File size: 85,293 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
"""A set of kernels that can be combined by operators and used in Gaussian processes."""

# Kernels for Gaussian process regression and classification.
#
# The kernels in this module allow kernel-engineering, i.e., they can be
# combined via the "+" and "*" operators or be exponentiated with a scalar
# via "**". These sum and product expressions can also contain scalar values,
# which are automatically converted to a constant kernel.
#
# All kernels allow (analytic) gradient-based hyperparameter optimization.
# The space of hyperparameters can be specified by giving lower und upper
# boundaries for the value of each hyperparameter (the search space is thus
# rectangular). Instead of specifying bounds, hyperparameters can also be
# declared to be "fixed", which causes these hyperparameters to be excluded from
# optimization.


# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

# Note: this module is strongly inspired by the kernel module of the george
#       package.

import math
import warnings
from abc import ABCMeta, abstractmethod
from collections import namedtuple
from inspect import signature

import numpy as np
from scipy.spatial.distance import cdist, pdist, squareform
from scipy.special import gamma, kv

from ..base import clone
from ..exceptions import ConvergenceWarning
from ..metrics.pairwise import pairwise_kernels
from ..utils.validation import _num_samples


def _check_length_scale(X, length_scale):
    length_scale = np.squeeze(length_scale).astype(float)
    if np.ndim(length_scale) > 1:
        raise ValueError("length_scale cannot be of dimension greater than 1")
    if np.ndim(length_scale) == 1 and X.shape[1] != length_scale.shape[0]:
        raise ValueError(
            "Anisotropic kernel must have the same number of "
            "dimensions as data (%d!=%d)" % (length_scale.shape[0], X.shape[1])
        )
    return length_scale


class Hyperparameter(
    namedtuple(
        "Hyperparameter", ("name", "value_type", "bounds", "n_elements", "fixed")
    )
):
    """A kernel hyperparameter's specification in form of a namedtuple.

    .. versionadded:: 0.18

    Attributes
    ----------
    name : str
        The name of the hyperparameter. Note that a kernel using a
        hyperparameter with name "x" must have the attributes self.x and
        self.x_bounds

    value_type : str
        The type of the hyperparameter. Currently, only "numeric"
        hyperparameters are supported.

    bounds : pair of floats >= 0 or "fixed"
        The lower and upper bound on the parameter. If n_elements>1, a pair
        of 1d array with n_elements each may be given alternatively. If
        the string "fixed" is passed as bounds, the hyperparameter's value
        cannot be changed.

    n_elements : int, default=1
        The number of elements of the hyperparameter value. Defaults to 1,
        which corresponds to a scalar hyperparameter. n_elements > 1
        corresponds to a hyperparameter which is vector-valued,
        such as, e.g., anisotropic length-scales.

    fixed : bool, default=None
        Whether the value of this hyperparameter is fixed, i.e., cannot be
        changed during hyperparameter tuning. If None is passed, the "fixed" is
        derived based on the given bounds.

    Examples
    --------
    >>> from sklearn.gaussian_process.kernels import ConstantKernel
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import Hyperparameter
    >>> X, y = make_friedman2(n_samples=50, noise=0, random_state=0)
    >>> kernel = ConstantKernel(constant_value=1.0,
    ...    constant_value_bounds=(0.0, 10.0))

    We can access each hyperparameter:

    >>> for hyperparameter in kernel.hyperparameters:
    ...    print(hyperparameter)
    Hyperparameter(name='constant_value', value_type='numeric',
    bounds=array([[ 0., 10.]]), n_elements=1, fixed=False)

    >>> params = kernel.get_params()
    >>> for key in sorted(params): print(f"{key} : {params[key]}")
    constant_value : 1.0
    constant_value_bounds : (0.0, 10.0)
    """

    # A raw namedtuple is very memory efficient as it packs the attributes
    # in a struct to get rid of the __dict__ of attributes in particular it
    # does not copy the string for the keys on each instance.
    # By deriving a namedtuple class just to introduce the __init__ method we
    # would also reintroduce the __dict__ on the instance. By telling the
    # Python interpreter that this subclass uses static __slots__ instead of
    # dynamic attributes. Furthermore we don't need any additional slot in the
    # subclass so we set __slots__ to the empty tuple.
    __slots__ = ()

    def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None):
        if not isinstance(bounds, str) or bounds != "fixed":
            bounds = np.atleast_2d(bounds)
            if n_elements > 1:  # vector-valued parameter
                if bounds.shape[0] == 1:
                    bounds = np.repeat(bounds, n_elements, 0)
                elif bounds.shape[0] != n_elements:
                    raise ValueError(
                        "Bounds on %s should have either 1 or "
                        "%d dimensions. Given are %d"
                        % (name, n_elements, bounds.shape[0])
                    )

        if fixed is None:
            fixed = isinstance(bounds, str) and bounds == "fixed"
        return super(Hyperparameter, cls).__new__(
            cls, name, value_type, bounds, n_elements, fixed
        )

    # This is mainly a testing utility to check that two hyperparameters
    # are equal.
    def __eq__(self, other):
        return (
            self.name == other.name
            and self.value_type == other.value_type
            and np.all(self.bounds == other.bounds)
            and self.n_elements == other.n_elements
            and self.fixed == other.fixed
        )


class Kernel(metaclass=ABCMeta):
    """Base class for all kernels.

