File size: 33,490 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
"""Test the stacking classifier and regressor."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import re
from unittest.mock import Mock
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from scipy import sparse
from sklearn import config_context
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, clone
from sklearn.datasets import (
load_breast_cancer,
load_diabetes,
load_iris,
make_classification,
make_multilabel_classification,
make_regression,
)
from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.ensemble import (
RandomForestClassifier,
RandomForestRegressor,
StackingClassifier,
StackingRegressor,
)
from sklearn.exceptions import ConvergenceWarning, NotFittedError
from sklearn.linear_model import (
LinearRegression,
LogisticRegression,
Ridge,
RidgeClassifier,
)
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import scale
from sklearn.svm import SVC, LinearSVC, LinearSVR
from sklearn.tests.metadata_routing_common import (
ConsumingClassifier,
ConsumingRegressor,
_Registry,
check_recorded_metadata,
)
from sklearn.utils._mocking import CheckingClassifier
from sklearn.utils._testing import (
assert_allclose,
assert_allclose_dense_sparse,
ignore_warnings,
)
from sklearn.utils.fixes import COO_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS
diabetes = load_diabetes()
X_diabetes, y_diabetes = diabetes.data, diabetes.target
iris = load_iris()
X_iris, y_iris = iris.data, iris.target
X_multilabel, y_multilabel = make_multilabel_classification(
n_classes=3, random_state=42
)
X_binary, y_binary = make_classification(n_classes=2, random_state=42)
@pytest.mark.parametrize(
"cv", [3, StratifiedKFold(n_splits=3, shuffle=True, random_state=42)]
)
@pytest.mark.parametrize(
"final_estimator", [None, RandomForestClassifier(random_state=42)]
)
@pytest.mark.parametrize("passthrough", [False, True])
def test_stacking_classifier_iris(cv, final_estimator, passthrough):
# prescale the data to avoid convergence warning without using a pipeline
# for later assert
X_train, X_test, y_train, y_test = train_test_split(
scale(X_iris), y_iris, stratify=y_iris, random_state=42
)
estimators = [("lr", LogisticRegression()), ("svc", LinearSVC())]
clf = StackingClassifier(
estimators=estimators,
final_estimator=final_estimator,
cv=cv,
passthrough=passthrough,
)
clf.fit(X_train, y_train)
clf.predict(X_test)
clf.predict_proba(X_test)
assert clf.score(X_test, y_test) > 0.8
X_trans = clf.transform(X_test)
expected_column_count = 10 if passthrough else 6
assert X_trans.shape[1] == expected_column_count
if passthrough:
assert_allclose(X_test, X_trans[:, -4:])
clf.set_params(lr="drop")
clf.fit(X_train, y_train)
clf.predict(X_test)
clf.predict_proba(X_test)
if final_estimator is None:
# LogisticRegression has decision_function method
clf.decision_function(X_test)
X_trans = clf.transform(X_test)
expected_column_count_drop = 7 if passthrough else 3
assert X_trans.shape[1] == expected_column_count_drop
if passthrough:
assert_allclose(X_test, X_trans[:, -4:])
def test_stacking_classifier_drop_column_binary_classification():
# check that a column is dropped in binary classification
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, _ = train_test_split(
scale(X), y, stratify=y, random_state=42
)
# both classifiers implement 'predict_proba' and will both drop one column
estimators = [
("lr", LogisticRegression()),
("rf", RandomForestClassifier(random_state=42)),
]
clf = StackingClassifier(estimators=estimators, cv=3)
clf.fit(X_train, y_train)
X_trans = clf.transform(X_test)
assert X_trans.shape[1] == 2
# LinearSVC does not implement 'predict_proba' and will not drop one column
estimators = [("lr", LogisticRegression()), ("svc", LinearSVC())]
clf.set_params(estimators=estimators)
clf.fit(X_train, y_train)
X_trans = clf.transform(X_test)
assert X_trans.shape[1] == 2
def test_stacking_classifier_drop_estimator():
