File size: 33,070 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
import re
import sys
import warnings
from io import StringIO

import numpy as np
import pytest
from scipy import linalg

from sklearn.base import clone
from sklearn.decomposition import NMF, MiniBatchNMF, non_negative_factorization
from sklearn.decomposition import _nmf as nmf  # For testing internals
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils._testing import (
    assert_allclose,
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
)
from sklearn.utils.extmath import squared_norm
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_convergence_warning(Estimator, solver):
    convergence_warning = (
        "Maximum number of iterations 1 reached. Increase it to improve convergence."
    )
    A = np.ones((2, 2))
    with pytest.warns(ConvergenceWarning, match=convergence_warning):
        Estimator(max_iter=1, n_components="auto", **solver).fit(A)


def test_initialize_nn_output():
    # Test that initialization does not return negative values
    rng = np.random.mtrand.RandomState(42)
    data = np.abs(rng.randn(10, 10))
    for init in ("random", "nndsvd", "nndsvda", "nndsvdar"):
        W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0)
        assert not ((W < 0).any() or (H < 0).any())


@pytest.mark.filterwarnings(
    r"ignore:The multiplicative update \('mu'\) solver cannot update zeros present in"
    r" the initialization",
)
def test_parameter_checking():
    # Here we only check for invalid parameter values that are not already
    # automatically tested in the common tests.

    A = np.ones((2, 2))

    msg = "Invalid beta_loss parameter: solver 'cd' does not handle beta_loss = 1.0"
    with pytest.raises(ValueError, match=msg):
        NMF(solver="cd", beta_loss=1.0).fit(A)
    msg = "Negative values in data passed to"
    with pytest.raises(ValueError, match=msg):
        NMF().fit(-A)
    clf = NMF(2, tol=0.1).fit(A)
    with pytest.raises(ValueError, match=msg):
        clf.transform(-A)
    with pytest.raises(ValueError, match=msg):
        nmf._initialize_nmf(-A, 2, "nndsvd")

    for init in ["nndsvd", "nndsvda", "nndsvdar"]:
        msg = re.escape(
            "init = '{}' can only be used when "
            "n_components <= min(n_samples, n_features)".format(init)
        )
        with pytest.raises(ValueError, match=msg):
            NMF(3, init=init).fit(A)
        with pytest.raises(ValueError, match=msg):
            MiniBatchNMF(3, init=init).fit(A)
        with pytest.raises(ValueError, match=msg):
            nmf._initialize_nmf(A, 3, init)


def test_initialize_close():
    # Test NNDSVD error
    # Test that _initialize_nmf error is less than the standard deviation of
    # the entries in the matrix.
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    W, H = nmf._initialize_nmf(A, 10, init="nndsvd")
    error = linalg.norm(np.dot(W, H) - A)
    sdev = linalg.norm(A - A.mean())
    assert error <= sdev


def test_initialize_variants():
    # Test NNDSVD variants correctness
    # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic
    # 'nndsvd' only where the basic version has zeros.
    rng = np.random.mtrand.RandomState(42)
    data = np.abs(rng.randn(10, 10))
    W0, H0 = nmf._initialize_nmf(data, 10, init="nndsvd")
    Wa, Ha = nmf._initialize_nmf(data, 10, init="nndsvda")
    War, Har = nmf._initialize_nmf(data, 10, init="nndsvdar", random_state=0)

    for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)):
        assert_almost_equal(evl[ref != 0], ref[ref != 0])


# ignore UserWarning raised when both solver='mu' and init='nndsvd'
@pytest.mark.filterwarnings(
    r"ignore:The multiplicative update \('mu'\) solver cannot update zeros present in"
    r" the initialization"
)
@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
@pytest.mark.parametrize("init", (None, "nndsvd", "nndsvda", "nndsvdar", "random"))
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
def test_nmf_fit_nn_output(Estimator, solver, init, alpha_W, alpha_H):
    # Test that the decomposition does not contain negative values
    A = np.c_[5.0 - np.arange(1, 6), 5.0 + np.arange(1, 6)]
    model = Estimator(
        n_components=2,
        init=init,
        alpha_W=alpha_W,
        alpha_H=alpha_H,
        random_state=0,
        **solver,
    )
    transf = model.fit_transform(A)
    assert not ((model.components_ < 0).any() or (transf < 0).any())


