File size: 17,922 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
"""Matrix factorization with Sparse PCA."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

from numbers import Integral, Real

import numpy as np

from ..base import (
    BaseEstimator,
    ClassNamePrefixFeaturesOutMixin,
    TransformerMixin,
    _fit_context,
)
from ..linear_model import ridge_regression
from ..utils import check_random_state
from ..utils._param_validation import Interval, StrOptions
from ..utils.extmath import svd_flip
from ..utils.validation import check_array, check_is_fitted, validate_data
from ._dict_learning import MiniBatchDictionaryLearning, dict_learning


class _BaseSparsePCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
    """Base class for SparsePCA and MiniBatchSparsePCA"""

    _parameter_constraints: dict = {
        "n_components": [None, Interval(Integral, 1, None, closed="left")],
        "alpha": [Interval(Real, 0.0, None, closed="left")],
        "ridge_alpha": [Interval(Real, 0.0, None, closed="left")],
        "max_iter": [Interval(Integral, 0, None, closed="left")],
        "tol": [Interval(Real, 0.0, None, closed="left")],
        "method": [StrOptions({"lars", "cd"})],
        "n_jobs": [Integral, None],
        "verbose": ["verbose"],
        "random_state": ["random_state"],
    }

    def __init__(
        self,
        n_components=None,
        *,
        alpha=1,
        ridge_alpha=0.01,
        max_iter=1000,
        tol=1e-8,
        method="lars",
        n_jobs=None,
        verbose=False,
        random_state=None,
    ):
        self.n_components = n_components
        self.alpha = alpha
        self.ridge_alpha = ridge_alpha
        self.max_iter = max_iter
        self.tol = tol
        self.method = method
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.random_state = random_state

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        random_state = check_random_state(self.random_state)
        X = validate_data(self, X)

        self.mean_ = X.mean(axis=0)
        X = X - self.mean_

        if self.n_components is None:
            n_components = X.shape[1]
        else:
            n_components = self.n_components

        return self._fit(X, n_components, random_state)

    def transform(self, X):
        """Least Squares projection of the data onto the sparse components.

        To avoid instability issues in case the system is under-determined,
        regularization can be applied (Ridge regression) via the
        `ridge_alpha` parameter.

        Note that Sparse PCA components orthogonality is not enforced as in PCA
        hence one cannot use a simple linear projection.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Test data to be transformed, must have the same number of
            features as the data used to train the model.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_components)
            Transformed data.
        """
        check_is_fitted(self)

        X = validate_data(self, X, reset=False)
        X = X - self.mean_

        U = ridge_regression(
            self.components_.T, X.T, self.ridge_alpha, solver="cholesky"
        )

        return U

    def inverse_transform(self, X):
        """Transform data from the latent space to the original space.

        This inversion is an approximation due to the loss of information
        induced by the forward decomposition.

        .. versionadded:: 1.2

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_components)
            Data in the latent space.

        Returns
        -------
        X_original : ndarray of shape (n_samples, n_features)
            Reconstructed data in the original space.
        """
        check_is_fitted(self)
        X = check_array(X)

        return (X @ self.components_) + self.mean_

    @property
    def _n_features_out(self):
        """Number of transformed output features."""
        return self.components_.shape[0]

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.transformer_tags.preserves_dtype = ["float64", "float32"]
        return tags


class SparsePCA(_BaseSparsePCA):
    """Sparse Principal Components Analysis (SparsePCA).

    Finds the set of sparse components that can optimally reconstruct
    the data.  The amount of sparseness is controllable by the coefficient
    of the L1 penalty, given by the parameter alpha.

    Read more in the :ref:`User Guide <SparsePCA>`.

    Parameters
    ----------
    n_components : int, default=None
        Number of sparse atoms to extract. If None, then ``n_components``
        is set to ``n_features``.

    alpha : float, default=1
        Sparsity controlling parameter. Higher values lead to sparser
        components.

    ridge_alpha : float, default=0.01
        Amount of ridge shrinkage to apply in order to improve
        conditioning when calling the transform method.

    max_iter : int, default=1000
        Maximum number of iterations to perform.

    tol : float, default=1e-8
        Tolerance for the stopping condition.

    method : {'lars', 'cd'}, default='lars'
        Method to be used for optimization.
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    n_jobs : int, default=None
        Number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    U_init : ndarray of shape (n_samples, n_components), default=None
        Initial values for the loadings for warm restart scenarios. Only used
        if `U_init` and `V_init` are not None.

