File size: 82,115 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
"""Non-negative matrix factorization."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import itertools
import time
import warnings
from abc import ABC
from math import sqrt
from numbers import Integral, Real

import numpy as np
import scipy.sparse as sp
from scipy import linalg

from .._config import config_context
from ..base import (
    BaseEstimator,
    ClassNamePrefixFeaturesOutMixin,
    TransformerMixin,
    _fit_context,
)
from ..exceptions import ConvergenceWarning
from ..utils import check_array, check_random_state, gen_batches, metadata_routing
from ..utils._param_validation import (
    Interval,
    StrOptions,
    validate_params,
)
from ..utils.deprecation import _deprecate_Xt_in_inverse_transform
from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm
from ..utils.validation import (
    check_is_fitted,
    check_non_negative,
    validate_data,
)
from ._cdnmf_fast import _update_cdnmf_fast

EPSILON = np.finfo(np.float32).eps


def norm(x):
    """Dot product-based Euclidean norm implementation.

    See: http://fa.bianp.net/blog/2011/computing-the-vector-norm/

    Parameters
    ----------
    x : array-like
        Vector for which to compute the norm.
    """
    return sqrt(squared_norm(x))


def trace_dot(X, Y):
    """Trace of np.dot(X, Y.T).

    Parameters
    ----------
    X : array-like
        First matrix.
    Y : array-like
        Second matrix.
    """
    return np.dot(X.ravel(), Y.ravel())


def _check_init(A, shape, whom):
    A = check_array(A)
    if shape[0] != "auto" and A.shape[0] != shape[0]:
        raise ValueError(
            f"Array with wrong first dimension passed to {whom}. Expected {shape[0]}, "
            f"but got {A.shape[0]}."
        )
    if shape[1] != "auto" and A.shape[1] != shape[1]:
        raise ValueError(
            f"Array with wrong second dimension passed to {whom}. Expected {shape[1]}, "
            f"but got {A.shape[1]}."
        )
    check_non_negative(A, whom)
    if np.max(A) == 0:
        raise ValueError(f"Array passed to {whom} is full of zeros.")


def _beta_divergence(X, W, H, beta, square_root=False):
    """Compute the beta-divergence of X and dot(W, H).

    Parameters
    ----------
    X : float or array-like of shape (n_samples, n_features)

    W : float or array-like of shape (n_samples, n_components)

    H : float or array-like of shape (n_components, n_features)

    beta : float or {'frobenius', 'kullback-leibler', 'itakura-saito'}
        Parameter of the beta-divergence.
        If beta == 2, this is half the Frobenius *squared* norm.
        If beta == 1, this is the generalized Kullback-Leibler divergence.
        If beta == 0, this is the Itakura-Saito divergence.
        Else, this is the general beta-divergence.

    square_root : bool, default=False
        If True, return np.sqrt(2 * res)
        For beta == 2, it corresponds to the Frobenius norm.

    Returns
    -------
        res : float
            Beta divergence of X and np.dot(X, H).
    """
    beta = _beta_loss_to_float(beta)

    # The method can be called with scalars
    if not sp.issparse(X):
        X = np.atleast_2d(X)
    W = np.atleast_2d(W)
    H = np.atleast_2d(H)

    # Frobenius norm
    if beta == 2:
        # Avoid the creation of the dense np.dot(W, H) if X is sparse.
        if sp.issparse(X):
            norm_X = np.dot(X.data, X.data)
            norm_WH = trace_dot(np.linalg.multi_dot([W.T, W, H]), H)
            cross_prod = trace_dot((X @ H.T), W)
            res = (norm_X + norm_WH - 2.0 * cross_prod) / 2.0
        else:
            res = squared_norm(X - np.dot(W, H)) / 2.0

        if square_root:
            return np.sqrt(res * 2)
        else:
            return res

    if sp.issparse(X):
        # compute np.dot(W, H) only where X is nonzero
        WH_data = _special_sparse_dot(W, H, X).data
        X_data = X.data
    else:
        WH = np.dot(W, H)
        WH_data = WH.ravel()
        X_data = X.ravel()

    # do not affect the zeros: here 0 ** (-1) = 0 and not infinity
    indices = X_data > EPSILON
    WH_data = WH_data[indices]
    X_data = X_data[indices]

    # used to avoid division by zero
    WH_data[WH_data < EPSILON] = EPSILON

    # generalized Kullback-Leibler divergence
    if beta == 1:
        # fast and memory efficient computation of np.sum(np.dot(W, H))
        sum_WH = np.dot(np.sum(W, axis=0), np.sum(H, axis=1))
        # computes np.sum(X * log(X / WH)) only where X is nonzero
        div = X_data / WH_data
        res = np.dot(X_data, np.log(div))
        # add full np.sum(np.dot(W, H)) - np.sum(X)
        res += sum_WH - X_data.sum()

    # Itakura-Saito divergence
    elif beta == 0:
        div = X_data / WH_data
        res = np.sum(div) - np.prod(X.shape) - np.sum(np.log(div))

    # beta-divergence, beta not in (0, 1, 2)
    else:
        if sp.issparse(X):
            # slow loop, but memory efficient computation of :
            # np.sum(np.dot(W, H) ** beta)
            sum_WH_beta = 0
            for i in range(X.shape[1]):
                sum_WH_beta += np.sum(np.dot(W, H[:, i]) ** beta)

        else:
            sum_WH_beta = np.sum(WH**beta)

        sum_X_WH = np.dot(X_data, WH_data ** (beta - 1))
        res = (X_data**beta).sum() - beta * sum_X_WH
        res += sum_WH_beta * (beta - 1)
        res /= beta * (beta - 1)

    if square_root:
        res = max(res, 0)  # avoid negative number due to rounding errors
        return np.sqrt(2 * res)
    else:
        return res


def _special_sparse_dot(W, H, X):
    """Computes np.dot(W, H), only where X is non zero."""
    if sp.issparse(X):
        ii, jj = X.nonzero()
        n_vals = ii.shape[0]
        dot_vals = np.empty(n_vals)
        n_components = W.shape[1]

        batch_size = max(n_components, n_vals // n_components)
        for start in range(0, n_vals, batch_size):
            batch = slice(start, start + batch_size)
            dot_vals[batch] = np.multiply(W[ii[batch], :], H.T[jj[batch], :]).sum(
                axis=1
            )

        WH = sp.coo_matrix((dot_vals, (ii, jj)), shape=X.shape)
        return WH.tocsr()
    else:
        return np.dot(W, H)


def _beta_loss_to_float(beta_loss):
    """Convert string beta_loss to float."""
    beta_loss_map = {"frobenius": 2, "kullback-leibler": 1, "itakura-saito": 0}
    if isinstance(beta_loss, str):
        beta_loss = beta_loss_map[beta_loss]
    return beta_loss


def _initialize_nmf(X, n_components, init=None, eps=1e-6, random_state=None):
    """Algorithms for NMF initialization.

    Computes an initial guess for the non-negative
    rank k matrix approximation for X: X = WH.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        The data matrix to be decomposed.

    n_components : int
        The number of components desired in the approximation.

    init :  {'random', 'nndsvd', 'nndsvda', 'nndsvdar'}, default=None
        Method used to initialize the procedure.
        Valid options:

        - None: 'nndsvda' if n_components <= min(n_samples, n_features),
            otherwise 'random'.

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

        .. versionchanged:: 1.1
            When `init=None` and n_components is less than n_samples and n_features
            defaults to `nndsvda` instead of `nndsvd`.

    eps : float, default=1e-6
        Truncate all values less then this in output to zero.

    random_state : int, RandomState instance or None, default=None
        Used when ``init`` == 'nndsvdar' or 'random'. Pass an int for
        reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    W : array-like of shape (n_samples, n_components)
        Initial guesses for solving X ~= WH.

    H : array-like of shape (n_components, n_features)
        Initial guesses for solving X ~= WH.