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_fit_close(Estimator, solver):
    rng = np.random.mtrand.RandomState(42)
    # Test that the fit is not too far away
    pnmf = Estimator(
        5,
        init="nndsvdar",
        random_state=0,
        max_iter=600,
        **solver,
    )
    X = np.abs(rng.randn(6, 5))
    assert pnmf.fit(X).reconstruction_err_ < 0.1


def test_nmf_true_reconstruction():
    # Test that the fit is not too far away from an exact solution
    # (by construction)
    n_samples = 15
    n_features = 10
    n_components = 5
    beta_loss = 1
    batch_size = 3
    max_iter = 1000

    rng = np.random.mtrand.RandomState(42)
    W_true = np.zeros([n_samples, n_components])
    W_array = np.abs(rng.randn(n_samples))
    for j in range(n_components):
        W_true[j % n_samples, j] = W_array[j % n_samples]
    H_true = np.zeros([n_components, n_features])
    H_array = np.abs(rng.randn(n_components))
    for j in range(n_features):
        H_true[j % n_components, j] = H_array[j % n_components]
    X = np.dot(W_true, H_true)

    model = NMF(
        n_components=n_components,
        solver="mu",
        beta_loss=beta_loss,
        max_iter=max_iter,
        random_state=0,
    )
    transf = model.fit_transform(X)
    X_calc = np.dot(transf, model.components_)

    assert model.reconstruction_err_ < 0.1
    assert_allclose(X, X_calc)

    mbmodel = MiniBatchNMF(
        n_components=n_components,
        beta_loss=beta_loss,
        batch_size=batch_size,
        random_state=0,
        max_iter=max_iter,
    )
    transf = mbmodel.fit_transform(X)
    X_calc = np.dot(transf, mbmodel.components_)

    assert mbmodel.reconstruction_err_ < 0.1
    assert_allclose(X, X_calc, atol=1)


@pytest.mark.parametrize("solver", ["cd", "mu"])
def test_nmf_transform(solver):
    # Test that fit_transform is equivalent to fit.transform for NMF
    # Test that NMF.transform returns close values
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(6, 5))
    m = NMF(
        solver=solver,
        n_components=3,
        init="random",
        random_state=0,
        tol=1e-6,
    )
    ft = m.fit_transform(A)
    t = m.transform(A)
    assert_allclose(ft, t, atol=1e-1)


def test_minibatch_nmf_transform():
    # Test that fit_transform is equivalent to fit.transform for MiniBatchNMF
    # Only guaranteed with fresh restarts
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(6, 5))
    m = MiniBatchNMF(
        n_components=3,
        random_state=0,
        tol=1e-3,
        fresh_restarts=True,
    )
    ft = m.fit_transform(A)
    t = m.transform(A)
    assert_allclose(ft, t)


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_transform_custom_init(Estimator, solver):
    # Smoke test that checks if NMF.transform works with custom initialization
    random_state = np.random.RandomState(0)
    A = np.abs(random_state.randn(6, 5))
    n_components = 4
    avg = np.sqrt(A.mean() / n_components)
    H_init = np.abs(avg * random_state.randn(n_components, 5))
    W_init = np.abs(avg * random_state.randn(6, n_components))

    m = Estimator(
        n_components=n_components, init="custom", random_state=0, tol=1e-3, **solver
    )
    m.fit_transform(A, W=W_init, H=H_init)
    m.transform(A)


