File size: 28,108 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
"""Gaussian processes regression."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from numbers import Integral, Real
from operator import itemgetter
import numpy as np
import scipy.optimize
from scipy.linalg import cho_solve, cholesky, solve_triangular
from ..base import BaseEstimator, MultiOutputMixin, RegressorMixin, _fit_context, clone
from ..preprocessing._data import _handle_zeros_in_scale
from ..utils import check_random_state
from ..utils._param_validation import Interval, StrOptions
from ..utils.optimize import _check_optimize_result
from ..utils.validation import validate_data
from .kernels import RBF, Kernel
from .kernels import ConstantKernel as C
GPR_CHOLESKY_LOWER = True
class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
"""Gaussian process regression (GPR).
The implementation is based on Algorithm 2.1 of [RW2006]_.
In addition to standard scikit-learn estimator API,
:class:`GaussianProcessRegressor`:
* allows prediction without prior fitting (based on the GP prior)
* provides an additional method `sample_y(X)`, which evaluates samples
drawn from the GPR (prior or posterior) at given inputs
* exposes a method `log_marginal_likelihood(theta)`, which can be used
externally for other ways of selecting hyperparameters, e.g., via
Markov chain Monte Carlo.
To learn the difference between a point-estimate approach vs. a more
Bayesian modelling approach, refer to the example entitled
:ref:`sphx_glr_auto_examples_gaussian_process_plot_compare_gpr_krr.py`.
Read more in the :ref:`User Guide <gaussian_process>`.
.. versionadded:: 0.18
Parameters
----------
kernel : kernel instance, default=None
The kernel specifying the covariance function of the GP. If None is
passed, the kernel ``ConstantKernel(1.0, constant_value_bounds="fixed")
* RBF(1.0, length_scale_bounds="fixed")`` is used as default. Note that
the kernel hyperparameters are optimized during fitting unless the
bounds are marked as "fixed".
alpha : float or ndarray of shape (n_samples,), default=1e-10
Value added to the diagonal of the kernel matrix during fitting.
This can prevent a potential numerical issue during fitting, by
ensuring that the calculated values form a positive definite matrix.
It can also be interpreted as the variance of additional Gaussian
measurement noise on the training observations. Note that this is
different from using a `WhiteKernel`. If an array is passed, it must
have the same number of entries as the data used for fitting and is
used as datapoint-dependent noise level. Allowing to specify the
noise level directly as a parameter is mainly for convenience and
for consistency with :class:`~sklearn.linear_model.Ridge`.
optimizer : "fmin_l_bfgs_b", callable or None, default="fmin_l_bfgs_b"
Can either be one of the internally supported optimizers for optimizing
the kernel's parameters, specified by a string, or an externally
defined optimizer passed as a callable. If a callable is passed, it
must have the signature::
def optimizer(obj_func, initial_theta, bounds):
# * 'obj_func': the objective function to be minimized, which
# takes the hyperparameters theta as a parameter and an
# optional flag eval_gradient, which determines if the
# gradient is returned additionally to the function value
# * 'initial_theta': the initial value for theta, which can be
# used by local optimizers
# * 'bounds': the bounds on the values of theta
....
# Returned are the best found hyperparameters theta and
# the corresponding value of the target function.
return theta_opt, func_min
Per default, the L-BFGS-B algorithm from `scipy.optimize.minimize`
is used. If None is passed, the kernel's parameters are kept fixed.
Available internal optimizers are: `{'fmin_l_bfgs_b'}`.
n_restarts_optimizer : int, default=0
The number of restarts of the optimizer for finding the kernel's
parameters which maximize the log-marginal likelihood. The first run
of the optimizer is performed from the kernel's initial parameters,
the remaining ones (if any) from thetas sampled log-uniform randomly
from the space of allowed theta-values. If greater than 0, all bounds
must be finite. Note that `n_restarts_optimizer == 0` implies that one
run is performed.
normalize_y : bool, default=False
Whether or not to normalize the target values `y` by removing the mean
and scaling to unit-variance. This is recommended for cases where
zero-mean, unit-variance priors are used. Note that, in this
implementation, the normalisation is reversed before the GP predictions
are reported.
.. versionchanged:: 0.23
copy_X_train : bool, default=True
If True, a persistent copy of the training data is stored in the
object. Otherwise, just a reference to the training data is stored,
which might cause predictions to change if the data is modified
externally.
n_targets : int, default=None
The number of dimensions of the target values. Used to decide the number
of outputs when sampling from the prior distributions (i.e. calling
:meth:`sample_y` before :meth:`fit`). This parameter is ignored once
:meth:`fit` has been called.