    References
    ----------
    C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for
    nonnegative matrix factorization - Pattern Recognition, 2008
    http://tinyurl.com/nndsvd
    """
    check_non_negative(X, "NMF initialization")
    n_samples, n_features = X.shape

    if (
        init is not None
        and init != "random"
        and n_components > min(n_samples, n_features)
    ):
        raise ValueError(
            "init = '{}' can only be used when "
            "n_components <= min(n_samples, n_features)".format(init)
        )

    if init is None:
        if n_components <= min(n_samples, n_features):
            init = "nndsvda"
        else:
            init = "random"

    # Random initialization
    if init == "random":
        avg = np.sqrt(X.mean() / n_components)
        rng = check_random_state(random_state)
        H = avg * rng.standard_normal(size=(n_components, n_features)).astype(
            X.dtype, copy=False
        )
        W = avg * rng.standard_normal(size=(n_samples, n_components)).astype(
            X.dtype, copy=False
        )
        np.abs(H, out=H)
        np.abs(W, out=W)
        return W, H

    # NNDSVD initialization
    U, S, V = randomized_svd(X, n_components, random_state=random_state)
    W = np.zeros_like(U)
    H = np.zeros_like(V)

    # The leading singular triplet is non-negative
    # so it can be used as is for initialization.
    W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0])
    H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :])

    for j in range(1, n_components):
        x, y = U[:, j], V[j, :]

        # extract positive and negative parts of column vectors
        x_p, y_p = np.maximum(x, 0), np.maximum(y, 0)
        x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0))

        # and their norms
        x_p_nrm, y_p_nrm = norm(x_p), norm(y_p)
        x_n_nrm, y_n_nrm = norm(x_n), norm(y_n)

        m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm

        # choose update
        if m_p > m_n:
            u = x_p / x_p_nrm
            v = y_p / y_p_nrm
            sigma = m_p
        else:
            u = x_n / x_n_nrm
            v = y_n / y_n_nrm
            sigma = m_n

        lbd = np.sqrt(S[j] * sigma)
        W[:, j] = lbd * u
        H[j, :] = lbd * v

    W[W < eps] = 0
    H[H < eps] = 0

    if init == "nndsvd":
        pass
    elif init == "nndsvda":
        avg = X.mean()
        W[W == 0] = avg
        H[H == 0] = avg
    elif init == "nndsvdar":
        rng = check_random_state(random_state)
        avg = X.mean()
        W[W == 0] = abs(avg * rng.standard_normal(size=len(W[W == 0])) / 100)
        H[H == 0] = abs(avg * rng.standard_normal(size=len(H[H == 0])) / 100)
    else:
        raise ValueError(
            "Invalid init parameter: got %r instead of one of %r"
            % (init, (None, "random", "nndsvd", "nndsvda", "nndsvdar"))
        )

    return W, H


def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle, random_state):
    """Helper function for _fit_coordinate_descent.

    Update W to minimize the objective function, iterating once over all
    coordinates. By symmetry, to update H, one can call
    _update_coordinate_descent(X.T, Ht, W, ...).

    """
    n_components = Ht.shape[1]

    HHt = np.dot(Ht.T, Ht)
    XHt = safe_sparse_dot(X, Ht)

    # L2 regularization corresponds to increase of the diagonal of HHt
    if l2_reg != 0.0:
        # adds l2_reg only on the diagonal
        HHt.flat[:: n_components + 1] += l2_reg
    # L1 regularization corresponds to decrease of each element of XHt
    if l1_reg != 0.0:
        XHt -= l1_reg

    if shuffle:
        permutation = random_state.permutation(n_components)
    else:
        permutation = np.arange(n_components)
    # The following seems to be required on 64-bit Windows w/ Python 3.5.
    permutation = np.asarray(permutation, dtype=np.intp)
    return _update_cdnmf_fast(W, HHt, XHt, permutation)


def _fit_coordinate_descent(
    X,
    W,
    H,
    tol=1e-4,
    max_iter=200,
    l1_reg_W=0,
    l1_reg_H=0,
    l2_reg_W=0,
    l2_reg_H=0,
    update_H=True,
    verbose=0,
    shuffle=False,
    random_state=None,
):
    """Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent

    The objective function is minimized with an alternating minimization of W
    and H. Each minimization is done with a cyclic (up to a permutation of the
    features) Coordinate Descent.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Constant matrix.

    W : array-like of shape (n_samples, n_components)
        Initial guess for the solution.

    H : array-like of shape (n_components, n_features)
        Initial guess for the solution.

    tol : float, default=1e-4
        Tolerance of the stopping condition.

    max_iter : int, default=200
        Maximum number of iterations before timing out.

    l1_reg_W : float, default=0.
        L1 regularization parameter for W.

    l1_reg_H : float, default=0.
        L1 regularization parameter for H.

    l2_reg_W : float, default=0.
        L2 regularization parameter for W.

    l2_reg_H : float, default=0.
        L2 regularization parameter for H.

    update_H : bool, default=True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    verbose : int, default=0
        The verbosity level.

    shuffle : bool, default=False
        If true, randomize the order of coordinates in the CD solver.

    random_state : int, RandomState instance or None, default=None
        Used to randomize the coordinates in the CD solver, when
        ``shuffle`` is set to ``True``. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    W : ndarray of shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : ndarray of shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    .. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
       factorizations" <10.1587/transfun.E92.A.708>`
       Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
       of electronics, communications and computer sciences 92.3: 708-721, 2009.
    """
    # so W and Ht are both in C order in memory
    Ht = check_array(H.T, order="C")
    X = check_array(X, accept_sparse="csr")

    rng = check_random_state(random_state)

    for n_iter in range(1, max_iter + 1):
        violation = 0.0

        # Update W
        violation += _update_coordinate_descent(
            X, W, Ht, l1_reg_W, l2_reg_W, shuffle, rng
        )
        # Update H
        if update_H:
            violation += _update_coordinate_descent(
                X.T, Ht, W, l1_reg_H, l2_reg_H, shuffle, rng
            )

        if n_iter == 1:
            violation_init = violation

        if violation_init == 0:
            break

        if verbose:
            print("violation:", violation / violation_init)

        if violation / violation_init <= tol:
            if verbose:
                print("Converged at iteration", n_iter + 1)
            break

    return W, Ht.T, n_iter


def _multiplicative_update_w(
    X,
    W,
    H,
    beta_loss,
    l1_reg_W,
    l2_reg_W,
    gamma,
    H_sum=None,
    HHt=None,
    XHt=None,
    update_H=True,
):
    """Update W in Multiplicative Update NMF."""
    if beta_loss == 2:
        # Numerator
        if XHt is None:
            XHt = safe_sparse_dot(X, H.T)
        if update_H:
            # avoid a copy of XHt, which will be re-computed (update_H=True)
            numerator = XHt
        else:
            # preserve the XHt, which is not re-computed (update_H=False)
            numerator = XHt.copy()

        # Denominator
        if HHt is None:
            HHt = np.dot(H, H.T)
        denominator = np.dot(W, HHt)

    else:
        # Numerator
        # if X is sparse, compute WH only where X is non zero
        WH_safe_X = _special_sparse_dot(W, H, X)
        if sp.issparse(X):
            WH_safe_X_data = WH_safe_X.data
            X_data = X.data
        else:
            WH_safe_X_data = WH_safe_X
            X_data = X
            # copy used in the Denominator
            WH = WH_safe_X.copy()
            if beta_loss - 1.0 < 0:
                WH[WH < EPSILON] = EPSILON

        # to avoid taking a negative power of zero
        if beta_loss - 2.0 < 0:
            WH_safe_X_data[WH_safe_X_data < EPSILON] = EPSILON

        if beta_loss == 1:
            np.divide(X_data, WH_safe_X_data, out=WH_safe_X_data)
        elif beta_loss == 0:
            # speeds up computation time
            # refer to /numpy/numpy/issues/9363
            WH_safe_X_data **= -1
            WH_safe_X_data **= 2
            # element-wise multiplication
            WH_safe_X_data *= X_data
        else:
            WH_safe_X_data **= beta_loss - 2
            # element-wise multiplication
            WH_safe_X_data *= X_data

        # here numerator = dot(X * (dot(W, H) ** (beta_loss - 2)), H.T)
        numerator = safe_sparse_dot(WH_safe_X, H.T)

        # Denominator
        if beta_loss == 1:
            if H_sum is None:
                H_sum = np.sum(H, axis=1)  # shape(n_components, )
            denominator = H_sum[np.newaxis, :]

        else:
            # computation of WHHt = dot(dot(W, H) ** beta_loss - 1, H.T)
            if sp.issparse(X):
                # memory efficient computation
                # (compute row by row, avoiding the dense matrix WH)
                WHHt = np.empty(W.shape)
                for i in range(X.shape[0]):
                    WHi = np.dot(W[i, :], H)
                    if beta_loss - 1 < 0:
                        WHi[WHi < EPSILON] = EPSILON
                    WHi **= beta_loss - 1
                    WHHt[i, :] = np.dot(WHi, H.T)
            else:
                WH **= beta_loss - 1
                WHHt = np.dot(WH, H.T)
            denominator = WHHt