@pytest.mark.parametrize("solver", ("cd", "mu"))
def test_nmf_inverse_transform(solver):
    # Test that NMF.inverse_transform returns close values
    random_state = np.random.RandomState(0)
    A = np.abs(random_state.randn(6, 4))
    m = NMF(
        solver=solver,
        n_components=4,
        init="random",
        random_state=0,
        max_iter=1000,
    )
    ft = m.fit_transform(A)
    A_new = m.inverse_transform(ft)
    assert_array_almost_equal(A, A_new, decimal=2)


def test_mbnmf_inverse_transform():
    # Test that MiniBatchNMF.transform followed by MiniBatchNMF.inverse_transform
    # is close to the identity
    rng = np.random.RandomState(0)
    A = np.abs(rng.randn(6, 4))
    nmf = MiniBatchNMF(
        random_state=rng,
        max_iter=500,
        init="nndsvdar",
        fresh_restarts=True,
    )
    ft = nmf.fit_transform(A)
    A_new = nmf.inverse_transform(ft)
    assert_allclose(A, A_new, rtol=1e-3, atol=1e-2)


@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
def test_n_components_greater_n_features(Estimator):
    # Smoke test for the case of more components than features.
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(30, 10))
    Estimator(n_components=15, random_state=0, tol=1e-2).fit(A)


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
@pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
def test_nmf_sparse_input(Estimator, solver, sparse_container, alpha_W, alpha_H):
    # Test that sparse matrices are accepted as input
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    A[:, 2 * np.arange(5)] = 0
    A_sparse = sparse_container(A)

    est1 = Estimator(
        n_components=5,
        init="random",
        alpha_W=alpha_W,
        alpha_H=alpha_H,
        random_state=0,
        tol=0,
        max_iter=100,
        **solver,
    )
    est2 = clone(est1)

    W1 = est1.fit_transform(A)
    W2 = est2.fit_transform(A_sparse)
    H1 = est1.components_
    H2 = est2.components_

    assert_allclose(W1, W2)
    assert_allclose(H1, H2)


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_nmf_sparse_transform(Estimator, solver, csc_container):
    # Test that transform works on sparse data.  Issue #2124
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(3, 2))
    A[1, 1] = 0
    A = csc_container(A)

    model = Estimator(random_state=0, n_components=2, max_iter=400, **solver)
    A_fit_tr = model.fit_transform(A)
    A_tr = model.transform(A)
    assert_allclose(A_fit_tr, A_tr, atol=1e-1)


@pytest.mark.parametrize("init", ["random", "nndsvd"])
@pytest.mark.parametrize("solver", ("cd", "mu"))
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
def test_non_negative_factorization_consistency(init, solver, alpha_W, alpha_H):
    # Test that the function is called in the same way, either directly
    # or through the NMF class
    max_iter = 500
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    A[:, 2 * np.arange(5)] = 0

    W_nmf, H, _ = non_negative_factorization(
        A,
        init=init,
        solver=solver,
        max_iter=max_iter,
        alpha_W=alpha_W,
        alpha_H=alpha_H,
        random_state=1,
        tol=1e-2,
    )
    W_nmf_2, H, _ = non_negative_factorization(
        A,
        H=H,
        update_H=False,
        init=init,
        solver=solver,
        max_iter=max_iter,
        alpha_W=alpha_W,
        alpha_H=alpha_H,
        random_state=1,
        tol=1e-2,
    )

    model_class = NMF(
        init=init,
        solver=solver,
        max_iter=max_iter,
        alpha_W=alpha_W,
        alpha_H=alpha_H,
        random_state=1,
        tol=1e-2,
    )
    W_cls = model_class.fit_transform(A)
    W_cls_2 = model_class.transform(A)

    assert_allclose(W_nmf, W_cls)
    assert_allclose(W_nmf_2, W_cls_2)


def test_non_negative_factorization_checking():
    # Note that the validity of parameter types and range of possible values
    # for scalar numerical or str parameters is already checked in the common
    # tests. Here we only check for problems that cannot be captured by simple
    # declarative constraints on the valid parameter values.