.. versionadded:: 1.3
random_state : int, RandomState instance or None, default=None
Determines random number generation used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
X_train_ : array-like of shape (n_samples, n_features) or list of object
Feature vectors or other representations of training data (also
required for prediction).
y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values in training data (also required for prediction).
kernel_ : kernel instance
The kernel used for prediction. The structure of the kernel is the
same as the one passed as parameter but with optimized hyperparameters.
L_ : array-like of shape (n_samples, n_samples)
Lower-triangular Cholesky decomposition of the kernel in ``X_train_``.
alpha_ : array-like of shape (n_samples,)
Dual coefficients of training data points in kernel space.
log_marginal_likelihood_value_ : float
The log-marginal-likelihood of ``self.kernel_.theta``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
GaussianProcessClassifier : Gaussian process classification (GPC)
based on Laplace approximation.
References
----------
.. [RW2006] `Carl E. Rasmussen and Christopher K.I. Williams,
"Gaussian Processes for Machine Learning",
MIT Press 2006 <https://www.gaussianprocess.org/gpml/chapters/RW.pdf>`_
Examples
--------
>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = DotProduct() + WhiteKernel()
>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.3680...
>>> gpr.predict(X[:2,:], return_std=True)
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))
"""
_parameter_constraints: dict = {
"kernel": [None, Kernel],
"alpha": [Interval(Real, 0, None, closed="left"), np.ndarray],
"optimizer": [StrOptions({"fmin_l_bfgs_b"}), callable, None],
"n_restarts_optimizer": [Interval(Integral, 0, None, closed="left")],
"normalize_y": ["boolean"],
"copy_X_train": ["boolean"],
"n_targets": [Interval(Integral, 1, None, closed="left"), None],
"random_state": ["random_state"],
}
def __init__(
self,
kernel=None,
*,
alpha=1e-10,
optimizer="fmin_l_bfgs_b",
n_restarts_optimizer=0,
normalize_y=False,
copy_X_train=True,
n_targets=None,
random_state=None,
):
self.kernel = kernel
self.alpha = alpha
self.optimizer = optimizer
self.n_restarts_optimizer = n_restarts_optimizer
self.normalize_y = normalize_y
self.copy_X_train = copy_X_train
self.n_targets = n_targets
self.random_state = random_state
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y):
"""Fit Gaussian process regression model.
Parameters
----------
X : array-like of shape (n_samples, n_features) or list of object
Feature vectors or other representations of training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
Returns
-------
self : object
GaussianProcessRegressor class instance.
"""
if self.kernel is None: # Use an RBF kernel as default
self.kernel_ = C(1.0, constant_value_bounds="fixed") * RBF(
1.0, length_scale_bounds="fixed"
)
else:
self.kernel_ = clone(self.kernel)
self._rng = check_random_state(self.random_state)
if self.kernel_.requires_vector_input:
dtype, ensure_2d = "numeric", True
else:
dtype, ensure_2d = None, False
X, y = validate_data(
self,
X,
y,
multi_output=True,
y_numeric=True,
ensure_2d=ensure_2d,
dtype=dtype,
)
n_targets_seen = y.shape[1] if y.ndim > 1 else 1
if self.n_targets is not None and n_targets_seen != self.n_targets:
raise ValueError(
"The number of targets seen in `y` is different from the parameter "
f"`n_targets`. Got {n_targets_seen} != {self.n_targets}."