    V_init : ndarray of shape (n_components, n_features), default=None
        Initial values for the components for warm restart scenarios. Only used
        if `U_init` and `V_init` are not None.

    verbose : int or bool, default=False
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    random_state : int, RandomState instance or None, default=None
        Used during dictionary learning. Pass an int for reproducible results
        across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    components_ : ndarray of shape (n_components, n_features)
        Sparse components extracted from the data.

    error_ : ndarray
        Vector of errors at each iteration.

    n_components_ : int
        Estimated number of components.

        .. versionadded:: 0.23

    n_iter_ : int
        Number of iterations run.

    mean_ : ndarray of shape (n_features,)
        Per-feature empirical mean, estimated from the training set.
        Equal to ``X.mean(axis=0)``.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    PCA : Principal Component Analysis implementation.
    MiniBatchSparsePCA : Mini batch variant of `SparsePCA` that is faster but less
        accurate.
    DictionaryLearning : Generic dictionary learning problem using a sparse code.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_friedman1
    >>> from sklearn.decomposition import SparsePCA
    >>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
    >>> transformer = SparsePCA(n_components=5, random_state=0)
    >>> transformer.fit(X)
    SparsePCA(...)
    >>> X_transformed = transformer.transform(X)
    >>> X_transformed.shape
    (200, 5)
    >>> # most values in the components_ are zero (sparsity)
    >>> np.mean(transformer.components_ == 0)
    np.float64(0.9666...)
    """

    _parameter_constraints: dict = {
        **_BaseSparsePCA._parameter_constraints,
        "U_init": [None, np.ndarray],
        "V_init": [None, np.ndarray],
    }

    def __init__(
        self,
        n_components=None,
        *,
        alpha=1,
        ridge_alpha=0.01,
        max_iter=1000,
        tol=1e-8,
        method="lars",
        n_jobs=None,
        U_init=None,
        V_init=None,
        verbose=False,
        random_state=None,
    ):
        super().__init__(
            n_components=n_components,
            alpha=alpha,
            ridge_alpha=ridge_alpha,
            max_iter=max_iter,
            tol=tol,
            method=method,
            n_jobs=n_jobs,
            verbose=verbose,
            random_state=random_state,
        )
        self.U_init = U_init
        self.V_init = V_init

    def _fit(self, X, n_components, random_state):
        """Specialized `fit` for SparsePCA."""

        code_init = self.V_init.T if self.V_init is not None else None
        dict_init = self.U_init.T if self.U_init is not None else None
        code, dictionary, E, self.n_iter_ = dict_learning(
            X.T,
            n_components,
            alpha=self.alpha,
            tol=self.tol,
            max_iter=self.max_iter,
            method=self.method,
            n_jobs=self.n_jobs,
            verbose=self.verbose,
            random_state=random_state,
            code_init=code_init,
            dict_init=dict_init,
            return_n_iter=True,
        )
        # flip eigenvectors' sign to enforce deterministic output
        code, dictionary = svd_flip(code, dictionary, u_based_decision=True)
        self.components_ = code.T
        components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
        components_norm[components_norm == 0] = 1
        self.components_ /= components_norm
        self.n_components_ = len(self.components_)

        self.error_ = E
        return self


class MiniBatchSparsePCA(_BaseSparsePCA):
    """Mini-batch Sparse Principal Components Analysis.

    Finds the set of sparse components that can optimally reconstruct
    the data.  The amount of sparseness is controllable by the coefficient
    of the L1 penalty, given by the parameter alpha.

    For an example comparing sparse PCA to PCA, see
    :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py`

    Read more in the :ref:`User Guide <SparsePCA>`.

    Parameters
    ----------
    n_components : int, default=None
        Number of sparse atoms to extract. If None, then ``n_components``
        is set to ``n_features``.

    alpha : int, default=1
        Sparsity controlling parameter. Higher values lead to sparser
        components.

    ridge_alpha : float, default=0.01
        Amount of ridge shrinkage to apply in order to improve
        conditioning when calling the transform method.

    max_iter : int, default=1_000
        Maximum number of iterations over the complete dataset before
        stopping independently of any early stopping criterion heuristics.