    A = np.ones((2, 2))
    # Test parameters checking in public function
    nnmf = non_negative_factorization
    msg = re.escape("Negative values in data passed to NMF (input H)")
    with pytest.raises(ValueError, match=msg):
        nnmf(A, A, -A, 2, init="custom")
    msg = re.escape("Negative values in data passed to NMF (input W)")
    with pytest.raises(ValueError, match=msg):
        nnmf(A, -A, A, 2, init="custom")
    msg = re.escape("Array passed to NMF (input H) is full of zeros")
    with pytest.raises(ValueError, match=msg):
        nnmf(A, A, 0 * A, 2, init="custom")


def _beta_divergence_dense(X, W, H, beta):
    """Compute the beta-divergence of X and W.H for dense array only.

    Used as a reference for testing nmf._beta_divergence.
    """
    WH = np.dot(W, H)

    if beta == 2:
        return squared_norm(X - WH) / 2

    WH_Xnonzero = WH[X != 0]
    X_nonzero = X[X != 0]
    np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero)

    if beta == 1:
        res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero))
        res += WH.sum() - X.sum()

    elif beta == 0:
        div = X_nonzero / WH_Xnonzero
        res = np.sum(div) - X.size - np.sum(np.log(div))
    else:
        res = (X_nonzero**beta).sum()
        res += (beta - 1) * (WH**beta).sum()
        res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum()
        res /= beta * (beta - 1)

    return res


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_beta_divergence(csr_container):
    # Compare _beta_divergence with the reference _beta_divergence_dense
    n_samples = 20
    n_features = 10
    n_components = 5
    beta_losses = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0]

    # initialization
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = csr_container(X)
    W, H = nmf._initialize_nmf(X, n_components, init="random", random_state=42)

    for beta in beta_losses:
        ref = _beta_divergence_dense(X, W, H, beta)
        loss = nmf._beta_divergence(X, W, H, beta)
        loss_csr = nmf._beta_divergence(X_csr, W, H, beta)

        assert_almost_equal(ref, loss, decimal=7)
        assert_almost_equal(ref, loss_csr, decimal=7)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_special_sparse_dot(csr_container):
    # Test the function that computes np.dot(W, H), only where X is non zero.
    n_samples = 10
    n_features = 5
    n_components = 3
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = csr_container(X)

    W = np.abs(rng.randn(n_samples, n_components))
    H = np.abs(rng.randn(n_components, n_features))

    WH_safe = nmf._special_sparse_dot(W, H, X_csr)
    WH = nmf._special_sparse_dot(W, H, X)

    # test that both results have same values, in X_csr nonzero elements
    ii, jj = X_csr.nonzero()
    WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel()
    assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10)

    # test that WH_safe and X_csr have the same sparse structure
    assert_array_equal(WH_safe.indices, X_csr.indices)
    assert_array_equal(WH_safe.indptr, X_csr.indptr)
    assert_array_equal(WH_safe.shape, X_csr.shape)


@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_nmf_multiplicative_update_sparse(csr_container):
    # Compare sparse and dense input in multiplicative update NMF
    # Also test continuity of the results with respect to beta_loss parameter
    n_samples = 20
    n_features = 10
    n_components = 5
    alpha = 0.1
    l1_ratio = 0.5
    n_iter = 20

    # initialization
    rng = np.random.mtrand.RandomState(1337)
    X = rng.randn(n_samples, n_features)
    X = np.abs(X)
    X_csr = csr_container(X)
    W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42)

    for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5):
        # Reference with dense array X
        W, H = W0.copy(), H0.copy()
        W1, H1, _ = non_negative_factorization(
            X,
            W,
            H,
            n_components,
            init="custom",
            update_H=True,
            solver="mu",
            beta_loss=beta_loss,
            max_iter=n_iter,
            alpha_W=alpha,
            l1_ratio=l1_ratio,
            random_state=42,
        )