    # Add L1 and L2 regularization
    if l1_reg_W > 0:
        denominator += l1_reg_W
    if l2_reg_W > 0:
        denominator = denominator + l2_reg_W * W
    denominator[denominator == 0] = EPSILON

    numerator /= denominator
    delta_W = numerator

    # gamma is in ]0, 1]
    if gamma != 1:
        delta_W **= gamma

    W *= delta_W

    return W, H_sum, HHt, XHt


def _multiplicative_update_h(
    X, W, H, beta_loss, l1_reg_H, l2_reg_H, gamma, A=None, B=None, rho=None
):
    """update H in Multiplicative Update NMF."""
    if beta_loss == 2:
        numerator = safe_sparse_dot(W.T, X)
        denominator = np.linalg.multi_dot([W.T, W, H])

    else:
        # Numerator
        WH_safe_X = _special_sparse_dot(W, H, X)
        if sp.issparse(X):
            WH_safe_X_data = WH_safe_X.data
            X_data = X.data
        else:
            WH_safe_X_data = WH_safe_X
            X_data = X
            # copy used in the Denominator
            WH = WH_safe_X.copy()
            if beta_loss - 1.0 < 0:
                WH[WH < EPSILON] = EPSILON

        # to avoid division by zero
        if beta_loss - 2.0 < 0:
            WH_safe_X_data[WH_safe_X_data < EPSILON] = EPSILON

        if beta_loss == 1:
            np.divide(X_data, WH_safe_X_data, out=WH_safe_X_data)
        elif beta_loss == 0:
            # speeds up computation time
            # refer to /numpy/numpy/issues/9363
            WH_safe_X_data **= -1
            WH_safe_X_data **= 2
            # element-wise multiplication
            WH_safe_X_data *= X_data
        else:
            WH_safe_X_data **= beta_loss - 2
            # element-wise multiplication
            WH_safe_X_data *= X_data

        # here numerator = dot(W.T, (dot(W, H) ** (beta_loss - 2)) * X)
        numerator = safe_sparse_dot(W.T, WH_safe_X)

        # Denominator
        if beta_loss == 1:
            W_sum = np.sum(W, axis=0)  # shape(n_components, )
            W_sum[W_sum == 0] = 1.0
            denominator = W_sum[:, np.newaxis]

        # beta_loss not in (1, 2)
        else:
            # computation of WtWH = dot(W.T, dot(W, H) ** beta_loss - 1)
            if sp.issparse(X):
                # memory efficient computation
                # (compute column by column, avoiding the dense matrix WH)
                WtWH = np.empty(H.shape)
                for i in range(X.shape[1]):
                    WHi = np.dot(W, H[:, i])
                    if beta_loss - 1 < 0:
                        WHi[WHi < EPSILON] = EPSILON
                    WHi **= beta_loss - 1
                    WtWH[:, i] = np.dot(W.T, WHi)
            else:
                WH **= beta_loss - 1
                WtWH = np.dot(W.T, WH)
            denominator = WtWH

    # Add L1 and L2 regularization
    if l1_reg_H > 0:
        denominator += l1_reg_H
    if l2_reg_H > 0:
        denominator = denominator + l2_reg_H * H
    denominator[denominator == 0] = EPSILON

    if A is not None and B is not None:
        # Updates for the online nmf
        if gamma != 1:
            H **= 1 / gamma
        numerator *= H
        A *= rho
        B *= rho
        A += numerator
        B += denominator
        H = A / B

        if gamma != 1:
            H **= gamma
    else:
        delta_H = numerator
        delta_H /= denominator
        if gamma != 1:
            delta_H **= gamma
        H *= delta_H

    return H


def _fit_multiplicative_update(
    X,
    W,
    H,
    beta_loss="frobenius",
    max_iter=200,
    tol=1e-4,
    l1_reg_W=0,
    l1_reg_H=0,
    l2_reg_W=0,
    l2_reg_H=0,
    update_H=True,
    verbose=0,
):
    """Compute Non-negative Matrix Factorization with Multiplicative Update.

    The objective function is _beta_divergence(X, WH) and is minimized with an
    alternating minimization of W and H. Each minimization is done with a
    Multiplicative Update.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Constant input matrix.

    W : array-like of shape (n_samples, n_components)
        Initial guess for the solution.

    H : array-like of shape (n_components, n_features)
        Initial guess for the solution.

    beta_loss : float or {'frobenius', 'kullback-leibler', \
            'itakura-saito'}, default='frobenius'
        String must be in {'frobenius', 'kullback-leibler', 'itakura-saito'}.
        Beta divergence to be minimized, measuring the distance between X
        and the dot product WH. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
        matrix X cannot contain zeros.

    max_iter : int, default=200
        Number of iterations.

    tol : float, default=1e-4
        Tolerance of the stopping condition.

    l1_reg_W : float, default=0.
        L1 regularization parameter for W.

    l1_reg_H : float, default=0.
        L1 regularization parameter for H.

    l2_reg_W : float, default=0.
        L2 regularization parameter for W.

    l2_reg_H : float, default=0.
        L2 regularization parameter for H.

    update_H : bool, default=True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    verbose : int, default=0
        The verbosity level.

    Returns
    -------
    W : ndarray of shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : ndarray of shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    Lee, D. D., & Seung, H., S. (2001). Algorithms for Non-negative Matrix
    Factorization. Adv. Neural Inform. Process. Syst.. 13.
    Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix
    factorization with the beta-divergence. Neural Computation, 23(9).
    """
    start_time = time.time()

    beta_loss = _beta_loss_to_float(beta_loss)

    # gamma for Maximization-Minimization (MM) algorithm [Fevotte 2011]
    if beta_loss < 1:
        gamma = 1.0 / (2.0 - beta_loss)
    elif beta_loss > 2:
        gamma = 1.0 / (beta_loss - 1.0)
    else:
        gamma = 1.0

    # used for the convergence criterion
    error_at_init = _beta_divergence(X, W, H, beta_loss, square_root=True)
    previous_error = error_at_init

    H_sum, HHt, XHt = None, None, None
    for n_iter in range(1, max_iter + 1):
        # update W
        # H_sum, HHt and XHt are saved and reused if not update_H
        W, H_sum, HHt, XHt = _multiplicative_update_w(
            X,
            W,
            H,
            beta_loss=beta_loss,
            l1_reg_W=l1_reg_W,
            l2_reg_W=l2_reg_W,
            gamma=gamma,
            H_sum=H_sum,
            HHt=HHt,
            XHt=XHt,
            update_H=update_H,
        )

        # necessary for stability with beta_loss < 1
        if beta_loss < 1:
            W[W < np.finfo(np.float64).eps] = 0.0

        # update H (only at fit or fit_transform)
        if update_H:
            H = _multiplicative_update_h(
                X,
                W,
                H,
                beta_loss=beta_loss,
                l1_reg_H=l1_reg_H,
                l2_reg_H=l2_reg_H,
                gamma=gamma,
            )

            # These values will be recomputed since H changed
            H_sum, HHt, XHt = None, None, None

            # necessary for stability with beta_loss < 1
            if beta_loss <= 1:
                H[H < np.finfo(np.float64).eps] = 0.0

        # test convergence criterion every 10 iterations
        if tol > 0 and n_iter % 10 == 0:
            error = _beta_divergence(X, W, H, beta_loss, square_root=True)

            if verbose:
                iter_time = time.time()
                print(
                    "Epoch %02d reached after %.3f seconds, error: %f"
                    % (n_iter, iter_time - start_time, error)
                )

            if (previous_error - error) / error_at_init < tol:
                break
            previous_error = error

    # do not print if we have already printed in the convergence test
    if verbose and (tol == 0 or n_iter % 10 != 0):
        end_time = time.time()
        print(
            "Epoch %02d reached after %.3f seconds." % (n_iter, end_time - start_time)
        )

    return W, H, n_iter


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "W": ["array-like", None],
        "H": ["array-like", None],
        "update_H": ["boolean"],
    },
    prefer_skip_nested_validation=False,
)
def non_negative_factorization(
    X,
    W=None,
    H=None,
    n_components="auto",
    *,
    init=None,
    update_H=True,
    solver="cd",
    beta_loss="frobenius",
    tol=1e-4,
    max_iter=200,
    alpha_W=0.0,
    alpha_H="same",
    l1_ratio=0.0,
    random_state=None,
    verbose=0,
    shuffle=False,
):
    """Compute Non-negative Matrix Factorization (NMF).

