alpha,
"alpha",
Real,
min_val=0,
max_val=np.inf,
include_boundaries="right",
)
alphas = self.alphas
n_refinements = 1
else:
n_refinements = self.n_refinements
alpha_1 = alpha_max(emp_cov)
alpha_0 = 1e-2 * alpha_1
alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1), n_alphas)[::-1]
if _routing_enabled():
routed_params = process_routing(self, "fit", **params)
else:
routed_params = Bunch(splitter=Bunch(split={}))
t0 = time.time()
for i in range(n_refinements):
with warnings.catch_warnings():
# No need to see the convergence warnings on this grid:
# they will always be points that will not converge
# during the cross-validation
warnings.simplefilter("ignore", ConvergenceWarning)
# Compute the cross-validated loss on the current grid
# NOTE: Warm-restarting graphical_lasso_path has been tried,
# and this did not allow to gain anything
# (same execution time with or without).
this_path = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(graphical_lasso_path)(
X[train],
alphas=alphas,
X_test=X[test],
mode=self.mode,
tol=self.tol,
enet_tol=self.enet_tol,
max_iter=int(0.1 * self.max_iter),
verbose=inner_verbose,
eps=self.eps,
)
for train, test in cv.split(X, y, **routed_params.splitter.split)
)
# Little danse to transform the list in what we need
covs, _, scores = zip(*this_path)
covs = zip(*covs)
scores = zip(*scores)
path.extend(zip(alphas, scores, covs))
path = sorted(path, key=operator.itemgetter(0), reverse=True)
# Find the maximum (avoid using built in 'max' function to
# have a fully-reproducible selection of the smallest alpha
# in case of equality)
best_score = -np.inf
last_finite_idx = 0
for index, (alpha, scores, _) in enumerate(path):
this_score = np.mean(scores)
if this_score >= 0.1 / np.finfo(np.float64).eps:
this_score = np.nan
if np.isfinite(this_score):
last_finite_idx = index
if this_score >= best_score:
best_score = this_score
best_index = index
# Refine the grid
if best_index == 0:
# We do not need to go back: we have chosen
# the highest value of alpha for which there are
# non-zero coefficients
alpha_1 = path[0][0]
alpha_0 = path[1][0]
elif best_index == last_finite_idx and not best_index == len(path) - 1:
# We have non-converged models on the upper bound of the
# grid, we need to refine the grid there
alpha_1 = path[best_index][0]
alpha_0 = path[best_index + 1][0]
elif best_index == len(path) - 1:
alpha_1 = path[best_index][0]
alpha_0 = 0.01 * path[best_index][0]
else:
alpha_1 = path[best_index - 1][0]
alpha_0 = path[best_index + 1][0]
if not _is_arraylike_not_scalar(n_alphas):
alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0), n_alphas + 2)
alphas = alphas[1:-1]
if self.verbose and n_refinements > 1:
print(
"[GraphicalLassoCV] Done refinement % 2i out of %i: % 3is"
% (i + 1, n_refinements, time.time() - t0)
)
path = list(zip(*path))
grid_scores = list(path[1])
alphas = list(path[0])
# Finally, compute the score with alpha = 0
alphas.append(0)
grid_scores.append(
cross_val_score(
EmpiricalCovariance(),
X,
cv=cv,
n_jobs=self.n_jobs,
verbose=inner_verbose,
params=params,
)
)
grid_scores = np.array(grid_scores)
self.cv_results_ = {"alphas": np.array(alphas)}
for i in range(grid_scores.shape[1]):
self.cv_results_[f"split{i}_test_score"] = grid_scores[:, i]
self.cv_results_["mean_test_score"] = np.mean(grid_scores, axis=1)
self.cv_results_["std_test_score"] = np.std(grid_scores, axis=1)
best_alpha = alphas[best_index]
self.alpha_ = best_alpha
# Finally fit the model with the selected alpha
self.covariance_, self.precision_, self.costs_, self.n_iter_ = _graphical_lasso(
emp_cov,
alpha=best_alpha,
mode=self.mode,
tol=self.tol,
enet_tol=self.enet_tol,
max_iter=self.max_iter,
verbose=inner_verbose,
eps=self.eps,
)
return self
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.5
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
splitter=check_cv(self.cv),
method_mapping=MethodMapping().add(callee="split", caller="fit"),
)
return router
|