# prescale the data to avoid convergence warning without using a pipeline
# for later assert
X_train, X_test, y_train, _ = train_test_split(
scale(X_iris), y_iris, stratify=y_iris, random_state=42
)
estimators = [("lr", "drop"), ("svc", LinearSVC(random_state=0))]
rf = RandomForestClassifier(n_estimators=10, random_state=42)
clf = StackingClassifier(
estimators=[("svc", LinearSVC(random_state=0))],
final_estimator=rf,
cv=5,
)
clf_drop = StackingClassifier(estimators=estimators, final_estimator=rf, cv=5)
clf.fit(X_train, y_train)
clf_drop.fit(X_train, y_train)
assert_allclose(clf.predict(X_test), clf_drop.predict(X_test))
assert_allclose(clf.predict_proba(X_test), clf_drop.predict_proba(X_test))
assert_allclose(clf.transform(X_test), clf_drop.transform(X_test))
def test_stacking_regressor_drop_estimator():
# prescale the data to avoid convergence warning without using a pipeline
# for later assert
X_train, X_test, y_train, _ = train_test_split(
scale(X_diabetes), y_diabetes, random_state=42
)
estimators = [("lr", "drop"), ("svr", LinearSVR(random_state=0))]
rf = RandomForestRegressor(n_estimators=10, random_state=42)
reg = StackingRegressor(
estimators=[("svr", LinearSVR(random_state=0))],
final_estimator=rf,
cv=5,
)
reg_drop = StackingRegressor(estimators=estimators, final_estimator=rf, cv=5)
reg.fit(X_train, y_train)
reg_drop.fit(X_train, y_train)
assert_allclose(reg.predict(X_test), reg_drop.predict(X_test))
assert_allclose(reg.transform(X_test), reg_drop.transform(X_test))
@pytest.mark.parametrize("cv", [3, KFold(n_splits=3, shuffle=True, random_state=42)])
@pytest.mark.parametrize(
"final_estimator, predict_params",
[
(None, {}),
(RandomForestRegressor(random_state=42), {}),
(DummyRegressor(), {"return_std": True}),
],
)
@pytest.mark.parametrize("passthrough", [False, True])
def test_stacking_regressor_diabetes(cv, final_estimator, predict_params, passthrough):
# prescale the data to avoid convergence warning without using a pipeline
# for later assert
X_train, X_test, y_train, _ = train_test_split(
scale(X_diabetes), y_diabetes, random_state=42
)
estimators = [("lr", LinearRegression()), ("svr", LinearSVR())]
reg = StackingRegressor(
estimators=estimators,
final_estimator=final_estimator,
cv=cv,
passthrough=passthrough,
)
reg.fit(X_train, y_train)
result = reg.predict(X_test, **predict_params)
expected_result_length = 2 if predict_params else 1
if predict_params:
assert len(result) == expected_result_length
X_trans = reg.transform(X_test)
expected_column_count = 12 if passthrough else 2
assert X_trans.shape[1] == expected_column_count
if passthrough:
assert_allclose(X_test, X_trans[:, -10:])
reg.set_params(lr="drop")
reg.fit(X_train, y_train)
reg.predict(X_test)
X_trans = reg.transform(X_test)
expected_column_count_drop = 11 if passthrough else 1
assert X_trans.shape[1] == expected_column_count_drop
if passthrough:
assert_allclose(X_test, X_trans[:, -10:])
@pytest.mark.parametrize(
"sparse_container", COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
)
def test_stacking_regressor_sparse_passthrough(sparse_container):
# Check passthrough behavior on a sparse X matrix
X_train, X_test, y_train, _ = train_test_split(
sparse_container(scale(X_diabetes)), y_diabetes, random_state=42
)
estimators = [("lr", LinearRegression()), ("svr", LinearSVR())]
rf = RandomForestRegressor(n_estimators=10, random_state=42)
clf = StackingRegressor(
estimators=estimators, final_estimator=rf, cv=5, passthrough=True
)
clf.fit(X_train, y_train)
X_trans = clf.transform(X_test)
assert_allclose_dense_sparse(X_test, X_trans[:, -10:])
assert sparse.issparse(X_trans)
assert X_test.format == X_trans.format
@pytest.mark.parametrize(
"sparse_container", COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
)
def test_stacking_classifier_sparse_passthrough(sparse_container):
# Check passthrough behavior on a sparse X matrix
X_train, X_test, y_train, _ = train_test_split(
sparse_container(scale(X_iris)), y_iris, random_state=42
)
estimators = [("lr", LogisticRegression()), ("svc", LinearSVC())]