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is:

    .. math::

        L(W, H) &= 0.5 * ||X - WH||_{loss}^2

                &+ alpha\\_W * l1\\_ratio * n\\_features * ||vec(W)||_1

                &+ alpha\\_H * l1\\_ratio * n\\_samples * ||vec(H)||_1

                &+ 0.5 * alpha\\_W * (1 - l1\\_ratio) * n\\_features * ||W||_{Fro}^2

                &+ 0.5 * alpha\\_H * (1 - l1\\_ratio) * n\\_samples * ||H||_{Fro}^2,

    where :math:`||A||_{Fro}^2 = \\sum_{i,j} A_{ij}^2` (Frobenius norm) and
    :math:`||vec(A)||_1 = \\sum_{i,j} abs(A_{ij})` (Elementwise L1 norm)

    The generic norm :math:`||X - WH||_{loss}^2` may represent
    the Frobenius norm or another supported beta-divergence loss.
    The choice between options is controlled by the `beta_loss` parameter.

    The regularization terms are scaled by `n_features` for `W` and by `n_samples` for
    `H` to keep their impact balanced with respect to one another and to the data fit
    term as independent as possible of the size `n_samples` of the training set.

    The objective function is minimized with an alternating minimization of W
    and H. If H is given and update_H=False, it solves for W only.

    Note that the transformed data is named W and the components matrix is named H. In
    the NMF literature, the naming convention is usually the opposite since the data
    matrix X is transposed.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Constant matrix.

    W : array-like of shape (n_samples, n_components), default=None
        If `init='custom'`, it is used as initial guess for the solution.
        If `update_H=False`, it is initialised as an array of zeros, unless
        `solver='mu'`, then it is filled with values calculated by
        `np.sqrt(X.mean() / self._n_components)`.
        If `None`, uses the initialisation method specified in `init`.

    H : array-like of shape (n_components, n_features), default=None
        If `init='custom'`, it is used as initial guess for the solution.
        If `update_H=False`, it is used as a constant, to solve for W only.
        If `None`, uses the initialisation method specified in `init`.

    n_components : int or {'auto'} or None, default='auto'
        Number of components. If `None`, all features are kept.
        If `n_components='auto'`, the number of components is automatically inferred
        from `W` or `H` shapes.

        .. versionchanged:: 1.4
            Added `'auto'` value.

        .. versionchanged:: 1.6
            Default value changed from `None` to `'auto'`.

    init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom'}, default=None
        Method used to initialize the procedure.

        Valid options:

        - None: 'nndsvda' if n_components < n_features, otherwise 'random'.
        - 'random': non-negative random matrices, scaled with:
          `sqrt(X.mean() / n_components)`
        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
          initialization (better for sparseness)
        - 'nndsvda': NNDSVD with zeros filled with the average of X
          (better when sparsity is not desired)
        - 'nndsvdar': NNDSVD with zeros filled with small random values
          (generally faster, less accurate alternative to NNDSVDa
          for when sparsity is not desired)
        - 'custom': If `update_H=True`, use custom matrices W and H which must both
          be provided. If `update_H=False`, then only custom matrix H is used.

        .. versionchanged:: 0.23
            The default value of `init` changed from 'random' to None in 0.23.

        .. versionchanged:: 1.1
            When `init=None` and n_components is less than n_samples and n_features
            defaults to `nndsvda` instead of `nndsvd`.

    update_H : bool, default=True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    solver : {'cd', 'mu'}, default='cd'
        Numerical solver to use:

        - 'cd' is a Coordinate Descent solver that uses Fast Hierarchical
          Alternating Least Squares (Fast HALS).
        - 'mu' is a Multiplicative Update solver.

        .. versionadded:: 0.17
           Coordinate Descent solver.

        .. versionadded:: 0.19
           Multiplicative Update solver.

    beta_loss : float or {'frobenius', 'kullback-leibler', \
            'itakura-saito'}, default='frobenius'
        Beta divergence to be minimized, measuring the distance between X
        and the dot product WH. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
        matrix X cannot contain zeros. Used only in 'mu' solver.

        .. versionadded:: 0.19

    tol : float, default=1e-4
        Tolerance of the stopping condition.

    max_iter : int, default=200
        Maximum number of iterations before timing out.

    alpha_W : float, default=0.0
        Constant that multiplies the regularization terms of `W`. Set it to zero
        (default) to have no regularization on `W`.

        .. versionadded:: 1.0

    alpha_H : float or "same", default="same"
        Constant that multiplies the regularization terms of `H`. Set it to zero to
        have no regularization on `H`. If "same" (default), it takes the same value as
        `alpha_W`.

        .. versionadded:: 1.0

    l1_ratio : float, default=0.0
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    random_state : int, RandomState instance or None, default=None
        Used for NMF initialisation (when ``init`` == 'nndsvdar' or
        'random'), and in Coordinate Descent. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    verbose : int, default=0
        The verbosity level.

    shuffle : bool, default=False
        If true, randomize the order of coordinates in the CD solver.

    Returns
    -------
    W : ndarray of shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : ndarray of shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        Actual number of iterations.

    References
    ----------
    .. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
       factorizations" <10.1587/transfun.E92.A.708>`
       Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
       of electronics, communications and computer sciences 92.3: 708-721, 2009.

    .. [2] :doi:`"Algorithms for nonnegative matrix factorization with the
       beta-divergence" <10.1162/NECO_a_00168>`
       Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import non_negative_factorization
    >>> W, H, n_iter = non_negative_factorization(
    ...     X, n_components=2, init='random', random_state=0)
    """
    est = NMF(
        n_components=n_components,
        init=init,
        solver=solver,
        beta_loss=beta_loss,
        tol=tol,
        max_iter=max_iter,
        random_state=random_state,
        alpha_W=alpha_W,
        alpha_H=alpha_H,
        l1_ratio=l1_ratio,
        verbose=verbose,
        shuffle=shuffle,
    )
    est._validate_params()

    X = check_array(X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32])

    with config_context(assume_finite=True):
        W, H, n_iter = est._fit_transform(X, W=W, H=H, update_H=update_H)

    return W, H, n_iter


class _BaseNMF(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, ABC):
    """Base class for NMF and MiniBatchNMF."""

    # This prevents ``set_split_inverse_transform`` to be generated for the
    # non-standard ``Xt`` arg on ``inverse_transform``.
    # TODO(1.7): remove when Xt is removed in v1.7 for inverse_transform
    __metadata_request__inverse_transform = {"Xt": metadata_routing.UNUSED}

    _parameter_constraints: dict = {
        "n_components": [
            Interval(Integral, 1, None, closed="left"),
            None,
            StrOptions({"auto"}),
        ],
        "init": [
            StrOptions({"random", "nndsvd", "nndsvda", "nndsvdar", "custom"}),
            None,
        ],
        "beta_loss": [
            StrOptions({"frobenius", "kullback-leibler", "itakura-saito"}),
            Real,
        ],
        "tol": [Interval(Real, 0, None, closed="left")],
        "max_iter": [Interval(Integral, 1, None, closed="left")],
        "random_state": ["random_state"],
        "alpha_W": [Interval(Real, 0, None, closed="left")],
        "alpha_H": [Interval(Real, 0, None, closed="left"), StrOptions({"same"})],
        "l1_ratio": [Interval(Real, 0, 1, closed="both")],
        "verbose": ["verbose"],
    }

    def __init__(
        self,
        n_components="auto",
        *,
        init=None,
        beta_loss="frobenius",
        tol=1e-4,
        max_iter=200,
        random_state=None,
        alpha_W=0.0,
        alpha_H="same",
        l1_ratio=0.0,
        verbose=0,
    ):
        self.n_components = n_components
        self.init = init
        self.beta_loss = beta_loss
        self.tol = tol
        self.max_iter = max_iter
        self.random_state = random_state
        self.alpha_W = alpha_W
        self.alpha_H = alpha_H
        self.l1_ratio = l1_ratio
        self.verbose = verbose

    def _check_params(self, X):
        # n_components
        self._n_components = self.n_components
        if self._n_components is None:
            self._n_components = X.shape[1]

        # beta_loss
        self._beta_loss = _beta_loss_to_float(self.beta_loss)

    def _check_w_h(self, X, W, H, update_H):
        """Check W and H, or initialize them."""
        n_samples, n_features = X.shape

        if self.init == "custom" and update_H:
            _check_init(H, (self._n_components, n_features), "NMF (input H)")
            _check_init(W, (n_samples, self._n_components), "NMF (input W)")
            if self._n_components == "auto":
                self._n_components = H.shape[0]

            if H.dtype != X.dtype or W.dtype != X.dtype:
                raise TypeError(
                    "H and W should have the same dtype as X. Got "
                    "H.dtype = {} and W.dtype = {}.".format(H.dtype, W.dtype)
                )

        elif not update_H:
            if W is not None:
                warnings.warn(
                    "When update_H=False, the provided initial W is not used.",
                    RuntimeWarning,
                )