        # Compare with sparse X
        W, H = W0.copy(), H0.copy()
        W2, H2, _ = non_negative_factorization(
            X_csr,
            W,
            H,
            n_components,
            init="custom",
            update_H=True,
            solver="mu",
            beta_loss=beta_loss,
            max_iter=n_iter,
            alpha_W=alpha,
            l1_ratio=l1_ratio,
            random_state=42,
        )

        assert_allclose(W1, W2, atol=1e-7)
        assert_allclose(H1, H2, atol=1e-7)

        # Compare with almost same beta_loss, since some values have a specific
        # behavior, but the results should be continuous w.r.t beta_loss
        beta_loss -= 1.0e-5
        W, H = W0.copy(), H0.copy()
        W3, H3, _ = non_negative_factorization(
            X_csr,
            W,
            H,
            n_components,
            init="custom",
            update_H=True,
            solver="mu",
            beta_loss=beta_loss,
            max_iter=n_iter,
            alpha_W=alpha,
            l1_ratio=l1_ratio,
            random_state=42,
        )

        assert_allclose(W1, W3, atol=1e-4)
        assert_allclose(H1, H3, atol=1e-4)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_nmf_negative_beta_loss(csr_container):
    # Test that an error is raised if beta_loss < 0 and X contains zeros.
    # Test that the output has not NaN values when the input contains zeros.
    n_samples = 6
    n_features = 5
    n_components = 3

    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = csr_container(X)

    def _assert_nmf_no_nan(X, beta_loss):
        W, H, _ = non_negative_factorization(
            X,
            init="random",
            n_components=n_components,
            solver="mu",
            beta_loss=beta_loss,
            random_state=0,
            max_iter=1000,
        )
        assert not np.any(np.isnan(W))
        assert not np.any(np.isnan(H))

    msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
    for beta_loss in (-0.6, 0.0):
        with pytest.raises(ValueError, match=msg):
            _assert_nmf_no_nan(X, beta_loss)
        _assert_nmf_no_nan(X + 1e-9, beta_loss)

    for beta_loss in (0.2, 1.0, 1.2, 2.0, 2.5):
        _assert_nmf_no_nan(X, beta_loss)
        _assert_nmf_no_nan(X_csr, beta_loss)


@pytest.mark.parametrize("beta_loss", [-0.5, 0.0])
def test_minibatch_nmf_negative_beta_loss(beta_loss):
    """Check that an error is raised if beta_loss < 0 and X contains zeros."""
    rng = np.random.RandomState(0)
    X = rng.normal(size=(6, 5))
    X[X < 0] = 0

    nmf = MiniBatchNMF(beta_loss=beta_loss, random_state=0)

    msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
    with pytest.raises(ValueError, match=msg):
        nmf.fit(X)


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_regularization(Estimator, solver):
    # Test the effect of L1 and L2 regularizations
    n_samples = 6
    n_features = 5
    n_components = 3
    rng = np.random.mtrand.RandomState(42)
    X = np.abs(rng.randn(n_samples, n_features))

    # L1 regularization should increase the number of zeros
    l1_ratio = 1.0
    regul = Estimator(
        n_components=n_components,
        alpha_W=0.5,
        l1_ratio=l1_ratio,
        random_state=42,
        **solver,
    )
    model = Estimator(
        n_components=n_components,
        alpha_W=0.0,
        l1_ratio=l1_ratio,
        random_state=42,
        **solver,
    )

    W_regul = regul.fit_transform(X)
    W_model = model.fit_transform(X)

    H_regul = regul.components_
    H_model = model.components_

    eps = np.finfo(np.float64).eps
    W_regul_n_zeros = W_regul[W_regul <= eps].size
    W_model_n_zeros = W_model[W_model <= eps].size
    H_regul_n_zeros = H_regul[H_regul <= eps].size
    H_model_n_zeros = H_model[H_model <= eps].size

    assert W_regul_n_zeros > W_model_n_zeros
    assert H_regul_n_zeros > H_model_n_zeros