rf = RandomForestClassifier(n_estimators=10, random_state=42)
clf = StackingClassifier(
estimators=estimators, final_estimator=rf, cv=5, passthrough=True
)
clf.fit(X_train, y_train)
X_trans = clf.transform(X_test)
assert_allclose_dense_sparse(X_test, X_trans[:, -4:])
assert sparse.issparse(X_trans)
assert X_test.format == X_trans.format
def test_stacking_classifier_drop_binary_prob():
# check that classifier will drop one of the probability column for
# binary classification problem
# Select only the 2 first classes
X_, y_ = scale(X_iris[:100]), y_iris[:100]
estimators = [("lr", LogisticRegression()), ("rf", RandomForestClassifier())]
clf = StackingClassifier(estimators=estimators)
clf.fit(X_, y_)
X_meta = clf.transform(X_)
assert X_meta.shape[1] == 2
class NoWeightRegressor(RegressorMixin, BaseEstimator):
def fit(self, X, y):
self.reg = DummyRegressor()
return self.reg.fit(X, y)
def predict(self, X):
return np.ones(X.shape[0])
class NoWeightClassifier(ClassifierMixin, BaseEstimator):
def fit(self, X, y):
self.clf = DummyClassifier(strategy="stratified")
return self.clf.fit(X, y)
@pytest.mark.parametrize(
"y, params, type_err, msg_err",
[
(y_iris, {"estimators": []}, ValueError, "Invalid 'estimators' attribute,"),
(
y_iris,
{
"estimators": [
("lr", LogisticRegression()),
("svm", SVC(max_iter=50_000)),
],
"stack_method": "predict_proba",
},
ValueError,
"does not implement the method predict_proba",
),
(
y_iris,
{
"estimators": [
("lr", LogisticRegression()),
("cor", NoWeightClassifier()),
]
},
TypeError,
"does not support sample weight",
),
(
y_iris,
{
"estimators": [
("lr", LogisticRegression()),
("cor", LinearSVC(max_iter=50_000)),
],
"final_estimator": NoWeightClassifier(),
},
TypeError,
"does not support sample weight",
),
],
)
def test_stacking_classifier_error(y, params, type_err, msg_err):
with pytest.raises(type_err, match=msg_err):
clf = StackingClassifier(**params, cv=3)
clf.fit(scale(X_iris), y, sample_weight=np.ones(X_iris.shape[0]))
@pytest.mark.parametrize(
"y, params, type_err, msg_err",
[
(y_diabetes, {"estimators": []}, ValueError, "Invalid 'estimators' attribute,"),
(
y_diabetes,
{"estimators": [("lr", LinearRegression()), ("cor", NoWeightRegressor())]},
TypeError,
"does not support sample weight",
),
(
y_diabetes,
{
"estimators": [
("lr", LinearRegression()),
("cor", LinearSVR()),
],
"final_estimator": NoWeightRegressor(),
},
TypeError,
"does not support sample weight",
),
],
)
def test_stacking_regressor_error(y, params, type_err, msg_err):
with pytest.raises(type_err, match=msg_err):
reg = StackingRegressor(**params, cv=3)
reg.fit(scale(X_diabetes), y, sample_weight=np.ones(X_diabetes.shape[0]))
@pytest.mark.parametrize(
"estimator, X, y",
[
(
StackingClassifier(
estimators=[
("lr", LogisticRegression(random_state=0)),
("svm", LinearSVC(random_state=0)),
]
),
X_iris[:100],
y_iris[:100],
), # keep only classes 0 and 1
(
StackingRegressor(
estimators=[
("lr", LinearRegression()),
("svm", LinearSVR(random_state=0)),
]
),
X_diabetes,
y_diabetes,
),
],
ids=["StackingClassifier", "StackingRegressor"],
)
def test_stacking_randomness(estimator, X, y):
# checking that fixing the random state of the CV will lead to the same
# results
estimator_full = clone(estimator)
estimator_full.set_params(
cv=KFold(shuffle=True, random_state=np.random.RandomState(0))
)
estimator_drop = clone(estimator)
estimator_drop.set_params(lr="drop")
estimator_drop.set_params(
cv=KFold(shuffle=True, random_state=np.random.RandomState(0))
)
assert_allclose(
estimator_full.fit(X, y).transform(X)[:, 1:],
estimator_drop.fit(X, y).transform(X),
)
def test_stacking_classifier_stratify_default():
# check that we stratify the classes for the default CV
clf = StackingClassifier(
estimators=[
("lr", LogisticRegression(max_iter=10_000)),
("svm", LinearSVC(max_iter=10_000)),
]
)
# since iris is not shuffled, a simple k-fold would not contain the
# 3 classes during training
clf.fit(X_iris, y_iris)
@pytest.mark.parametrize(