    .. versionadded:: 0.18

    Examples
    --------
    >>> from sklearn.gaussian_process.kernels import Kernel, RBF
    >>> import numpy as np
    >>> class CustomKernel(Kernel):
    ...     def __init__(self, length_scale=1.0):
    ...         self.length_scale = length_scale
    ...     def __call__(self, X, Y=None):
    ...         if Y is None:
    ...             Y = X
    ...         return np.inner(X, X if Y is None else Y) ** 2
    ...     def diag(self, X):
    ...         return np.ones(X.shape[0])
    ...     def is_stationary(self):
    ...         return True
    >>> kernel = CustomKernel(length_scale=2.0)
    >>> X = np.array([[1, 2], [3, 4]])
    >>> print(kernel(X))
    [[ 25 121]
     [121 625]]
    """

    def get_params(self, deep=True):
        """Get parameters of this kernel.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        params = dict()

        # introspect the constructor arguments to find the model parameters
        # to represent
        cls = self.__class__
        init = getattr(cls.__init__, "deprecated_original", cls.__init__)
        init_sign = signature(init)
        args, varargs = [], []
        for parameter in init_sign.parameters.values():
            if parameter.kind != parameter.VAR_KEYWORD and parameter.name != "self":
                args.append(parameter.name)
            if parameter.kind == parameter.VAR_POSITIONAL:
                varargs.append(parameter.name)

        if len(varargs) != 0:
            raise RuntimeError(
                "scikit-learn kernels should always "
                "specify their parameters in the signature"
                " of their __init__ (no varargs)."
                " %s doesn't follow this convention." % (cls,)
            )
        for arg in args:
            params[arg] = getattr(self, arg)

        return params

    def set_params(self, **params):
        """Set the parameters of this kernel.

        The method works on simple kernels as well as on nested kernels.
        The latter have parameters of the form ``<component>__<parameter>``
        so that it's possible to update each component of a nested object.

        Returns
        -------
        self
        """
        if not params:
            # Simple optimisation to gain speed (inspect is slow)
            return self
        valid_params = self.get_params(deep=True)
        for key, value in params.items():
            split = key.split("__", 1)
            if len(split) > 1:
                # nested objects case
                name, sub_name = split
                if name not in valid_params:
                    raise ValueError(
                        "Invalid parameter %s for kernel %s. "
                        "Check the list of available parameters "
                        "with `kernel.get_params().keys()`." % (name, self)
                    )
                sub_object = valid_params[name]
                sub_object.set_params(**{sub_name: value})
            else:
                # simple objects case
                if key not in valid_params:
                    raise ValueError(
                        "Invalid parameter %s for kernel %s. "
                        "Check the list of available parameters "
                        "with `kernel.get_params().keys()`."
                        % (key, self.__class__.__name__)
                    )
                setattr(self, key, value)
        return self

    def clone_with_theta(self, theta):
        """Returns a clone of self with given hyperparameters theta.

        Parameters
        ----------
        theta : ndarray of shape (n_dims,)
            The hyperparameters
        """
        cloned = clone(self)
        cloned.theta = theta
        return cloned

    @property
    def n_dims(self):
        """Returns the number of non-fixed hyperparameters of the kernel."""
        return self.theta.shape[0]

    @property
    def hyperparameters(self):
        """Returns a list of all hyperparameter specifications."""
        r = [
            getattr(self, attr)
            for attr in dir(self)
            if attr.startswith("hyperparameter_")
        ]
        return r

    @property
    def theta(self):
        """Returns the (flattened, log-transformed) non-fixed hyperparameters.

        Note that theta are typically the log-transformed values of the
        kernel's hyperparameters as this representation of the search space
        is more amenable for hyperparameter search, as hyperparameters like
        length-scales naturally live on a log-scale.

        Returns
        -------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        theta = []
        params = self.get_params()
        for hyperparameter in self.hyperparameters:
            if not hyperparameter.fixed:
                theta.append(params[hyperparameter.name])
        if len(theta) > 0:
            return np.log(np.hstack(theta))
        else:
            return np.array([])

    @theta.setter
    def theta(self, theta):
        """Sets the (flattened, log-transformed) non-fixed hyperparameters.

        Parameters
        ----------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        params = self.get_params()
        i = 0
        for hyperparameter in self.hyperparameters:
            if hyperparameter.fixed:
                continue
            if hyperparameter.n_elements > 1:
                # vector-valued parameter
                params[hyperparameter.name] = np.exp(
                    theta[i : i + hyperparameter.n_elements]
                )
                i += hyperparameter.n_elements
            else:
                params[hyperparameter.name] = np.exp(theta[i])
                i += 1

        if i != len(theta):
            raise ValueError(
                "theta has not the correct number of entries."
                " Should be %d; given are %d" % (i, len(theta))
            )
        self.set_params(**params)

    @property
    def bounds(self):
        """Returns the log-transformed bounds on the theta.