    # L2 regularization should decrease the sum of the squared norm
    # of the matrices W and H
    l1_ratio = 0.0
    regul = Estimator(
        n_components=n_components,
        alpha_W=0.5,
        l1_ratio=l1_ratio,
        random_state=42,
        **solver,
    )
    model = Estimator(
        n_components=n_components,
        alpha_W=0.0,
        l1_ratio=l1_ratio,
        random_state=42,
        **solver,
    )

    W_regul = regul.fit_transform(X)
    W_model = model.fit_transform(X)

    H_regul = regul.components_
    H_model = model.components_

    assert (linalg.norm(W_model)) ** 2.0 + (linalg.norm(H_model)) ** 2.0 > (
        linalg.norm(W_regul)
    ) ** 2.0 + (linalg.norm(H_regul)) ** 2.0


@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("solver", ("cd", "mu"))
def test_nmf_decreasing(solver):
    # test that the objective function is decreasing at each iteration
    n_samples = 20
    n_features = 15
    n_components = 10
    alpha = 0.1
    l1_ratio = 0.5
    tol = 0.0

    # initialization
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.abs(X, X)
    W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42)

    for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5):
        if solver != "mu" and beta_loss != 2:
            # not implemented
            continue
        W, H = W0.copy(), H0.copy()
        previous_loss = None
        for _ in range(30):
            # one more iteration starting from the previous results
            W, H, _ = non_negative_factorization(
                X,
                W,
                H,
                beta_loss=beta_loss,
                init="custom",
                n_components=n_components,
                max_iter=1,
                alpha_W=alpha,
                solver=solver,
                tol=tol,
                l1_ratio=l1_ratio,
                verbose=0,
                random_state=0,
                update_H=True,
            )

            loss = (
                nmf._beta_divergence(X, W, H, beta_loss)
                + alpha * l1_ratio * n_features * W.sum()
                + alpha * l1_ratio * n_samples * H.sum()
                + alpha * (1 - l1_ratio) * n_features * (W**2).sum()
                + alpha * (1 - l1_ratio) * n_samples * (H**2).sum()
            )
            if previous_loss is not None:
                assert previous_loss > loss
            previous_loss = loss


def test_nmf_underflow():
    # Regression test for an underflow issue in _beta_divergence
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 10, 2, 2
    X = np.abs(rng.randn(n_samples, n_features)) * 10
    W = np.abs(rng.randn(n_samples, n_components)) * 10
    H = np.abs(rng.randn(n_components, n_features))

    X[0, 0] = 0
    ref = nmf._beta_divergence(X, W, H, beta=1.0)
    X[0, 0] = 1e-323
    res = nmf._beta_divergence(X, W, H, beta=1.0)
    assert_almost_equal(res, ref)


@pytest.mark.parametrize(
    "dtype_in, dtype_out",
    [
        (np.float32, np.float32),
        (np.float64, np.float64),
        (np.int32, np.float64),
        (np.int64, np.float64),
    ],
)
@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_dtype_match(Estimator, solver, dtype_in, dtype_out):
    # Check that NMF preserves dtype (float32 and float64)
    X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False)
    np.abs(X, out=X)

    nmf = Estimator(
        alpha_W=1.0,
        alpha_H=1.0,
        tol=1e-2,
        random_state=0,
        **solver,
    )

    assert nmf.fit(X).transform(X).dtype == dtype_out
    assert nmf.fit_transform(X).dtype == dtype_out
    assert nmf.components_.dtype == dtype_out