"stacker, X, y",
[
(
StackingClassifier(
estimators=[
("lr", LogisticRegression()),
("svm", LinearSVC(random_state=42)),
],
final_estimator=LogisticRegression(),
cv=KFold(shuffle=True, random_state=42),
),
*load_breast_cancer(return_X_y=True),
),
(
StackingRegressor(
estimators=[
("lr", LinearRegression()),
("svm", LinearSVR(random_state=42)),
],
final_estimator=LinearRegression(),
cv=KFold(shuffle=True, random_state=42),
),
X_diabetes,
y_diabetes,
),
],
ids=["StackingClassifier", "StackingRegressor"],
)
def test_stacking_with_sample_weight(stacker, X, y):
# check that sample weights has an influence on the fitting
# note: ConvergenceWarning are catch since we are not worrying about the
# convergence here
n_half_samples = len(y) // 2
total_sample_weight = np.array(
[0.1] * n_half_samples + [0.9] * (len(y) - n_half_samples)
)
X_train, X_test, y_train, _, sample_weight_train, _ = train_test_split(
X, y, total_sample_weight, random_state=42
)
with ignore_warnings(category=ConvergenceWarning):
stacker.fit(X_train, y_train)
y_pred_no_weight = stacker.predict(X_test)
with ignore_warnings(category=ConvergenceWarning):
stacker.fit(X_train, y_train, sample_weight=np.ones(y_train.shape))
y_pred_unit_weight = stacker.predict(X_test)
assert_allclose(y_pred_no_weight, y_pred_unit_weight)
with ignore_warnings(category=ConvergenceWarning):
stacker.fit(X_train, y_train, sample_weight=sample_weight_train)
y_pred_biased = stacker.predict(X_test)
assert np.abs(y_pred_no_weight - y_pred_biased).sum() > 0
def test_stacking_classifier_sample_weight_fit_param():
# check sample_weight is passed to all invocations of fit
stacker = StackingClassifier(
estimators=[("lr", CheckingClassifier(expected_sample_weight=True))],
final_estimator=CheckingClassifier(expected_sample_weight=True),
)
stacker.fit(X_iris, y_iris, sample_weight=np.ones(X_iris.shape[0]))
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize(
"stacker, X, y",
[
(
StackingClassifier(
estimators=[
("lr", LogisticRegression()),
("svm", LinearSVC(random_state=42)),
],
final_estimator=LogisticRegression(),
),
*load_breast_cancer(return_X_y=True),
),
(
StackingRegressor(
estimators=[
("lr", LinearRegression()),
("svm", LinearSVR(random_state=42)),
],
final_estimator=LinearRegression(),
),
X_diabetes,
y_diabetes,
),
],
ids=["StackingClassifier", "StackingRegressor"],
)
def test_stacking_cv_influence(stacker, X, y):
# check that the stacking affects the fit of the final estimator but not
# the fit of the base estimators
# note: ConvergenceWarning are catch since we are not worrying about the
# convergence here
stacker_cv_3 = clone(stacker)
stacker_cv_5 = clone(stacker)
stacker_cv_3.set_params(cv=3)
stacker_cv_5.set_params(cv=5)
stacker_cv_3.fit(X, y)
stacker_cv_5.fit(X, y)
# the base estimators should be identical
for est_cv_3, est_cv_5 in zip(stacker_cv_3.estimators_, stacker_cv_5.estimators_):
assert_allclose(est_cv_3.coef_, est_cv_5.coef_)
# the final estimator should be different
with pytest.raises(AssertionError, match="Not equal"):
assert_allclose(
stacker_cv_3.final_estimator_.coef_, stacker_cv_5.final_estimator_.coef_
)
@pytest.mark.parametrize(
"Stacker, Estimator, stack_method, final_estimator, X, y",
[
(
StackingClassifier,
DummyClassifier,
"predict_proba",
LogisticRegression(random_state=42),
X_iris,
y_iris,
),
(
StackingRegressor,
DummyRegressor,
"predict",
LinearRegression(),
X_diabetes,
y_diabetes,
),
],
)
def test_stacking_prefit(Stacker, Estimator, stack_method, final_estimator, X, y):
"""Check the behaviour of stacking when `cv='prefit'`"""
X_train1, X_train2, y_train1, y_train2 = train_test_split(
X, y, random_state=42, test_size=0.5
)
estimators = [
("d0", Estimator().fit(X_train1, y_train1)),
("d1", Estimator().fit(X_train1, y_train1)),
]
# mock out fit and stack_method to be asserted later
for _, estimator in estimators:
estimator.fit = Mock(name="fit")
stack_func = getattr(estimator, stack_method)
predict_method_mocked = Mock(side_effect=stack_func)