        Returns
        -------
        bounds : ndarray of shape (n_dims, 2)
            The log-transformed bounds on the kernel's hyperparameters theta
        """
        bounds = [
            hyperparameter.bounds
            for hyperparameter in self.hyperparameters
            if not hyperparameter.fixed
        ]
        if len(bounds) > 0:
            return np.log(np.vstack(bounds))
        else:
            return np.array([])

    def __add__(self, b):
        if not isinstance(b, Kernel):
            return Sum(self, ConstantKernel(b))
        return Sum(self, b)

    def __radd__(self, b):
        if not isinstance(b, Kernel):
            return Sum(ConstantKernel(b), self)
        return Sum(b, self)

    def __mul__(self, b):
        if not isinstance(b, Kernel):
            return Product(self, ConstantKernel(b))
        return Product(self, b)

    def __rmul__(self, b):
        if not isinstance(b, Kernel):
            return Product(ConstantKernel(b), self)
        return Product(b, self)

    def __pow__(self, b):
        return Exponentiation(self, b)

    def __eq__(self, b):
        if type(self) != type(b):
            return False
        params_a = self.get_params()
        params_b = b.get_params()
        for key in set(list(params_a.keys()) + list(params_b.keys())):
            if np.any(params_a.get(key, None) != params_b.get(key, None)):
                return False
        return True

    def __repr__(self):
        return "{0}({1})".format(
            self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))
        )

    @abstractmethod
    def __call__(self, X, Y=None, eval_gradient=False):
        """Evaluate the kernel."""

    @abstractmethod
    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples,)
            Left argument of the returned kernel k(X, Y)

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """

    @abstractmethod
    def is_stationary(self):
        """Returns whether the kernel is stationary."""

    @property
    def requires_vector_input(self):
        """Returns whether the kernel is defined on fixed-length feature
        vectors or generic objects. Defaults to True for backward
        compatibility."""
        return True

    def _check_bounds_params(self):
        """Called after fitting to warn if bounds may have been too tight."""
        list_close = np.isclose(self.bounds, np.atleast_2d(self.theta).T)
        idx = 0
        for hyp in self.hyperparameters:
            if hyp.fixed:
                continue
            for dim in range(hyp.n_elements):
                if list_close[idx, 0]:
                    warnings.warn(
                        "The optimal value found for "
                        "dimension %s of parameter %s is "
                        "close to the specified lower "
                        "bound %s. Decreasing the bound and"
                        " calling fit again may find a "
                        "better value." % (dim, hyp.name, hyp.bounds[dim][0]),
                        ConvergenceWarning,
                    )
                elif list_close[idx, 1]:
                    warnings.warn(
                        "The optimal value found for "
                        "dimension %s of parameter %s is "
                        "close to the specified upper "
                        "bound %s. Increasing the bound and"
                        " calling fit again may find a "
                        "better value." % (dim, hyp.name, hyp.bounds[dim][1]),
                        ConvergenceWarning,
                    )
                idx += 1


class NormalizedKernelMixin:
    """Mixin for kernels which are normalized: k(X, X)=1.

    .. versionadded:: 0.18
    """

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        return np.ones(X.shape[0])


class StationaryKernelMixin:
    """Mixin for kernels which are stationary: k(X, Y)= f(X-Y).

    .. versionadded:: 0.18
    """

    def is_stationary(self):
        """Returns whether the kernel is stationary."""
        return True


class GenericKernelMixin:
    """Mixin for kernels which operate on generic objects such as variable-
    length sequences, trees, and graphs.

    .. versionadded:: 0.22
    """

    @property
    def requires_vector_input(self):
        """Whether the kernel works only on fixed-length feature vectors."""
        return False


class CompoundKernel(Kernel):
    """Kernel which is composed of a set of other kernels.

    .. versionadded:: 0.18

    Parameters
    ----------
    kernels : list of Kernels
        The other kernels

    Examples
    --------
    >>> from sklearn.gaussian_process.kernels import WhiteKernel
    >>> from sklearn.gaussian_process.kernels import RBF
    >>> from sklearn.gaussian_process.kernels import CompoundKernel
    >>> kernel = CompoundKernel(
    ...     [WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)])
    >>> print(kernel.bounds)
    [[-11.51292546  11.51292546]
     [-11.51292546  11.51292546]]
    >>> print(kernel.n_dims)
    2
    >>> print(kernel.theta)
    [1.09861229 0.69314718]
    """

    def __init__(self, kernels):
        self.kernels = kernels

    def get_params(self, deep=True):
        """Get parameters of this kernel.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        return dict(kernels=self.kernels)

    @property
    def theta(self):
        """Returns the (flattened, log-transformed) non-fixed hyperparameters.

        Note that theta are typically the log-transformed values of the
        kernel's hyperparameters as this representation of the search space
        is more amenable for hyperparameter search, as hyperparameters like
        length-scales naturally live on a log-scale.

        Returns
        -------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        return np.hstack([kernel.theta for kernel in self.kernels])

    @theta.setter
    def theta(self, theta):
        """Sets the (flattened, log-transformed) non-fixed hyperparameters.

        Parameters
        ----------
        theta : array of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        k_dims = self.k1.n_dims
        for i, kernel in enumerate(self.kernels):
            kernel.theta = theta[i * k_dims : (i + 1) * k_dims]

    @property
    def bounds(self):
        """Returns the log-transformed bounds on the theta.