)
# Normalize target value
if self.normalize_y:
self._y_train_mean = np.mean(y, axis=0)
self._y_train_std = _handle_zeros_in_scale(np.std(y, axis=0), copy=False)
# Remove mean and make unit variance
y = (y - self._y_train_mean) / self._y_train_std
else:
shape_y_stats = (y.shape[1],) if y.ndim == 2 else 1
self._y_train_mean = np.zeros(shape=shape_y_stats)
self._y_train_std = np.ones(shape=shape_y_stats)
if np.iterable(self.alpha) and self.alpha.shape[0] != y.shape[0]:
if self.alpha.shape[0] == 1:
self.alpha = self.alpha[0]
else:
raise ValueError(
"alpha must be a scalar or an array with same number of "
f"entries as y. ({self.alpha.shape[0]} != {y.shape[0]})"
)
self.X_train_ = np.copy(X) if self.copy_X_train else X
self.y_train_ = np.copy(y) if self.copy_X_train else y
if self.optimizer is not None and self.kernel_.n_dims > 0:
# Choose hyperparameters based on maximizing the log-marginal
# likelihood (potentially starting from several initial values)
def obj_func(theta, eval_gradient=True):
if eval_gradient:
lml, grad = self.log_marginal_likelihood(
theta, eval_gradient=True, clone_kernel=False
)
return -lml, -grad
else:
return -self.log_marginal_likelihood(theta, clone_kernel=False)
# First optimize starting from theta specified in kernel
optima = [
(
self._constrained_optimization(
obj_func, self.kernel_.theta, self.kernel_.bounds
)
)
]
# Additional runs are performed from log-uniform chosen initial
# theta
if self.n_restarts_optimizer > 0:
if not np.isfinite(self.kernel_.bounds).all():
raise ValueError(
"Multiple optimizer restarts (n_restarts_optimizer>0) "
"requires that all bounds are finite."
)
bounds = self.kernel_.bounds
for iteration in range(self.n_restarts_optimizer):
theta_initial = self._rng.uniform(bounds[:, 0], bounds[:, 1])
optima.append(
self._constrained_optimization(obj_func, theta_initial, bounds)
)
# Select result from run with minimal (negative) log-marginal
# likelihood
lml_values = list(map(itemgetter(1), optima))
self.kernel_.theta = optima[np.argmin(lml_values)][0]
self.kernel_._check_bounds_params()
self.log_marginal_likelihood_value_ = -np.min(lml_values)
else:
self.log_marginal_likelihood_value_ = self.log_marginal_likelihood(
self.kernel_.theta, clone_kernel=False
)
# Precompute quantities required for predictions which are independent
# of actual query points
# Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)
K = self.kernel_(self.X_train_)
K[np.diag_indices_from(K)] += self.alpha
try:
self.L_ = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)
except np.linalg.LinAlgError as exc:
exc.args = (
(
f"The kernel, {self.kernel_}, is not returning a positive "
"definite matrix. Try gradually increasing the 'alpha' "
"parameter of your GaussianProcessRegressor estimator."
),
) + exc.args
raise
# Alg 2.1, page 19, line 3 -> alpha = L^T \ (L \ y)
self.alpha_ = cho_solve(
(self.L_, GPR_CHOLESKY_LOWER),
self.y_train_,
check_finite=False,
)
return self
def predict(self, X, return_std=False, return_cov=False):
"""Predict using the Gaussian process regression model.
We can also predict based on an unfitted model by using the GP prior.
In addition to the mean of the predictive distribution, optionally also
returns its standard deviation (`return_std=True`) or covariance
(`return_cov=True`). Note that at most one of the two can be requested.
Parameters
----------
X : array-like of shape (n_samples, n_features) or list of object
Query points where the GP is evaluated.
return_std : bool, default=False
If True, the standard-deviation of the predictive distribution at
the query points is returned along with the mean.
return_cov : bool, default=False
If True, the covariance of the joint predictive distribution at
the query points is returned along with the mean.
Returns
-------
y_mean : ndarray of shape (n_samples,) or (n_samples, n_targets)
Mean of predictive distribution at query points.
y_std : ndarray of shape (n_samples,) or (n_samples, n_targets), optional
Standard deviation of predictive distribution at query points.
Only returned when `return_std` is True.
y_cov : ndarray of shape (n_samples, n_samples) or \
(n_samples, n_samples, n_targets), optional
Covariance of joint predictive distribution at query points.
Only returned when `return_cov` is True.
"""
if return_std and return_cov:
raise RuntimeError(
"At most one of return_std or return_cov can be requested."