# Mocking a method will not provide a `__name__` while Python methods
# do and we are using it in `_get_response_method`.
predict_method_mocked.__name__ = stack_method
setattr(estimator, stack_method, predict_method_mocked)
stacker = Stacker(
estimators=estimators, cv="prefit", final_estimator=final_estimator
)
stacker.fit(X_train2, y_train2)
assert stacker.estimators_ == [estimator for _, estimator in estimators]
# fit was not called again
assert all(estimator.fit.call_count == 0 for estimator in stacker.estimators_)
# stack method is called with the proper inputs
for estimator in stacker.estimators_:
stack_func_mock = getattr(estimator, stack_method)
stack_func_mock.assert_called_with(X_train2)
@pytest.mark.parametrize(
"stacker, X, y",
[
(
StackingClassifier(
estimators=[("lr", LogisticRegression()), ("svm", SVC())],
cv="prefit",
),
X_iris,
y_iris,
),
(
StackingRegressor(
estimators=[
("lr", LinearRegression()),
("svm", LinearSVR()),
],
cv="prefit",
),
X_diabetes,
y_diabetes,
),
],
)
def test_stacking_prefit_error(stacker, X, y):
# check that NotFittedError is raised
# if base estimators are not fitted when cv="prefit"
with pytest.raises(NotFittedError):
stacker.fit(X, y)
@pytest.mark.parametrize(
"make_dataset, Stacking, Estimator",
[
(make_classification, StackingClassifier, LogisticRegression),
(make_regression, StackingRegressor, LinearRegression),
],
)
def test_stacking_without_n_features_in(make_dataset, Stacking, Estimator):
# Stacking supports estimators without `n_features_in_`. Regression test
# for #17353
class MyEstimator(Estimator):
"""Estimator without n_features_in_"""
def fit(self, X, y):
super().fit(X, y)
del self.n_features_in_
X, y = make_dataset(random_state=0, n_samples=100)
stacker = Stacking(estimators=[("lr", MyEstimator())])
msg = f"{Stacking.__name__} object has no attribute n_features_in_"
with pytest.raises(AttributeError, match=msg):
stacker.n_features_in_
# Does not raise
stacker.fit(X, y)
msg = "'MyEstimator' object has no attribute 'n_features_in_'"
with pytest.raises(AttributeError, match=msg):
stacker.n_features_in_
@pytest.mark.parametrize(
"estimator",
[
# output a 2D array of the probability of the positive class for each output
MLPClassifier(random_state=42),
# output a list of 2D array containing the probability of each class
# for each output
RandomForestClassifier(random_state=42),
],
ids=["MLPClassifier", "RandomForestClassifier"],
)
def test_stacking_classifier_multilabel_predict_proba(estimator):
"""Check the behaviour for the multilabel classification case and the
`predict_proba` stacking method.
Estimators are not consistent with the output arrays and we need to ensure that
we handle all cases.
"""
X_train, X_test, y_train, y_test = train_test_split(
X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
)
n_outputs = 3
estimators = [("est", estimator)]
stacker = StackingClassifier(
estimators=estimators,
final_estimator=KNeighborsClassifier(),
stack_method="predict_proba",
).fit(X_train, y_train)
X_trans = stacker.transform(X_test)
assert X_trans.shape == (X_test.shape[0], n_outputs)
# we should not have any collinear classes and thus nothing should sum to 1
assert not any(np.isclose(X_trans.sum(axis=1), 1.0))
y_pred = stacker.predict(X_test)
assert y_pred.shape == y_test.shape
def test_stacking_classifier_multilabel_decision_function():
"""Check the behaviour for the multilabel classification case and the
`decision_function` stacking method. Only `RidgeClassifier` supports this
case.