            _check_init(H, (self._n_components, n_features), "NMF (input H)")
            if self._n_components == "auto":
                self._n_components = H.shape[0]

            if H.dtype != X.dtype:
                raise TypeError(
                    "H should have the same dtype as X. Got H.dtype = {}.".format(
                        H.dtype
                    )
                )

            # 'mu' solver should not be initialized by zeros
            if self.solver == "mu":
                avg = np.sqrt(X.mean() / self._n_components)
                W = np.full((n_samples, self._n_components), avg, dtype=X.dtype)
            else:
                W = np.zeros((n_samples, self._n_components), dtype=X.dtype)

        else:
            if W is not None or H is not None:
                warnings.warn(
                    (
                        "When init!='custom', provided W or H are ignored. Set "
                        " init='custom' to use them as initialization."
                    ),
                    RuntimeWarning,
                )

            if self._n_components == "auto":
                self._n_components = X.shape[1]

            W, H = _initialize_nmf(
                X, self._n_components, init=self.init, random_state=self.random_state
            )

        return W, H

    def _compute_regularization(self, X):
        """Compute scaled regularization terms."""
        n_samples, n_features = X.shape
        alpha_W = self.alpha_W
        alpha_H = self.alpha_W if self.alpha_H == "same" else self.alpha_H

        l1_reg_W = n_features * alpha_W * self.l1_ratio
        l1_reg_H = n_samples * alpha_H * self.l1_ratio
        l2_reg_W = n_features * alpha_W * (1.0 - self.l1_ratio)
        l2_reg_H = n_samples * alpha_H * (1.0 - self.l1_ratio)

        return l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H

    def fit(self, X, y=None, **params):
        """Learn a NMF model for the data X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        **params : kwargs
            Parameters (keyword arguments) and values passed to
            the fit_transform instance.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        # param validation is done in fit_transform

        self.fit_transform(X, **params)
        return self

    def inverse_transform(self, X=None, *, Xt=None):
        """Transform data back to its original space.

        .. versionadded:: 0.18

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_components)
            Transformed data matrix.

        Xt : {ndarray, sparse matrix} of shape (n_samples, n_components)
            Transformed data matrix.

            .. deprecated:: 1.5
                `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.

        Returns
        -------
        X : ndarray of shape (n_samples, n_features)
            Returns a data matrix of the original shape.
        """

        X = _deprecate_Xt_in_inverse_transform(X, Xt)

        check_is_fitted(self)
        return X @ self.components_

    @property
    def _n_features_out(self):
        """Number of transformed output features."""
        return self.components_.shape[0]

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.positive_only = True
        tags.input_tags.sparse = True
        tags.transformer_tags.preserves_dtype = ["float64", "float32"]
        return tags


class NMF(_BaseNMF):
    """Non-Negative Matrix Factorization (NMF).

    Find two non-negative matrices, i.e. matrices with all non-negative elements, (W, H)
    whose product approximates the non-negative matrix X. This factorization can be used
    for example for dimensionality reduction, source separation or topic extraction.

    The objective function is:

    .. math::

        L(W, H) &= 0.5 * ||X - WH||_{loss}^2

                &+ alpha\\_W * l1\\_ratio * n\\_features * ||vec(W)||_1

                &+ alpha\\_H * l1\\_ratio * n\\_samples * ||vec(H)||_1

                &+ 0.5 * alpha\\_W * (1 - l1\\_ratio) * n\\_features * ||W||_{Fro}^2

                &+ 0.5 * alpha\\_H * (1 - l1\\_ratio) * n\\_samples * ||H||_{Fro}^2,

    where :math:`||A||_{Fro}^2 = \\sum_{i,j} A_{ij}^2` (Frobenius norm) and
    :math:`||vec(A)||_1 = \\sum_{i,j} abs(A_{ij})` (Elementwise L1 norm).

    The generic norm :math:`||X - WH||_{loss}` may represent
    the Frobenius norm or another supported beta-divergence loss.
    The choice between options is controlled by the `beta_loss` parameter.

    The regularization terms are scaled by `n_features` for `W` and by `n_samples` for
    `H` to keep their impact balanced with respect to one another and to the data fit
    term as independent as possible of the size `n_samples` of the training set.

    The objective function is minimized with an alternating minimization of W
    and H.

    Note that the transformed data is named W and the components matrix is named H. In
    the NMF literature, the naming convention is usually the opposite since the data
    matrix X is transposed.

    Read more in the :ref:`User Guide <NMF>`.

    Parameters
    ----------
    n_components : int or {'auto'} or None, default='auto'
        Number of components. If `None`, all features are kept.
        If `n_components='auto'`, the number of components is automatically inferred
        from W or H shapes.

        .. versionchanged:: 1.4
            Added `'auto'` value.

        .. versionchanged:: 1.6
            Default value changed from `None` to `'auto'`.

    init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom'}, default=None
        Method used to initialize the procedure.
        Valid options:

        - `None`: 'nndsvda' if n_components <= min(n_samples, n_features),
          otherwise random.

        - `'random'`: non-negative random matrices, scaled with:
          `sqrt(X.mean() / n_components)`

        - `'nndsvd'`: Nonnegative Double Singular Value Decomposition (NNDSVD)
          initialization (better for sparseness)

        - `'nndsvda'`: NNDSVD with zeros filled with the average of X
          (better when sparsity is not desired)

        - `'nndsvdar'` NNDSVD with zeros filled with small random values
          (generally faster, less accurate alternative to NNDSVDa
          for when sparsity is not desired)

        - `'custom'`: Use custom matrices `W` and `H` which must both be provided.

        .. versionchanged:: 1.1
            When `init=None` and n_components is less than n_samples and n_features
            defaults to `nndsvda` instead of `nndsvd`.

    solver : {'cd', 'mu'}, default='cd'
        Numerical solver to use:

        - 'cd' is a Coordinate Descent solver.
        - 'mu' is a Multiplicative Update solver.

        .. versionadded:: 0.17
           Coordinate Descent solver.

        .. versionadded:: 0.19
           Multiplicative Update solver.

    beta_loss : float or {'frobenius', 'kullback-leibler', \
            'itakura-saito'}, default='frobenius'
        Beta divergence to be minimized, measuring the distance between X
        and the dot product WH. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
        matrix X cannot contain zeros. Used only in 'mu' solver.

        .. versionadded:: 0.19

    tol : float, default=1e-4
        Tolerance of the stopping condition.

    max_iter : int, default=200
        Maximum number of iterations before timing out.

    random_state : int, RandomState instance or None, default=None
        Used for initialisation (when ``init`` == 'nndsvdar' or
        'random'), and in Coordinate Descent. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    alpha_W : float, default=0.0
        Constant that multiplies the regularization terms of `W`. Set it to zero
        (default) to have no regularization on `W`.

        .. versionadded:: 1.0

    alpha_H : float or "same", default="same"
        Constant that multiplies the regularization terms of `H`. Set it to zero to
        have no regularization on `H`. If "same" (default), it takes the same value as
        `alpha_W`.

        .. versionadded:: 1.0

    l1_ratio : float, default=0.0
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

        .. versionadded:: 0.17
           Regularization parameter *l1_ratio* used in the Coordinate Descent
           solver.

    verbose : int, default=0
        Whether to be verbose.

    shuffle : bool, default=False
        If true, randomize the order of coordinates in the CD solver.

        .. versionadded:: 0.17
           *shuffle* parameter used in the Coordinate Descent solver.

    Attributes
    ----------
    components_ : ndarray of shape (n_components, n_features)
        Factorization matrix, sometimes called 'dictionary'.

    n_components_ : int
        The number of components. It is same as the `n_components` parameter
        if it was given. Otherwise, it will be same as the number of
        features.

    reconstruction_err_ : float
        Frobenius norm of the matrix difference, or beta-divergence, between
        the training data ``X`` and the reconstructed data ``WH`` from
        the fitted model.

    n_iter_ : int
        Actual number of iterations.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    DictionaryLearning : Find a dictionary that sparsely encodes data.
    MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
    PCA : Principal component analysis.
    SparseCoder : Find a sparse representation of data from a fixed,
        precomputed dictionary.
    SparsePCA : Sparse Principal Components Analysis.
    TruncatedSVD : Dimensionality reduction using truncated SVD.