@pytest.mark.parametrize(
    ["Estimator", "solver"],
    [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_float32_float64_consistency(Estimator, solver):
    # Check that the result of NMF is the same between float32 and float64
    X = np.random.RandomState(0).randn(50, 7)
    np.abs(X, out=X)
    nmf32 = Estimator(random_state=0, tol=1e-3, **solver)
    W32 = nmf32.fit_transform(X.astype(np.float32))
    nmf64 = Estimator(random_state=0, tol=1e-3, **solver)
    W64 = nmf64.fit_transform(X)

    assert_allclose(W32, W64, atol=1e-5)


@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
def test_nmf_custom_init_dtype_error(Estimator):
    # Check that an error is raise if custom H and/or W don't have the same
    # dtype as X.
    rng = np.random.RandomState(0)
    X = rng.random_sample((20, 15))
    H = rng.random_sample((15, 15)).astype(np.float32)
    W = rng.random_sample((20, 15))

    with pytest.raises(TypeError, match="should have the same dtype as X"):
        Estimator(init="custom").fit(X, H=H, W=W)

    with pytest.raises(TypeError, match="should have the same dtype as X"):
        non_negative_factorization(X, H=H, update_H=False)


@pytest.mark.parametrize("beta_loss", [-0.5, 0, 0.5, 1, 1.5, 2, 2.5])
def test_nmf_minibatchnmf_equivalence(beta_loss):
    # Test that MiniBatchNMF is equivalent to NMF when batch_size = n_samples and
    # forget_factor 0.0 (stopping criterion put aside)
    rng = np.random.mtrand.RandomState(42)
    X = np.abs(rng.randn(48, 5))

    nmf = NMF(
        n_components=5,
        beta_loss=beta_loss,
        solver="mu",
        random_state=0,
        tol=0,
    )
    mbnmf = MiniBatchNMF(
        n_components=5,
        beta_loss=beta_loss,
        random_state=0,
        tol=0,
        max_no_improvement=None,
        batch_size=X.shape[0],
        forget_factor=0.0,
    )
    W = nmf.fit_transform(X)
    mbW = mbnmf.fit_transform(X)
    assert_allclose(W, mbW)


def test_minibatch_nmf_partial_fit():
    # Check fit / partial_fit equivalence. Applicable only with fresh restarts.
    rng = np.random.mtrand.RandomState(42)
    X = np.abs(rng.randn(100, 5))

    n_components = 5
    batch_size = 10
    max_iter = 2

    mbnmf1 = MiniBatchNMF(
        n_components=n_components,
        init="custom",
        random_state=0,
        max_iter=max_iter,
        batch_size=batch_size,
        tol=0,
        max_no_improvement=None,
        fresh_restarts=False,
    )
    mbnmf2 = MiniBatchNMF(n_components=n_components, init="custom", random_state=0)

    # Force the same init of H (W is recomputed anyway) to be able to compare results.
    W, H = nmf._initialize_nmf(
        X, n_components=n_components, init="random", random_state=0
    )

    mbnmf1.fit(X, W=W, H=H)
    for i in range(max_iter):
        for j in range(batch_size):
            mbnmf2.partial_fit(X[j : j + batch_size], W=W[:batch_size], H=H)

    assert mbnmf1.n_steps_ == mbnmf2.n_steps_
    assert_allclose(mbnmf1.components_, mbnmf2.components_)


def test_feature_names_out():
    """Check feature names out for NMF."""
    random_state = np.random.RandomState(0)
    X = np.abs(random_state.randn(10, 4))
    nmf = NMF(n_components=3).fit(X)

    names = nmf.get_feature_names_out()
    assert_array_equal([f"nmf{i}" for i in range(3)], names)


def test_minibatch_nmf_verbose():
    # Check verbose mode of MiniBatchNMF for better coverage.
    A = np.random.RandomState(0).random_sample((100, 10))
    nmf = MiniBatchNMF(tol=1e-2, random_state=0, verbose=1)
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        nmf.fit(A)
    finally:
        sys.stdout = old_stdout