        Returns
        -------
        bounds : array of shape (n_dims, 2)
            The log-transformed bounds on the kernel's hyperparameters theta
        """
        return np.vstack([kernel.bounds for kernel in self.kernels])

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Note that this compound kernel returns the results of all simple kernel
        stacked along an additional axis.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object, \
            default=None
            Left argument of the returned kernel k(X, Y)

        Y : array-like of shape (n_samples_X, n_features) or list of object, \
            default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            is evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of the
            kernel hyperparameter is computed.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y, n_kernels)
            Kernel k(X, Y)

        K_gradient : ndarray of shape \
                (n_samples_X, n_samples_X, n_dims, n_kernels), optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        if eval_gradient:
            K = []
            K_grad = []
            for kernel in self.kernels:
                K_single, K_grad_single = kernel(X, Y, eval_gradient)
                K.append(K_single)
                K_grad.append(K_grad_single[..., np.newaxis])
            return np.dstack(K), np.concatenate(K_grad, 3)
        else:
            return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels])

    def __eq__(self, b):
        if type(self) != type(b) or len(self.kernels) != len(b.kernels):
            return False
        return np.all(
            [self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]
        )

    def is_stationary(self):
        """Returns whether the kernel is stationary."""
        return np.all([kernel.is_stationary() for kernel in self.kernels])

    @property
    def requires_vector_input(self):
        """Returns whether the kernel is defined on discrete structures."""
        return np.any([kernel.requires_vector_input for kernel in self.kernels])

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to `np.diag(self(X))`; however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Argument to the kernel.

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X, n_kernels)
            Diagonal of kernel k(X, X)
        """
        return np.vstack([kernel.diag(X) for kernel in self.kernels]).T


class KernelOperator(Kernel):
    """Base class for all kernel operators.

    .. versionadded:: 0.18
    """

    def __init__(self, k1, k2):
        self.k1 = k1
        self.k2 = k2

    def get_params(self, deep=True):
        """Get parameters of this kernel.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        params = dict(k1=self.k1, k2=self.k2)
        if deep:
            deep_items = self.k1.get_params().items()
            params.update(("k1__" + k, val) for k, val in deep_items)
            deep_items = self.k2.get_params().items()
            params.update(("k2__" + k, val) for k, val in deep_items)

        return params

    @property
    def hyperparameters(self):
        """Returns a list of all hyperparameter."""
        r = [
            Hyperparameter(
                "k1__" + hyperparameter.name,
                hyperparameter.value_type,
                hyperparameter.bounds,
                hyperparameter.n_elements,
            )
            for hyperparameter in self.k1.hyperparameters
        ]

        for hyperparameter in self.k2.hyperparameters:
            r.append(
                Hyperparameter(
                    "k2__" + hyperparameter.name,
                    hyperparameter.value_type,
                    hyperparameter.bounds,
                    hyperparameter.n_elements,
                )
            )
        return r

    @property
    def theta(self):
        """Returns the (flattened, log-transformed) non-fixed hyperparameters.

        Note that theta are typically the log-transformed values of the
        kernel's hyperparameters as this representation of the search space
        is more amenable for hyperparameter search, as hyperparameters like
        length-scales naturally live on a log-scale.

        Returns
        -------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        return np.append(self.k1.theta, self.k2.theta)

    @theta.setter
    def theta(self, theta):
        """Sets the (flattened, log-transformed) non-fixed hyperparameters.

        Parameters
        ----------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        k1_dims = self.k1.n_dims
        self.k1.theta = theta[:k1_dims]
        self.k2.theta = theta[k1_dims:]

    @property
    def bounds(self):
        """Returns the log-transformed bounds on the theta.

        Returns
        -------
        bounds : ndarray of shape (n_dims, 2)
            The log-transformed bounds on the kernel's hyperparameters theta
        """
        if self.k1.bounds.size == 0:
            return self.k2.bounds
        if self.k2.bounds.size == 0:
            return self.k1.bounds
        return np.vstack((self.k1.bounds, self.k2.bounds))

    def __eq__(self, b):
        if type(self) != type(b):
            return False
        return (self.k1 == b.k1 and self.k2 == b.k2) or (
            self.k1 == b.k2 and self.k2 == b.k1
        )

    def is_stationary(self):
        """Returns whether the kernel is stationary."""
        return self.k1.is_stationary() and self.k2.is_stationary()

    @property
    def requires_vector_input(self):
        """Returns whether the kernel is stationary."""
        return self.k1.requires_vector_input or self.k2.requires_vector_input


class Sum(KernelOperator):
    """The `Sum` kernel takes two kernels :math:`k_1` and :math:`k_2`
    and combines them via

    .. math::
        k_{sum}(X, Y) = k_1(X, Y) + k_2(X, Y)

    Note that the `__add__` magic method is overridden, so
    `Sum(RBF(), RBF())` is equivalent to using the + operator
    with `RBF() + RBF()`.