        .. versionadded:: 1.2

    callback : callable, default=None
        Callable that gets invoked every five iterations.

    batch_size : int, default=3
        The number of features to take in each mini batch.

    verbose : int or bool, default=False
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    shuffle : bool, default=True
        Whether to shuffle the data before splitting it in batches.

    n_jobs : int, default=None
        Number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    method : {'lars', 'cd'}, default='lars'
        Method to be used for optimization.
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    random_state : int, RandomState instance or None, default=None
        Used for random shuffling when ``shuffle`` is set to ``True``,
        during online dictionary learning. Pass an int for reproducible results
        across multiple function calls.
        See :term:`Glossary <random_state>`.

    tol : float, default=1e-3
        Control early stopping based on the norm of the differences in the
        dictionary between 2 steps.

        To disable early stopping based on changes in the dictionary, set
        `tol` to 0.0.

        .. versionadded:: 1.1

    max_no_improvement : int or None, default=10
        Control early stopping based on the consecutive number of mini batches
        that does not yield an improvement on the smoothed cost function.

        To disable convergence detection based on cost function, set
        `max_no_improvement` to `None`.

        .. versionadded:: 1.1

    Attributes
    ----------
    components_ : ndarray of shape (n_components, n_features)
        Sparse components extracted from the data.

    n_components_ : int
        Estimated number of components.

        .. versionadded:: 0.23

    n_iter_ : int
        Number of iterations run.

    mean_ : ndarray of shape (n_features,)
        Per-feature empirical mean, estimated from the training set.
        Equal to ``X.mean(axis=0)``.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    DictionaryLearning : Find a dictionary that sparsely encodes data.
    IncrementalPCA : Incremental principal components analysis.
    PCA : Principal component analysis.
    SparsePCA : Sparse Principal Components Analysis.
    TruncatedSVD : Dimensionality reduction using truncated SVD.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_friedman1
    >>> from sklearn.decomposition import MiniBatchSparsePCA
    >>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
    >>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
    ...                                  max_iter=10, random_state=0)
    >>> transformer.fit(X)
    MiniBatchSparsePCA(...)
    >>> X_transformed = transformer.transform(X)
    >>> X_transformed.shape
    (200, 5)
    >>> # most values in the components_ are zero (sparsity)
    >>> np.mean(transformer.components_ == 0)
    np.float64(0.9...)
    """

    _parameter_constraints: dict = {
        **_BaseSparsePCA._parameter_constraints,
        "max_iter": [Interval(Integral, 0, None, closed="left")],
        "callback": [None, callable],
        "batch_size": [Interval(Integral, 1, None, closed="left")],
        "shuffle": ["boolean"],
        "max_no_improvement": [Interval(Integral, 0, None, closed="left"), None],
    }

    def __init__(
        self,
        n_components=None,
        *,
        alpha=1,
        ridge_alpha=0.01,
        max_iter=1_000,
        callback=None,
        batch_size=3,
        verbose=False,
        shuffle=True,
        n_jobs=None,
        method="lars",
        random_state=None,
        tol=1e-3,
        max_no_improvement=10,
    ):
        super().__init__(
            n_components=n_components,
            alpha=alpha,
            ridge_alpha=ridge_alpha,
            max_iter=max_iter,
            tol=tol,
            method=method,
            n_jobs=n_jobs,
            verbose=verbose,
            random_state=random_state,
        )
        self.callback = callback
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.max_no_improvement = max_no_improvement

    def _fit(self, X, n_components, random_state):
        """Specialized `fit` for MiniBatchSparsePCA."""

        transform_algorithm = "lasso_" + self.method
        est = MiniBatchDictionaryLearning(
            n_components=n_components,
            alpha=self.alpha,
            max_iter=self.max_iter,
            dict_init=None,
            batch_size=self.batch_size,
            shuffle=self.shuffle,
            n_jobs=self.n_jobs,
            fit_algorithm=self.method,
            random_state=random_state,
            transform_algorithm=transform_algorithm,
            transform_alpha=self.alpha,
            verbose=self.verbose,
            callback=self.callback,
            tol=self.tol,
            max_no_improvement=self.max_no_improvement,
        )
        est.set_output(transform="default")
        est.fit(X.T)

        self.components_, self.n_iter_ = est.transform(X.T).T, est.n_iter_

        components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
        components_norm[components_norm == 0] = 1
        self.components_ /= components_norm
        self.n_components_ = len(self.components_)

        return self