"""
X_train, X_test, y_train, y_test = train_test_split(
X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
)
n_outputs = 3
estimators = [("est", RidgeClassifier())]
stacker = StackingClassifier(
estimators=estimators,
final_estimator=KNeighborsClassifier(),
stack_method="decision_function",
).fit(X_train, y_train)
X_trans = stacker.transform(X_test)
assert X_trans.shape == (X_test.shape[0], n_outputs)
y_pred = stacker.predict(X_test)
assert y_pred.shape == y_test.shape
@pytest.mark.parametrize("stack_method", ["auto", "predict"])
@pytest.mark.parametrize("passthrough", [False, True])
def test_stacking_classifier_multilabel_auto_predict(stack_method, passthrough):
"""Check the behaviour for the multilabel classification case for stack methods
supported for all estimators or automatically picked up.
"""
X_train, X_test, y_train, y_test = train_test_split(
X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
)
y_train_before_fit = y_train.copy()
n_outputs = 3
estimators = [
("mlp", MLPClassifier(random_state=42)),
("rf", RandomForestClassifier(random_state=42)),
("ridge", RidgeClassifier()),
]
final_estimator = KNeighborsClassifier()
clf = StackingClassifier(
estimators=estimators,
final_estimator=final_estimator,
passthrough=passthrough,
stack_method=stack_method,
).fit(X_train, y_train)
# make sure we don't change `y_train` inplace
assert_array_equal(y_train_before_fit, y_train)
y_pred = clf.predict(X_test)
assert y_pred.shape == y_test.shape
if stack_method == "auto":
expected_stack_methods = ["predict_proba", "predict_proba", "decision_function"]
else:
expected_stack_methods = ["predict"] * len(estimators)
assert clf.stack_method_ == expected_stack_methods
n_features_X_trans = n_outputs * len(estimators)
if passthrough:
n_features_X_trans += X_train.shape[1]
X_trans = clf.transform(X_test)
assert X_trans.shape == (X_test.shape[0], n_features_X_trans)
assert_array_equal(clf.classes_, [np.array([0, 1])] * n_outputs)
@pytest.mark.parametrize(
"stacker, feature_names, X, y, expected_names",
[
(
StackingClassifier(
estimators=[
("lr", LogisticRegression(random_state=0)),
("svm", LinearSVC(random_state=0)),
]
),
iris.feature_names,
X_iris,
y_iris,
[
"stackingclassifier_lr0",
"stackingclassifier_lr1",
"stackingclassifier_lr2",
"stackingclassifier_svm0",
"stackingclassifier_svm1",
"stackingclassifier_svm2",
],
),
(
StackingClassifier(
estimators=[
("lr", LogisticRegression(random_state=0)),
("other", "drop"),
("svm", LinearSVC(random_state=0)),
]
),
iris.feature_names,
X_iris[:100],
y_iris[:100], # keep only classes 0 and 1
[
"stackingclassifier_lr",
"stackingclassifier_svm",
],
),
(
StackingRegressor(
estimators=[
("lr", LinearRegression()),
("svm", LinearSVR(random_state=0)),
]
),
diabetes.feature_names,
X_diabetes,
y_diabetes,
[
"stackingregressor_lr",
"stackingregressor_svm",
],
),
],
ids=[
"StackingClassifier_multiclass",
"StackingClassifier_binary",
"StackingRegressor",
],
)
@pytest.mark.parametrize("passthrough", [True, False])
def test_get_feature_names_out(
stacker, feature_names, X, y, expected_names, passthrough
):
"""Check get_feature_names_out works for stacking."""
stacker.set_params(passthrough=passthrough)
stacker.fit(scale(X), y)
if passthrough:
expected_names = np.concatenate((expected_names, feature_names))
names_out = stacker.get_feature_names_out(feature_names)
assert_array_equal(names_out, expected_names)
def test_stacking_classifier_base_regressor():
"""Check that a regressor can be used as the first layer in `StackingClassifier`."""