    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    k1 : Kernel
        The first base-kernel of the sum-kernel

    k2 : Kernel
        The second base-kernel of the sum-kernel

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import RBF, Sum, ConstantKernel
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = Sum(ConstantKernel(2), RBF())
    >>> gpr = GaussianProcessRegressor(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    1.0
    >>> kernel
    1.41**2 + RBF(length_scale=1)
    """

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Left argument of the returned kernel k(X, Y)

        Y : array-like of shape (n_samples_X, n_features) or list of object,\
                default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            is evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        if eval_gradient:
            K1, K1_gradient = self.k1(X, Y, eval_gradient=True)
            K2, K2_gradient = self.k2(X, Y, eval_gradient=True)
            return K1 + K2, np.dstack((K1_gradient, K2_gradient))
        else:
            return self.k1(X, Y) + self.k2(X, Y)

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to `np.diag(self(X))`; however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Argument to the kernel.

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        return self.k1.diag(X) + self.k2.diag(X)

    def __repr__(self):
        return "{0} + {1}".format(self.k1, self.k2)


class Product(KernelOperator):
    """The `Product` kernel takes two kernels :math:`k_1` and :math:`k_2`
    and combines them via

    .. math::
        k_{prod}(X, Y) = k_1(X, Y) * k_2(X, Y)

    Note that the `__mul__` magic method is overridden, so
    `Product(RBF(), RBF())` is equivalent to using the * operator
    with `RBF() * RBF()`.

    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    k1 : Kernel
        The first base-kernel of the product-kernel

    k2 : Kernel
        The second base-kernel of the product-kernel


    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import (RBF, Product,
    ...            ConstantKernel)
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = Product(ConstantKernel(2), RBF())
    >>> gpr = GaussianProcessRegressor(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    1.0
    >>> kernel
    1.41**2 * RBF(length_scale=1)
    """

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Left argument of the returned kernel k(X, Y)

        Y : array-like of shape (n_samples_Y, n_features) or list of object,\
            default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            is evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        if eval_gradient:
            K1, K1_gradient = self.k1(X, Y, eval_gradient=True)
            K2, K2_gradient = self.k2(X, Y, eval_gradient=True)
            return K1 * K2, np.dstack(
                (K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])
            )
        else:
            return self.k1(X, Y) * self.k2(X, Y)

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Argument to the kernel.

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        return self.k1.diag(X) * self.k2.diag(X)

    def __repr__(self):
        return "{0} * {1}".format(self.k1, self.k2)


class Exponentiation(Kernel):
    """The Exponentiation kernel takes one base kernel and a scalar parameter
    :math:`p` and combines them via

    .. math::
        k_{exp}(X, Y) = k(X, Y) ^p

    Note that the `__pow__` magic method is overridden, so
    `Exponentiation(RBF(), 2)` is equivalent to using the ** operator
    with `RBF() ** 2`.


    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    kernel : Kernel
        The base kernel

    exponent : float
        The exponent for the base kernel


    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import (RationalQuadratic,
    ...            Exponentiation)
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = Exponentiation(RationalQuadratic(), exponent=2)
    >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.419...
    >>> gpr.predict(X[:1,:], return_std=True)
    (array([635.5...]), array([0.559...]))
    """

    def __init__(self, kernel, exponent):
        self.kernel = kernel
        self.exponent = exponent

    def get_params(self, deep=True):
        """Get parameters of this kernel.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        params = dict(kernel=self.kernel, exponent=self.exponent)
        if deep:
            deep_items = self.kernel.get_params().items()
            params.update(("kernel__" + k, val) for k, val in deep_items)
        return params

    @property
    def hyperparameters(self):
        """Returns a list of all hyperparameter."""
        r = []
        for hyperparameter in self.kernel.hyperparameters:
            r.append(
                Hyperparameter(
                    "kernel__" + hyperparameter.name,
                    hyperparameter.value_type,
                    hyperparameter.bounds,
                    hyperparameter.n_elements,
                )
            )
        return r

    @property
    def theta(self):
        """Returns the (flattened, log-transformed) non-fixed hyperparameters.

        Note that theta are typically the log-transformed values of the
        kernel's hyperparameters as this representation of the search space
        is more amenable for hyperparameter search, as hyperparameters like
        length-scales naturally live on a log-scale.

        Returns
        -------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        return self.kernel.theta

    @theta.setter
    def theta(self, theta):
        """Sets the (flattened, log-transformed) non-fixed hyperparameters.

        Parameters
        ----------
        theta : ndarray of shape (n_dims,)
            The non-fixed, log-transformed hyperparameters of the kernel
        """
        self.kernel.theta = theta

    @property
    def bounds(self):
        """Returns the log-transformed bounds on the theta.

        Returns
        -------
        bounds : ndarray of shape (n_dims, 2)
            The log-transformed bounds on the kernel's hyperparameters theta
        """
        return self.kernel.bounds

    def __eq__(self, b):
        if type(self) != type(b):
            return False
        return self.kernel == b.kernel and self.exponent == b.exponent

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Left argument of the returned kernel k(X, Y)

        Y : array-like of shape (n_samples_Y, n_features) or list of object,\
            default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            is evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        if eval_gradient:
            K, K_gradient = self.kernel(X, Y, eval_gradient=True)
            K_gradient *= self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1)
            return K**self.exponent, K_gradient
        else:
            K = self.kernel(X, Y, eval_gradient=False)
            return K**self.exponent

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Argument to the kernel.