    References
    ----------
    .. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
       factorizations" <10.1587/transfun.E92.A.708>`
       Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
       of electronics, communications and computer sciences 92.3: 708-721, 2009.

    .. [2] :doi:`"Algorithms for nonnegative matrix factorization with the
       beta-divergence" <10.1162/NECO_a_00168>`
       Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import NMF
    >>> model = NMF(n_components=2, init='random', random_state=0)
    >>> W = model.fit_transform(X)
    >>> H = model.components_
    """

    _parameter_constraints: dict = {
        **_BaseNMF._parameter_constraints,
        "solver": [StrOptions({"mu", "cd"})],
        "shuffle": ["boolean"],
    }

    def __init__(
        self,
        n_components="auto",
        *,
        init=None,
        solver="cd",
        beta_loss="frobenius",
        tol=1e-4,
        max_iter=200,
        random_state=None,
        alpha_W=0.0,
        alpha_H="same",
        l1_ratio=0.0,
        verbose=0,
        shuffle=False,
    ):
        super().__init__(
            n_components=n_components,
            init=init,
            beta_loss=beta_loss,
            tol=tol,
            max_iter=max_iter,
            random_state=random_state,
            alpha_W=alpha_W,
            alpha_H=alpha_H,
            l1_ratio=l1_ratio,
            verbose=verbose,
        )

        self.solver = solver
        self.shuffle = shuffle

    def _check_params(self, X):
        super()._check_params(X)

        # solver
        if self.solver != "mu" and self.beta_loss not in (2, "frobenius"):
            # 'mu' is the only solver that handles other beta losses than 'frobenius'
            raise ValueError(
                f"Invalid beta_loss parameter: solver {self.solver!r} does not handle "
                f"beta_loss = {self.beta_loss!r}"
            )
        if self.solver == "mu" and self.init == "nndsvd":
            warnings.warn(
                (
                    "The multiplicative update ('mu') solver cannot update "
                    "zeros present in the initialization, and so leads to "
                    "poorer results when used jointly with init='nndsvd'. "
                    "You may try init='nndsvda' or init='nndsvdar' instead."
                ),
                UserWarning,
            )

        return self

    @_fit_context(prefer_skip_nested_validation=True)
    def fit_transform(self, X, y=None, W=None, H=None):
        """Learn a NMF model for the data X and returns the transformed data.

        This is more efficient than calling fit followed by transform.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        W : array-like of shape (n_samples, n_components), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `None`, uses the initialisation method specified in `init`.

        H : array-like of shape (n_components, n_features), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `None`, uses the initialisation method specified in `init`.

        Returns
        -------
        W : ndarray of shape (n_samples, n_components)
            Transformed data.
        """
        X = validate_data(
            self, X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32]
        )

        with config_context(assume_finite=True):
            W, H, n_iter = self._fit_transform(X, W=W, H=H)

        self.reconstruction_err_ = _beta_divergence(
            X, W, H, self._beta_loss, square_root=True
        )

        self.n_components_ = H.shape[0]
        self.components_ = H
        self.n_iter_ = n_iter

        return W

    def _fit_transform(self, X, y=None, W=None, H=None, update_H=True):
        """Learn a NMF model for the data X and returns the transformed data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Data matrix to be decomposed

        y : Ignored

        W : array-like of shape (n_samples, n_components), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `update_H=False`, it is initialised as an array of zeros, unless
            `solver='mu'`, then it is filled with values calculated by
            `np.sqrt(X.mean() / self._n_components)`.
            If `None`, uses the initialisation method specified in `init`.

        H : array-like of shape (n_components, n_features), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `update_H=False`, it is used as a constant, to solve for W only.
            If `None`, uses the initialisation method specified in `init`.

        update_H : bool, default=True
            If True, both W and H will be estimated from initial guesses,
            this corresponds to a call to the 'fit_transform' method.
            If False, only W will be estimated, this corresponds to a call
            to the 'transform' method.

        Returns
        -------
        W : ndarray of shape (n_samples, n_components)
            Transformed data.

        H : ndarray of shape (n_components, n_features)
            Factorization matrix, sometimes called 'dictionary'.

        n_iter_ : int
            Actual number of iterations.
        """
        # check parameters
        self._check_params(X)

        if X.min() == 0 and self._beta_loss <= 0:
            raise ValueError(
                "When beta_loss <= 0 and X contains zeros, "
                "the solver may diverge. Please add small values "
                "to X, or use a positive beta_loss."
            )

        # initialize or check W and H
        W, H = self._check_w_h(X, W, H, update_H)

        # scale the regularization terms
        l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H = self._compute_regularization(X)

        if self.solver == "cd":
            W, H, n_iter = _fit_coordinate_descent(
                X,
                W,
                H,
                self.tol,
                self.max_iter,
                l1_reg_W,
                l1_reg_H,
                l2_reg_W,
                l2_reg_H,
                update_H=update_H,
                verbose=self.verbose,
                shuffle=self.shuffle,
                random_state=self.random_state,
            )
        elif self.solver == "mu":
            W, H, n_iter, *_ = _fit_multiplicative_update(
                X,
                W,
                H,
                self._beta_loss,
                self.max_iter,
                self.tol,
                l1_reg_W,
                l1_reg_H,
                l2_reg_W,
                l2_reg_H,
                update_H,
                self.verbose,
            )
        else:
            raise ValueError("Invalid solver parameter '%s'." % self.solver)

        if n_iter == self.max_iter and self.tol > 0:
            warnings.warn(
                "Maximum number of iterations %d reached. Increase "
                "it to improve convergence." % self.max_iter,
                ConvergenceWarning,
            )

        return W, H, n_iter

    def transform(self, X):
        """Transform the data X according to the fitted NMF model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        Returns
        -------
        W : ndarray of shape (n_samples, n_components)
            Transformed data.
        """
        check_is_fitted(self)
        X = validate_data(
            self,
            X,
            accept_sparse=("csr", "csc"),
            dtype=[np.float64, np.float32],
            reset=False,
            ensure_non_negative=True,
        )

        with config_context(assume_finite=True):
            W, *_ = self._fit_transform(X, H=self.components_, update_H=False)

        return W


class MiniBatchNMF(_BaseNMF):
    """Mini-Batch Non-Negative Matrix Factorization (NMF).

    .. versionadded:: 1.1

    Find two non-negative matrices, i.e. matrices with all non-negative elements,
    (`W`, `H`) whose product approximates the non-negative matrix `X`. This
    factorization can be used for example for dimensionality reduction, source
    separation or topic extraction.

    The objective function is:

    .. math::

        L(W, H) &= 0.5 * ||X - WH||_{loss}^2

                &+ alpha\\_W * l1\\_ratio * n\\_features * ||vec(W)||_1

                &+ alpha\\_H * l1\\_ratio * n\\_samples * ||vec(H)||_1

                &+ 0.5 * alpha\\_W * (1 - l1\\_ratio) * n\\_features * ||W||_{Fro}^2

                &+ 0.5 * alpha\\_H * (1 - l1\\_ratio) * n\\_samples * ||H||_{Fro}^2,

    where :math:`||A||_{Fro}^2 = \\sum_{i,j} A_{ij}^2` (Frobenius norm) and
    :math:`||vec(A)||_1 = \\sum_{i,j} abs(A_{ij})` (Elementwise L1 norm).

    The generic norm :math:`||X - WH||_{loss}^2` may represent
    the Frobenius norm or another supported beta-divergence loss.
    The choice between options is controlled by the `beta_loss` parameter.

    The objective function is minimized with an alternating minimization of `W`
    and `H`.

    Note that the transformed data is named `W` and the components matrix is
    named `H`. In the NMF literature, the naming convention is usually the opposite
    since the data matrix `X` is transposed.

    Read more in the :ref:`User Guide <MiniBatchNMF>`.

    Parameters
    ----------
    n_components : int or {'auto'} or None, default='auto'
        Number of components. If `None`, all features are kept.
        If `n_components='auto'`, the number of components is automatically inferred
        from W or H shapes.

        .. versionchanged:: 1.4
            Added `'auto'` value.

        .. versionchanged:: 1.6
            Default value changed from `None` to `'auto'`.

    init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom'}, default=None
        Method used to initialize the procedure.
        Valid options:

        - `None`: 'nndsvda' if `n_components <= min(n_samples, n_features)`,
          otherwise random.