)
if self.kernel is None or self.kernel.requires_vector_input:
dtype, ensure_2d = "numeric", True
else:
dtype, ensure_2d = None, False
X = validate_data(self, X, ensure_2d=ensure_2d, dtype=dtype, reset=False)
if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior
if self.kernel is None:
kernel = C(1.0, constant_value_bounds="fixed") * RBF(
1.0, length_scale_bounds="fixed"
)
else:
kernel = self.kernel
n_targets = self.n_targets if self.n_targets is not None else 1
y_mean = np.zeros(shape=(X.shape[0], n_targets)).squeeze()
if return_cov:
y_cov = kernel(X)
if n_targets > 1:
y_cov = np.repeat(
np.expand_dims(y_cov, -1), repeats=n_targets, axis=-1
)
return y_mean, y_cov
elif return_std:
y_var = kernel.diag(X)
if n_targets > 1:
y_var = np.repeat(
np.expand_dims(y_var, -1), repeats=n_targets, axis=-1
)
return y_mean, np.sqrt(y_var)
else:
return y_mean
else: # Predict based on GP posterior
# Alg 2.1, page 19, line 4 -> f*_bar = K(X_test, X_train) . alpha
K_trans = self.kernel_(X, self.X_train_)
y_mean = K_trans @ self.alpha_
# undo normalisation
y_mean = self._y_train_std * y_mean + self._y_train_mean
# if y_mean has shape (n_samples, 1), reshape to (n_samples,)
if y_mean.ndim > 1 and y_mean.shape[1] == 1:
y_mean = np.squeeze(y_mean, axis=1)
# Alg 2.1, page 19, line 5 -> v = L \ K(X_test, X_train)^T
V = solve_triangular(
self.L_, K_trans.T, lower=GPR_CHOLESKY_LOWER, check_finite=False
)
if return_cov:
# Alg 2.1, page 19, line 6 -> K(X_test, X_test) - v^T. v
y_cov = self.kernel_(X) - V.T @ V
# undo normalisation
y_cov = np.outer(y_cov, self._y_train_std**2).reshape(*y_cov.shape, -1)
# if y_cov has shape (n_samples, n_samples, 1), reshape to
# (n_samples, n_samples)
if y_cov.shape[2] == 1:
y_cov = np.squeeze(y_cov, axis=2)
return y_mean, y_cov
elif return_std:
# Compute variance of predictive distribution
# Use einsum to avoid explicitly forming the large matrix
# V^T @ V just to extract its diagonal afterward.
y_var = self.kernel_.diag(X).copy()
y_var -= np.einsum("ij,ji->i", V.T, V)
# Check if any of the variances is negative because of
# numerical issues. If yes: set the variance to 0.
y_var_negative = y_var < 0
if np.any(y_var_negative):
warnings.warn(
"Predicted variances smaller than 0. "
"Setting those variances to 0."
)
y_var[y_var_negative] = 0.0
# undo normalisation
y_var = np.outer(y_var, self._y_train_std**2).reshape(*y_var.shape, -1)
# if y_var has shape (n_samples, 1), reshape to (n_samples,)
if y_var.shape[1] == 1:
y_var = np.squeeze(y_var, axis=1)
return y_mean, np.sqrt(y_var)
else:
return y_mean
def sample_y(self, X, n_samples=1, random_state=0):
"""Draw samples from Gaussian process and evaluate at X.
Parameters
----------
X : array-like of shape (n_samples_X, n_features) or list of object
Query points where the GP is evaluated.
n_samples : int, default=1
Number of samples drawn from the Gaussian process per query point.
random_state : int, RandomState instance or None, default=0
Determines random number generation to randomly draw samples.
Pass an int for reproducible results across multiple function
calls.
See :term:`Glossary <random_state>`.
Returns
-------
y_samples : ndarray of shape (n_samples_X, n_samples), or \
(n_samples_X, n_targets, n_samples)
Values of n_samples samples drawn from Gaussian process and
evaluated at query points.
"""
rng = check_random_state(random_state)
y_mean, y_cov = self.predict(X, return_cov=True)
if y_mean.ndim == 1:
y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
else:
y_samples = [
rng.multivariate_normal(
y_mean[:, target], y_cov[..., target], n_samples
).T[:, np.newaxis]
for target in range(y_mean.shape[1])
]
y_samples = np.hstack(y_samples)
return y_samples
def log_marginal_likelihood(
self, theta=None, eval_gradient=False, clone_kernel=True
):
"""Return log-marginal likelihood of theta for training data.
Parameters
----------
theta : array-like of shape (n_kernel_params,) default=None
Kernel hyperparameters for which the log-marginal likelihood is
evaluated. If None, the precomputed log_marginal_likelihood
of ``self.kernel_.theta`` is returned.
eval_gradient : bool, default=False
If True, the gradient of the log-marginal likelihood with respect
to the kernel hyperparameters at position theta is returned
additionally. If True, theta must not be None.
clone_kernel : bool, default=True
If True, the kernel attribute is copied. If False, the kernel
attribute is modified, but may result in a performance improvement.