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        return self.kernel.diag(X) ** self.exponent

    def __repr__(self):
        return "{0} ** {1}".format(self.kernel, self.exponent)

    def is_stationary(self):
        """Returns whether the kernel is stationary."""
        return self.kernel.is_stationary()

    @property
    def requires_vector_input(self):
        """Returns whether the kernel is defined on discrete structures."""
        return self.kernel.requires_vector_input


class ConstantKernel(StationaryKernelMixin, GenericKernelMixin, Kernel):
    """Constant kernel.

    Can be used as part of a product-kernel where it scales the magnitude of
    the other factor (kernel) or as part of a sum-kernel, where it modifies
    the mean of the Gaussian process.

    .. math::
        k(x_1, x_2) = constant\\_value \\;\\forall\\; x_1, x_2

    Adding a constant kernel is equivalent to adding a constant::

            kernel = RBF() + ConstantKernel(constant_value=2)

    is the same as::

            kernel = RBF() + 2


    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    constant_value : float, default=1.0
        The constant value which defines the covariance:
        k(x_1, x_2) = constant_value

    constant_value_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on `constant_value`.
        If set to "fixed", `constant_value` cannot be changed during
        hyperparameter tuning.

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import RBF, ConstantKernel
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = RBF() + ConstantKernel(constant_value=2)
    >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.3696...
    >>> gpr.predict(X[:1,:], return_std=True)
    (array([606.1...]), array([0.24...]))
    """

    def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)):
        self.constant_value = constant_value
        self.constant_value_bounds = constant_value_bounds

    @property
    def hyperparameter_constant_value(self):
        return Hyperparameter("constant_value", "numeric", self.constant_value_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Left argument of the returned kernel k(X, Y)

        Y : array-like of shape (n_samples_X, n_features) or list of object, \
            default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            is evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
            optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when eval_gradient
            is True.
        """
        if Y is None:
            Y = X
        elif eval_gradient:
            raise ValueError("Gradient can only be evaluated when Y is None.")

        K = np.full(
            (_num_samples(X), _num_samples(Y)),
            self.constant_value,
            dtype=np.array(self.constant_value).dtype,
        )
        if eval_gradient:
            if not self.hyperparameter_constant_value.fixed:
                return (
                    K,
                    np.full(
                        (_num_samples(X), _num_samples(X), 1),
                        self.constant_value,
                        dtype=np.array(self.constant_value).dtype,
                    ),
                )
            else:
                return K, np.empty((_num_samples(X), _num_samples(X), 0))
        else:
            return K

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Argument to the kernel.

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        return np.full(
            _num_samples(X),
            self.constant_value,
            dtype=np.array(self.constant_value).dtype,
        )

    def __repr__(self):
        return "{0:.3g}**2".format(np.sqrt(self.constant_value))


class WhiteKernel(StationaryKernelMixin, GenericKernelMixin, Kernel):
    """White kernel.

    The main use-case of this kernel is as part of a sum-kernel where it
    explains the noise of the signal as independently and identically
    normally-distributed. The parameter noise_level equals the variance of this
    noise.

    .. math::
        k(x_1, x_2) = noise\\_level \\text{ if } x_i == x_j \\text{ else } 0


    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    noise_level : float, default=1.0
        Parameter controlling the noise level (variance)

    noise_level_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'noise_level'.
        If set to "fixed", 'noise_level' cannot be changed during
        hyperparameter tuning.

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = DotProduct() + WhiteKernel(noise_level=0.5)
    >>> gpr = GaussianProcessRegressor(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.3680...
    >>> gpr.predict(X[:2,:], return_std=True)
    (array([653.0..., 592.1... ]), array([316.6..., 316.6...]))
    """

    def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)):
        self.noise_level = noise_level
        self.noise_level_bounds = noise_level_bounds

    @property
    def hyperparameter_noise_level(self):
        return Hyperparameter("noise_level", "numeric", self.noise_level_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Left argument of the returned kernel k(X, Y)

        Y : array-like of shape (n_samples_X, n_features) or list of object,\
            default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            is evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
            optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when eval_gradient
            is True.
        """
        if Y is not None and eval_gradient:
            raise ValueError("Gradient can only be evaluated when Y is None.")

        if Y is None:
            K = self.noise_level * np.eye(_num_samples(X))
            if eval_gradient:
                if not self.hyperparameter_noise_level.fixed:
                    return (
                        K,
                        self.noise_level * np.eye(_num_samples(X))[:, :, np.newaxis],
                    )
                else:
                    return K, np.empty((_num_samples(X), _num_samples(X), 0))
            else:
                return K
        else:
            return np.zeros((_num_samples(X), _num_samples(Y)))

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : array-like of shape (n_samples_X, n_features) or list of object
            Argument to the kernel.

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        return np.full(
            _num_samples(X), self.noise_level, dtype=np.array(self.noise_level).dtype
        )

    def __repr__(self):
        return "{0}(noise_level={1:.3g})".format(
            self.__class__.__name__, self.noise_level
        )


class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
    """Radial basis function kernel (aka squared-exponential kernel).