X_train, X_test, y_train, y_test = train_test_split(
scale(X_iris), y_iris, stratify=y_iris, random_state=42
)
clf = StackingClassifier(estimators=[("ridge", Ridge())])
clf.fit(X_train, y_train)
clf.predict(X_test)
clf.predict_proba(X_test)
assert clf.score(X_test, y_test) > 0.8
def test_stacking_final_estimator_attribute_error():
"""Check that we raise the proper AttributeError when the final estimator
does not implement the `decision_function` method, which is decorated with
`available_if`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28108
"""
X, y = make_classification(random_state=42)
estimators = [
("lr", LogisticRegression()),
("rf", RandomForestClassifier(n_estimators=2, random_state=42)),
]
# RandomForestClassifier does not implement 'decision_function' and should raise
# an AttributeError
final_estimator = RandomForestClassifier(n_estimators=2, random_state=42)
clf = StackingClassifier(
estimators=estimators, final_estimator=final_estimator, cv=3
)
outer_msg = "This 'StackingClassifier' has no attribute 'decision_function'"
inner_msg = "'RandomForestClassifier' object has no attribute 'decision_function'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
clf.fit(X, y).decision_function(X)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)
# Metadata Routing Tests
# ======================
@pytest.mark.parametrize(
"Estimator, Child",
[
(StackingClassifier, ConsumingClassifier),
(StackingRegressor, ConsumingRegressor),
],
)
def test_routing_passed_metadata_not_supported(Estimator, Child):
"""Test that the right error message is raised when metadata is passed while
not supported when `enable_metadata_routing=False`."""
with pytest.raises(
ValueError, match="is only supported if enable_metadata_routing=True"
):
Estimator(["clf", Child()]).fit(
X_iris, y_iris, sample_weight=[1, 1, 1, 1, 1], metadata="a"
)
@pytest.mark.parametrize(
"Estimator, Child",
[
(StackingClassifier, ConsumingClassifier),
(StackingRegressor, ConsumingRegressor),
],
)
@config_context(enable_metadata_routing=True)
def test_get_metadata_routing_without_fit(Estimator, Child):
# Test that metadata_routing() doesn't raise when called before fit.
est = Estimator([("sub_est", Child())])
est.get_metadata_routing()
@pytest.mark.parametrize(
"Estimator, Child",
[
(StackingClassifier, ConsumingClassifier),
(StackingRegressor, ConsumingRegressor),
],
)
@pytest.mark.parametrize(
"prop, prop_value", [("sample_weight", np.ones(X_iris.shape[0])), ("metadata", "a")]
)
@config_context(enable_metadata_routing=True)
def test_metadata_routing_for_stacking_estimators(Estimator, Child, prop, prop_value):
"""Test that metadata is routed correctly for Stacking*."""
est = Estimator(
[
(
"sub_est1",
Child(registry=_Registry()).set_fit_request(**{prop: True}),
),
(
"sub_est2",
Child(registry=_Registry()).set_fit_request(**{prop: True}),
),
],
final_estimator=Child(registry=_Registry()).set_predict_request(**{prop: True}),
)
est.fit(X_iris, y_iris, **{prop: prop_value})
est.fit_transform(X_iris, y_iris, **{prop: prop_value})
est.predict(X_iris, **{prop: prop_value})
for estimator in est.estimators:
# access sub-estimator in (name, est) with estimator[1]:
registry = estimator[1].registry
assert len(registry)
for sub_est in registry:
check_recorded_metadata(
obj=sub_est,
method="fit",
parent="fit",
split_params=(prop),
**{prop: prop_value},
)
# access final_estimator:
registry = est.final_estimator_.registry
assert len(registry)
check_recorded_metadata(
obj=registry[-1],
method="predict",
parent="predict",
split_params=(prop),
**{prop: prop_value},
)
@pytest.mark.parametrize(
"Estimator, Child",
[
(StackingClassifier, ConsumingClassifier),
(StackingRegressor, ConsumingRegressor),
],
)
@config_context(enable_metadata_routing=True)
def test_metadata_routing_error_for_stacking_estimators(Estimator, Child):
"""Test that the right error is raised when metadata is not requested."""
sample_weight, metadata = np.ones(X_iris.shape[0]), "a"
est = Estimator([("sub_est", Child())])
error_message = (
"[sample_weight, metadata] are passed but are not explicitly set as requested"
f" or not requested for {Child.__name__}.fit"
)
with pytest.raises(ValueError, match=re.escape(error_message)):
est.fit(X_iris, y_iris, sample_weight=sample_weight, metadata=metadata)
# End of Metadata Routing Tests
# =============================
|