        - `'random'`: non-negative random matrices, scaled with:
          `sqrt(X.mean() / n_components)`

        - `'nndsvd'`: Nonnegative Double Singular Value Decomposition (NNDSVD)
          initialization (better for sparseness).

        - `'nndsvda'`: NNDSVD with zeros filled with the average of X
          (better when sparsity is not desired).

        - `'nndsvdar'` NNDSVD with zeros filled with small random values
          (generally faster, less accurate alternative to NNDSVDa
          for when sparsity is not desired).

        - `'custom'`: Use custom matrices `W` and `H` which must both be provided.

    batch_size : int, default=1024
        Number of samples in each mini-batch. Large batch sizes
        give better long-term convergence at the cost of a slower start.

    beta_loss : float or {'frobenius', 'kullback-leibler', \
            'itakura-saito'}, default='frobenius'
        Beta divergence to be minimized, measuring the distance between `X`
        and the dot product `WH`. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for `beta_loss <= 0` (or 'itakura-saito'), the input
        matrix `X` cannot contain zeros.

    tol : float, default=1e-4
        Control early stopping based on the norm of the differences in `H`
        between 2 steps. To disable early stopping based on changes in `H`, set
        `tol` to 0.0.

    max_no_improvement : int, default=10
        Control early stopping based on the consecutive number of mini batches
        that does not yield an improvement on the smoothed cost function.
        To disable convergence detection based on cost function, set
        `max_no_improvement` to None.

    max_iter : int, default=200
        Maximum number of iterations over the complete dataset before
        timing out.

    alpha_W : float, default=0.0
        Constant that multiplies the regularization terms of `W`. Set it to zero
        (default) to have no regularization on `W`.

    alpha_H : float or "same", default="same"
        Constant that multiplies the regularization terms of `H`. Set it to zero to
        have no regularization on `H`. If "same" (default), it takes the same value as
        `alpha_W`.

    l1_ratio : float, default=0.0
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    forget_factor : float, default=0.7
        Amount of rescaling of past information. Its value could be 1 with
        finite datasets. Choosing values < 1 is recommended with online
        learning as more recent batches will weight more than past batches.

    fresh_restarts : bool, default=False
        Whether to completely solve for W at each step. Doing fresh restarts will likely
        lead to a better solution for a same number of iterations but it is much slower.

    fresh_restarts_max_iter : int, default=30
        Maximum number of iterations when solving for W at each step. Only used when
        doing fresh restarts. These iterations may be stopped early based on a small
        change of W controlled by `tol`.

    transform_max_iter : int, default=None
        Maximum number of iterations when solving for W at transform time.
        If None, it defaults to `max_iter`.

    random_state : int, RandomState instance or None, default=None
        Used for initialisation (when ``init`` == 'nndsvdar' or
        'random'), and in Coordinate Descent. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    verbose : bool, default=False
        Whether to be verbose.

    Attributes
    ----------
    components_ : ndarray of shape (n_components, n_features)
        Factorization matrix, sometimes called 'dictionary'.

    n_components_ : int
        The number of components. It is same as the `n_components` parameter
        if it was given. Otherwise, it will be same as the number of
        features.

    reconstruction_err_ : float
        Frobenius norm of the matrix difference, or beta-divergence, between
        the training data `X` and the reconstructed data `WH` from
        the fitted model.

    n_iter_ : int
        Actual number of started iterations over the whole dataset.

    n_steps_ : int
        Number of mini-batches processed.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

    See Also
    --------
    NMF : Non-negative matrix factorization.
    MiniBatchDictionaryLearning : Finds a dictionary that can best be used to represent
        data using a sparse code.

    References
    ----------
    .. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
       factorizations" <10.1587/transfun.E92.A.708>`
       Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
       of electronics, communications and computer sciences 92.3: 708-721, 2009.

    .. [2] :doi:`"Algorithms for nonnegative matrix factorization with the
       beta-divergence" <10.1162/NECO_a_00168>`
       Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).

    .. [3] :doi:`"Online algorithms for nonnegative matrix factorization with the
       Itakura-Saito divergence" <10.1109/ASPAA.2011.6082314>`
       Lefevre, A., Bach, F., Fevotte, C. (2011). WASPA.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import MiniBatchNMF
    >>> model = MiniBatchNMF(n_components=2, init='random', random_state=0)
    >>> W = model.fit_transform(X)
    >>> H = model.components_
    """

    _parameter_constraints: dict = {
        **_BaseNMF._parameter_constraints,
        "max_no_improvement": [Interval(Integral, 1, None, closed="left"), None],
        "batch_size": [Interval(Integral, 1, None, closed="left")],
        "forget_factor": [Interval(Real, 0, 1, closed="both")],
        "fresh_restarts": ["boolean"],
        "fresh_restarts_max_iter": [Interval(Integral, 1, None, closed="left")],
        "transform_max_iter": [Interval(Integral, 1, None, closed="left"), None],
    }

    def __init__(
        self,
        n_components="auto",
        *,
        init=None,
        batch_size=1024,
        beta_loss="frobenius",
        tol=1e-4,
        max_no_improvement=10,
        max_iter=200,
        alpha_W=0.0,
        alpha_H="same",
        l1_ratio=0.0,
        forget_factor=0.7,
        fresh_restarts=False,
        fresh_restarts_max_iter=30,
        transform_max_iter=None,
        random_state=None,
        verbose=0,
    ):
        super().__init__(
            n_components=n_components,
            init=init,
            beta_loss=beta_loss,
            tol=tol,
            max_iter=max_iter,
            random_state=random_state,
            alpha_W=alpha_W,
            alpha_H=alpha_H,
            l1_ratio=l1_ratio,
            verbose=verbose,
        )

        self.max_no_improvement = max_no_improvement
        self.batch_size = batch_size
        self.forget_factor = forget_factor
        self.fresh_restarts = fresh_restarts
        self.fresh_restarts_max_iter = fresh_restarts_max_iter
        self.transform_max_iter = transform_max_iter

    def _check_params(self, X):
        super()._check_params(X)

        # batch_size
        self._batch_size = min(self.batch_size, X.shape[0])

        # forget_factor
        self._rho = self.forget_factor ** (self._batch_size / X.shape[0])

        # gamma for Maximization-Minimization (MM) algorithm [Fevotte 2011]
        if self._beta_loss < 1:
            self._gamma = 1.0 / (2.0 - self._beta_loss)
        elif self._beta_loss > 2:
            self._gamma = 1.0 / (self._beta_loss - 1.0)
        else:
            self._gamma = 1.0

        # transform_max_iter
        self._transform_max_iter = (
            self.max_iter
            if self.transform_max_iter is None
            else self.transform_max_iter
        )

        return self

    def _solve_W(self, X, H, max_iter):
        """Minimize the objective function w.r.t W.

        Update W with H being fixed, until convergence. This is the heart
        of `transform` but it's also used during `fit` when doing fresh restarts.
        """
        avg = np.sqrt(X.mean() / self._n_components)
        W = np.full((X.shape[0], self._n_components), avg, dtype=X.dtype)
        W_buffer = W.copy()

        # Get scaled regularization terms. Done for each minibatch to take into account
        # variable sizes of minibatches.
        l1_reg_W, _, l2_reg_W, _ = self._compute_regularization(X)

        for _ in range(max_iter):
            W, *_ = _multiplicative_update_w(
                X, W, H, self._beta_loss, l1_reg_W, l2_reg_W, self._gamma
            )

            W_diff = linalg.norm(W - W_buffer) / linalg.norm(W)
            if self.tol > 0 and W_diff <= self.tol:
                break

            W_buffer[:] = W

        return W

    def _minibatch_step(self, X, W, H, update_H):
        """Perform the update of W and H for one minibatch."""
        batch_size = X.shape[0]

        # get scaled regularization terms. Done for each minibatch to take into account
        # variable sizes of minibatches.
        l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H = self._compute_regularization(X)

        # update W
        if self.fresh_restarts or W is None:
            W = self._solve_W(X, H, self.fresh_restarts_max_iter)
        else:
            W, *_ = _multiplicative_update_w(
                X, W, H, self._beta_loss, l1_reg_W, l2_reg_W, self._gamma
            )

        # necessary for stability with beta_loss < 1
        if self._beta_loss < 1:
            W[W < np.finfo(np.float64).eps] = 0.0

        batch_cost = (
            _beta_divergence(X, W, H, self._beta_loss)
            + l1_reg_W * W.sum()
            + l1_reg_H * H.sum()
            + l2_reg_W * (W**2).sum()
            + l2_reg_H * (H**2).sum()
        ) / batch_size