    The RBF kernel is a stationary kernel. It is also known as the
    "squared exponential" kernel. It is parameterized by a length scale
    parameter :math:`l>0`, which can either be a scalar (isotropic variant
    of the kernel) or a vector with the same number of dimensions as the inputs
    X (anisotropic variant of the kernel). The kernel is given by:

    .. math::
        k(x_i, x_j) = \\exp\\left(- \\frac{d(x_i, x_j)^2}{2l^2} \\right)

    where :math:`l` is the length scale of the kernel and
    :math:`d(\\cdot,\\cdot)` is the Euclidean distance.
    For advice on how to set the length scale parameter, see e.g. [1]_.

    This kernel is infinitely differentiable, which implies that GPs with this
    kernel as covariance function have mean square derivatives of all orders,
    and are thus very smooth.
    See [2]_, Chapter 4, Section 4.2, for further details of the RBF kernel.

    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    length_scale : float or ndarray of shape (n_features,), default=1.0
        The length scale of the kernel. If a float, an isotropic kernel is
        used. If an array, an anisotropic kernel is used where each dimension
        of l defines the length-scale of the respective feature dimension.

    length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'length_scale'.
        If set to "fixed", 'length_scale' cannot be changed during
        hyperparameter tuning.

    References
    ----------
    .. [1] `David Duvenaud (2014). "The Kernel Cookbook:
        Advice on Covariance functions".
        <https://www.cs.toronto.edu/~duvenaud/cookbook/>`_

    .. [2] `Carl Edward Rasmussen, Christopher K. I. Williams (2006).
        "Gaussian Processes for Machine Learning". The MIT Press.
        <http://www.gaussianprocess.org/gpml/>`_

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.gaussian_process import GaussianProcessClassifier
    >>> from sklearn.gaussian_process.kernels import RBF
    >>> X, y = load_iris(return_X_y=True)
    >>> kernel = 1.0 * RBF(1.0)
    >>> gpc = GaussianProcessClassifier(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpc.score(X, y)
    0.9866...
    >>> gpc.predict_proba(X[:2,:])
    array([[0.8354..., 0.03228..., 0.1322...],
           [0.7906..., 0.0652..., 0.1441...]])
    """

    def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)):
        self.length_scale = length_scale
        self.length_scale_bounds = length_scale_bounds

    @property
    def anisotropic(self):
        return np.iterable(self.length_scale) and len(self.length_scale) > 1

    @property
    def hyperparameter_length_scale(self):
        if self.anisotropic:
            return Hyperparameter(
                "length_scale",
                "numeric",
                self.length_scale_bounds,
                len(self.length_scale),
            )
        return Hyperparameter("length_scale", "numeric", self.length_scale_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Y : ndarray of shape (n_samples_Y, n_features), default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            if evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        X = np.atleast_2d(X)
        length_scale = _check_length_scale(X, self.length_scale)
        if Y is None:
            dists = pdist(X / length_scale, metric="sqeuclidean")
            K = np.exp(-0.5 * dists)
            # convert from upper-triangular matrix to square matrix
            K = squareform(K)
            np.fill_diagonal(K, 1)
        else:
            if eval_gradient:
                raise ValueError("Gradient can only be evaluated when Y is None.")
            dists = cdist(X / length_scale, Y / length_scale, metric="sqeuclidean")
            K = np.exp(-0.5 * dists)

        if eval_gradient:
            if self.hyperparameter_length_scale.fixed:
                # Hyperparameter l kept fixed
                return K, np.empty((X.shape[0], X.shape[0], 0))
            elif not self.anisotropic or length_scale.shape[0] == 1:
                K_gradient = (K * squareform(dists))[:, :, np.newaxis]
                return K, K_gradient
            elif self.anisotropic:
                # We need to recompute the pairwise dimension-wise distances
                K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (
                    length_scale**2
                )
                K_gradient *= K[..., np.newaxis]
                return K, K_gradient
        else:
            return K

    def __repr__(self):
        if self.anisotropic:
            return "{0}(length_scale=[{1}])".format(
                self.__class__.__name__,
                ", ".join(map("{0:.3g}".format, self.length_scale)),
            )
        else:  # isotropic
            return "{0}(length_scale={1:.3g})".format(
                self.__class__.__name__, np.ravel(self.length_scale)[0]
            )


class Matern(RBF):
    """Matern kernel.

    The class of Matern kernels is a generalization of the :class:`RBF`.
    It has an additional parameter :math:`\\nu` which controls the
    smoothness of the resulting function. The smaller :math:`\\nu`,
    the less smooth the approximated function is.
    As :math:`\\nu\\rightarrow\\infty`, the kernel becomes equivalent to
    the :class:`RBF` kernel. When :math:`\\nu = 1/2`, the Matérn kernel
    becomes identical to the absolute exponential kernel.
    Important intermediate values are
    :math:`\\nu=1.5` (once differentiable functions)
    and :math:`\\nu=2.5` (twice differentiable functions).

    The kernel is given by:

    .. math::
         k(x_i, x_j) =  \\frac{1}{\\Gamma(\\nu)2^{\\nu-1}}\\Bigg(
         \\frac{\\sqrt{2\\nu}}{l} d(x_i , x_j )
         \\Bigg)^\\nu K_\\nu\\Bigg(
         \\frac{\\sqrt{2\\nu}}{l} d(x_i , x_j )\\Bigg)



    where :math:`d(\\cdot,\\cdot)` is the Euclidean distance,
    :math:`K_{\\nu}(\\cdot)` is a modified Bessel function and
    :math:`\\Gamma(\\cdot)` is the gamma function.
    See [1]_, Chapter 4, Section 4.2, for details regarding the different
    variants of the Matern kernel.