Returns
-------
log_likelihood : float
Log-marginal likelihood of theta for training data.
log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
Gradient of the log-marginal likelihood with respect to the kernel
hyperparameters at position theta.
Only returned when eval_gradient is True.
"""
if theta is None:
if eval_gradient:
raise ValueError("Gradient can only be evaluated for theta!=None")
return self.log_marginal_likelihood_value_
if clone_kernel:
kernel = self.kernel_.clone_with_theta(theta)
else:
kernel = self.kernel_
kernel.theta = theta
if eval_gradient:
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
else:
K = kernel(self.X_train_)
# Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)
K[np.diag_indices_from(K)] += self.alpha
try:
L = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)
except np.linalg.LinAlgError:
return (-np.inf, np.zeros_like(theta)) if eval_gradient else -np.inf
# Support multi-dimensional output of self.y_train_
y_train = self.y_train_
if y_train.ndim == 1:
y_train = y_train[:, np.newaxis]
# Alg 2.1, page 19, line 3 -> alpha = L^T \ (L \ y)
alpha = cho_solve((L, GPR_CHOLESKY_LOWER), y_train, check_finite=False)
# Alg 2.1, page 19, line 7
# -0.5 . y^T . alpha - sum(log(diag(L))) - n_samples / 2 log(2*pi)
# y is originally thought to be a (1, n_samples) row vector. However,
# in multioutputs, y is of shape (n_samples, 2) and we need to compute
# y^T . alpha for each output, independently using einsum. Thus, it
# is equivalent to:
# for output_idx in range(n_outputs):
# log_likelihood_dims[output_idx] = (
# y_train[:, [output_idx]] @ alpha[:, [output_idx]]
# )
log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha)
log_likelihood_dims -= np.log(np.diag(L)).sum()
log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)
# the log likehood is sum-up across the outputs
log_likelihood = log_likelihood_dims.sum(axis=-1)
if eval_gradient:
# Eq. 5.9, p. 114, and footnote 5 in p. 114
# 0.5 * trace((alpha . alpha^T - K^-1) . K_gradient)
# alpha is supposed to be a vector of (n_samples,) elements. With
# multioutputs, alpha is a matrix of size (n_samples, n_outputs).
# Therefore, we want to construct a matrix of
# (n_samples, n_samples, n_outputs) equivalent to
# for output_idx in range(n_outputs):
# output_alpha = alpha[:, [output_idx]]
# inner_term[..., output_idx] = output_alpha @ output_alpha.T
inner_term = np.einsum("ik,jk->ijk", alpha, alpha)
# compute K^-1 of shape (n_samples, n_samples)
K_inv = cho_solve(
(L, GPR_CHOLESKY_LOWER), np.eye(K.shape[0]), check_finite=False
)
# create a new axis to use broadcasting between inner_term and
# K_inv
inner_term -= K_inv[..., np.newaxis]
# Since we are interested about the trace of
# inner_term @ K_gradient, we don't explicitly compute the
# matrix-by-matrix operation and instead use an einsum. Therefore
# it is equivalent to:
# for param_idx in range(n_kernel_params):
# for output_idx in range(n_output):
# log_likehood_gradient_dims[param_idx, output_idx] = (
# inner_term[..., output_idx] @
# K_gradient[..., param_idx]
# )
log_likelihood_gradient_dims = 0.5 * np.einsum(
"ijl,jik->kl", inner_term, K_gradient
)
# the log likehood gradient is the sum-up across the outputs
log_likelihood_gradient = log_likelihood_gradient_dims.sum(axis=-1)
if eval_gradient:
return log_likelihood, log_likelihood_gradient
else:
return log_likelihood
def _constrained_optimization(self, obj_func, initial_theta, bounds):
if self.optimizer == "fmin_l_bfgs_b":
opt_res = scipy.optimize.minimize(
obj_func,
initial_theta,
method="L-BFGS-B",
jac=True,
bounds=bounds,
)
_check_optimize_result("lbfgs", opt_res)
theta_opt, func_min = opt_res.x, opt_res.fun
elif callable(self.optimizer):
theta_opt, func_min = self.optimizer(obj_func, initial_theta, bounds=bounds)
else:
raise ValueError(f"Unknown optimizer {self.optimizer}.")
return theta_opt, func_min
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.requires_fit = False
return tags
|