        # update H (only at fit or fit_transform)
        if update_H:
            H[:] = _multiplicative_update_h(
                X,
                W,
                H,
                beta_loss=self._beta_loss,
                l1_reg_H=l1_reg_H,
                l2_reg_H=l2_reg_H,
                gamma=self._gamma,
                A=self._components_numerator,
                B=self._components_denominator,
                rho=self._rho,
            )

            # necessary for stability with beta_loss < 1
            if self._beta_loss <= 1:
                H[H < np.finfo(np.float64).eps] = 0.0

        return batch_cost

    def _minibatch_convergence(
        self, X, batch_cost, H, H_buffer, n_samples, step, n_steps
    ):
        """Helper function to encapsulate the early stopping logic"""
        batch_size = X.shape[0]

        # counts steps starting from 1 for user friendly verbose mode.
        step = step + 1

        # Ignore first iteration because H is not updated yet.
        if step == 1:
            if self.verbose:
                print(f"Minibatch step {step}/{n_steps}: mean batch cost: {batch_cost}")
            return False

        # Compute an Exponentially Weighted Average of the cost function to
        # monitor the convergence while discarding minibatch-local stochastic
        # variability: https://en.wikipedia.org/wiki/Moving_average
        if self._ewa_cost is None:
            self._ewa_cost = batch_cost
        else:
            alpha = batch_size / (n_samples + 1)
            alpha = min(alpha, 1)
            self._ewa_cost = self._ewa_cost * (1 - alpha) + batch_cost * alpha

        # Log progress to be able to monitor convergence
        if self.verbose:
            print(
                f"Minibatch step {step}/{n_steps}: mean batch cost: "
                f"{batch_cost}, ewa cost: {self._ewa_cost}"
            )

        # Early stopping based on change of H
        H_diff = linalg.norm(H - H_buffer) / linalg.norm(H)
        if self.tol > 0 and H_diff <= self.tol:
            if self.verbose:
                print(f"Converged (small H change) at step {step}/{n_steps}")
            return True

        # Early stopping heuristic due to lack of improvement on smoothed
        # cost function
        if self._ewa_cost_min is None or self._ewa_cost < self._ewa_cost_min:
            self._no_improvement = 0
            self._ewa_cost_min = self._ewa_cost
        else:
            self._no_improvement += 1

        if (
            self.max_no_improvement is not None
            and self._no_improvement >= self.max_no_improvement
        ):
            if self.verbose:
                print(
                    "Converged (lack of improvement in objective function) "
                    f"at step {step}/{n_steps}"
                )
            return True

        return False

    @_fit_context(prefer_skip_nested_validation=True)
    def fit_transform(self, X, y=None, W=None, H=None):
        """Learn a NMF model for the data X and returns the transformed data.

        This is more efficient than calling fit followed by transform.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Data matrix to be decomposed.

        y : Ignored
            Not used, present here for API consistency by convention.

        W : array-like of shape (n_samples, n_components), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `None`, uses the initialisation method specified in `init`.

        H : array-like of shape (n_components, n_features), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `None`, uses the initialisation method specified in `init`.

        Returns
        -------
        W : ndarray of shape (n_samples, n_components)
            Transformed data.
        """
        X = validate_data(
            self, X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32]
        )

        with config_context(assume_finite=True):
            W, H, n_iter, n_steps = self._fit_transform(X, W=W, H=H)

        self.reconstruction_err_ = _beta_divergence(
            X, W, H, self._beta_loss, square_root=True
        )

        self.n_components_ = H.shape[0]
        self.components_ = H
        self.n_iter_ = n_iter
        self.n_steps_ = n_steps

        return W

    def _fit_transform(self, X, W=None, H=None, update_H=True):
        """Learn a NMF model for the data X and returns the transformed data.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Data matrix to be decomposed.

        W : array-like of shape (n_samples, n_components), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `update_H=False`, it is initialised as an array of zeros, unless
            `solver='mu'`, then it is filled with values calculated by
            `np.sqrt(X.mean() / self._n_components)`.
            If `None`, uses the initialisation method specified in `init`.

        H : array-like of shape (n_components, n_features), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            If `update_H=False`, it is used as a constant, to solve for W only.
            If `None`, uses the initialisation method specified in `init`.

        update_H : bool, default=True
            If True, both W and H will be estimated from initial guesses,
            this corresponds to a call to the `fit_transform` method.
            If False, only W will be estimated, this corresponds to a call
            to the `transform` method.

        Returns
        -------
        W : ndarray of shape (n_samples, n_components)
            Transformed data.

        H : ndarray of shape (n_components, n_features)
            Factorization matrix, sometimes called 'dictionary'.

        n_iter : int
            Actual number of started iterations over the whole dataset.

        n_steps : int
            Number of mini-batches processed.
        """
        check_non_negative(X, "MiniBatchNMF (input X)")
        self._check_params(X)

        if X.min() == 0 and self._beta_loss <= 0:
            raise ValueError(
                "When beta_loss <= 0 and X contains zeros, "
                "the solver may diverge. Please add small values "
                "to X, or use a positive beta_loss."
            )

        n_samples = X.shape[0]

        # initialize or check W and H
        W, H = self._check_w_h(X, W, H, update_H)
        H_buffer = H.copy()

        # Initialize auxiliary matrices
        self._components_numerator = H.copy()
        self._components_denominator = np.ones(H.shape, dtype=H.dtype)

        # Attributes to monitor the convergence
        self._ewa_cost = None
        self._ewa_cost_min = None
        self._no_improvement = 0

        batches = gen_batches(n_samples, self._batch_size)
        batches = itertools.cycle(batches)
        n_steps_per_iter = int(np.ceil(n_samples / self._batch_size))
        n_steps = self.max_iter * n_steps_per_iter

        for i, batch in zip(range(n_steps), batches):
            batch_cost = self._minibatch_step(X[batch], W[batch], H, update_H)

            if update_H and self._minibatch_convergence(
                X[batch], batch_cost, H, H_buffer, n_samples, i, n_steps
            ):
                break

            H_buffer[:] = H

        if self.fresh_restarts:
            W = self._solve_W(X, H, self._transform_max_iter)

        n_steps = i + 1
        n_iter = int(np.ceil(n_steps / n_steps_per_iter))

        if n_iter == self.max_iter and self.tol > 0:
            warnings.warn(
                (
                    f"Maximum number of iterations {self.max_iter} reached. "
                    "Increase it to improve convergence."
                ),
                ConvergenceWarning,
            )

        return W, H, n_iter, n_steps

    def transform(self, X):
        """Transform the data X according to the fitted MiniBatchNMF model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Data matrix to be transformed by the model.

        Returns
        -------
        W : ndarray of shape (n_samples, n_components)
            Transformed data.
        """
        check_is_fitted(self)
        X = validate_data(
            self,
            X,
            accept_sparse=("csr", "csc"),
            dtype=[np.float64, np.float32],
            reset=False,
        )

        W = self._solve_W(X, self.components_, self._transform_max_iter)

        return W

    @_fit_context(prefer_skip_nested_validation=True)
    def partial_fit(self, X, y=None, W=None, H=None):
        """Update the model using the data in `X` as a mini-batch.

        This method is expected to be called several times consecutively
        on different chunks of a dataset so as to implement out-of-core
        or online learning.

        This is especially useful when the whole dataset is too big to fit in
        memory at once (see :ref:`scaling_strategies`).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Data matrix to be decomposed.

        y : Ignored
            Not used, present here for API consistency by convention.

        W : array-like of shape (n_samples, n_components), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            Only used for the first call to `partial_fit`.

        H : array-like of shape (n_components, n_features), default=None
            If `init='custom'`, it is used as initial guess for the solution.
            Only used for the first call to `partial_fit`.

        Returns
        -------
        self
            Returns the instance itself.
        """
        has_components = hasattr(self, "components_")

        X = validate_data(
            self,
            X,
            accept_sparse=("csr", "csc"),
            dtype=[np.float64, np.float32],
            reset=not has_components,
        )

        if not has_components:
            # This instance has not been fitted yet (fit or partial_fit)
            self._check_params(X)
            _, H = self._check_w_h(X, W=W, H=H, update_H=True)

            self._components_numerator = H.copy()
            self._components_denominator = np.ones(H.shape, dtype=H.dtype)
            self.n_steps_ = 0
        else:
            H = self.components_

        self._minibatch_step(X, None, H, update_H=True)

        self.n_components_ = H.shape[0]
        self.components_ = H
        self.n_steps_ += 1

        return self