# TODO(1.7): remove this test
@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
def test_NMF_inverse_transform_Xt_deprecation(Estimator):
    rng = np.random.RandomState(42)
    A = np.abs(rng.randn(6, 5))
    est = Estimator(
        n_components=3,
        init="random",
        random_state=0,
        tol=1e-6,
    )
    X = est.fit_transform(A)

    with pytest.raises(TypeError, match="Missing required positional argument"):
        est.inverse_transform()

    with pytest.raises(TypeError, match="Cannot use both X and Xt. Use X only"):
        est.inverse_transform(X=X, Xt=X)

    with warnings.catch_warnings(record=True):
        warnings.simplefilter("error")
        est.inverse_transform(X)

    with pytest.warns(FutureWarning, match="Xt was renamed X in version 1.5"):
        est.inverse_transform(Xt=X)


@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
def test_nmf_n_components_auto(Estimator):
    # Check that n_components is correctly inferred
    # from the provided custom initialization.
    rng = np.random.RandomState(0)
    X = rng.random_sample((6, 5))
    W = rng.random_sample((6, 2))
    H = rng.random_sample((2, 5))
    est = Estimator(
        n_components="auto",
        init="custom",
        random_state=0,
        tol=1e-6,
    )
    est.fit_transform(X, W=W, H=H)
    assert est._n_components == H.shape[0]


def test_nmf_non_negative_factorization_n_components_auto():
    # Check that n_components is correctly inferred from the provided
    # custom initialization.
    rng = np.random.RandomState(0)
    X = rng.random_sample((6, 5))
    W_init = rng.random_sample((6, 2))
    H_init = rng.random_sample((2, 5))
    W, H, _ = non_negative_factorization(
        X, W=W_init, H=H_init, init="custom", n_components="auto"
    )
    assert H.shape == H_init.shape
    assert W.shape == W_init.shape


def test_nmf_n_components_auto_no_h_update():
    # Tests that non_negative_factorization does not fail when setting
    # n_components="auto" also tests that the inferred n_component
    # value is the right one.
    rng = np.random.RandomState(0)
    X = rng.random_sample((6, 5))
    H_true = rng.random_sample((2, 5))
    W, H, _ = non_negative_factorization(
        X, H=H_true, n_components="auto", update_H=False
    )  # should not fail
    assert_allclose(H, H_true)
    assert W.shape == (X.shape[0], H_true.shape[0])


def test_nmf_w_h_not_used_warning():
    # Check that warnings are raised if user provided W and H are not used
    # and initialization overrides value of W or H
    rng = np.random.RandomState(0)
    X = rng.random_sample((6, 5))
    W_init = rng.random_sample((6, 2))
    H_init = rng.random_sample((2, 5))
    with pytest.warns(
        RuntimeWarning,
        match="When init!='custom', provided W or H are ignored",
    ):
        non_negative_factorization(X, H=H_init, update_H=True, n_components="auto")

    with pytest.warns(
        RuntimeWarning,
        match="When init!='custom', provided W or H are ignored",
    ):
        non_negative_factorization(
            X, W=W_init, H=H_init, update_H=True, n_components="auto"
        )

    with pytest.warns(
        RuntimeWarning, match="When update_H=False, the provided initial W is not used."
    ):
        # When update_H is False, W is ignored regardless of init
        # TODO: use the provided W when init="custom".
        non_negative_factorization(
            X, W=W_init, H=H_init, update_H=False, n_components="auto"
        )


def test_nmf_custom_init_shape_error():
    # Check that an informative error is raised when custom initialization does not
    # have the right shape
    rng = np.random.RandomState(0)
    X = rng.random_sample((6, 5))
    H = rng.random_sample((2, 5))
    nmf = NMF(n_components=2, init="custom", random_state=0)

    with pytest.raises(ValueError, match="Array with wrong first dimension passed"):
        nmf.fit(X, H=H, W=rng.random_sample((5, 2)))

    with pytest.raises(ValueError, match="Array with wrong second dimension passed"):
        nmf.fit(X, H=H, W=rng.random_sample((6, 3)))