    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    length_scale : float or ndarray of shape (n_features,), default=1.0
        The length scale of the kernel. If a float, an isotropic kernel is
        used. If an array, an anisotropic kernel is used where each dimension
        of l defines the length-scale of the respective feature dimension.

    length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'length_scale'.
        If set to "fixed", 'length_scale' cannot be changed during
        hyperparameter tuning.

    nu : float, default=1.5
        The parameter nu controlling the smoothness of the learned function.
        The smaller nu, the less smooth the approximated function is.
        For nu=inf, the kernel becomes equivalent to the RBF kernel and for
        nu=0.5 to the absolute exponential kernel. Important intermediate
        values are nu=1.5 (once differentiable functions) and nu=2.5
        (twice differentiable functions). Note that values of nu not in
        [0.5, 1.5, 2.5, inf] incur a considerably higher computational cost
        (appr. 10 times higher) since they require to evaluate the modified
        Bessel function. Furthermore, in contrast to l, nu is kept fixed to
        its initial value and not optimized.

    References
    ----------
    .. [1] `Carl Edward Rasmussen, Christopher K. I. Williams (2006).
        "Gaussian Processes for Machine Learning". The MIT Press.
        <http://www.gaussianprocess.org/gpml/>`_

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.gaussian_process import GaussianProcessClassifier
    >>> from sklearn.gaussian_process.kernels import Matern
    >>> X, y = load_iris(return_X_y=True)
    >>> kernel = 1.0 * Matern(length_scale=1.0, nu=1.5)
    >>> gpc = GaussianProcessClassifier(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpc.score(X, y)
    0.9866...
    >>> gpc.predict_proba(X[:2,:])
    array([[0.8513..., 0.0368..., 0.1117...],
            [0.8086..., 0.0693..., 0.1220...]])
    """

    def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5):
        super().__init__(length_scale, length_scale_bounds)
        self.nu = nu

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Y : ndarray of shape (n_samples_Y, n_features), default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            if evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        X = np.atleast_2d(X)
        length_scale = _check_length_scale(X, self.length_scale)
        if Y is None:
            dists = pdist(X / length_scale, metric="euclidean")
        else:
            if eval_gradient:
                raise ValueError("Gradient can only be evaluated when Y is None.")
            dists = cdist(X / length_scale, Y / length_scale, metric="euclidean")

        if self.nu == 0.5:
            K = np.exp(-dists)
        elif self.nu == 1.5:
            K = dists * math.sqrt(3)
            K = (1.0 + K) * np.exp(-K)
        elif self.nu == 2.5:
            K = dists * math.sqrt(5)
            K = (1.0 + K + K**2 / 3.0) * np.exp(-K)
        elif self.nu == np.inf:
            K = np.exp(-(dists**2) / 2.0)
        else:  # general case; expensive to evaluate
            K = dists
            K[K == 0.0] += np.finfo(float).eps  # strict zeros result in nan
            tmp = math.sqrt(2 * self.nu) * K
            K.fill((2 ** (1.0 - self.nu)) / gamma(self.nu))
            K *= tmp**self.nu
            K *= kv(self.nu, tmp)

        if Y is None:
            # convert from upper-triangular matrix to square matrix
            K = squareform(K)
            np.fill_diagonal(K, 1)

        if eval_gradient:
            if self.hyperparameter_length_scale.fixed:
                # Hyperparameter l kept fixed
                K_gradient = np.empty((X.shape[0], X.shape[0], 0))
                return K, K_gradient

            # We need to recompute the pairwise dimension-wise distances
            if self.anisotropic:
                D = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (length_scale**2)
            else:
                D = squareform(dists**2)[:, :, np.newaxis]

            if self.nu == 0.5:
                denominator = np.sqrt(D.sum(axis=2))[:, :, np.newaxis]
                divide_result = np.zeros_like(D)
                np.divide(
                    D,
                    denominator,
                    out=divide_result,
                    where=denominator != 0,
                )
                K_gradient = K[..., np.newaxis] * divide_result
            elif self.nu == 1.5:
                K_gradient = 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis]
            elif self.nu == 2.5:
                tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis]
                K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp)
            elif self.nu == np.inf:
                K_gradient = D * K[..., np.newaxis]
            else:
                # approximate gradient numerically
                def f(theta):  # helper function
                    return self.clone_with_theta(theta)(X, Y)

                return K, _approx_fprime(self.theta, f, 1e-10)

            if not self.anisotropic:
                return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis]
            else:
                return K, K_gradient
        else:
            return K

    def __repr__(self):
        if self.anisotropic:
            return "{0}(length_scale=[{1}], nu={2:.3g})".format(
                self.__class__.__name__,
                ", ".join(map("{0:.3g}".format, self.length_scale)),
                self.nu,
            )
        else:
            return "{0}(length_scale={1:.3g}, nu={2:.3g})".format(
                self.__class__.__name__, np.ravel(self.length_scale)[0], self.nu
            )


class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
    """Rational Quadratic kernel.

    The RationalQuadratic kernel can be seen as a scale mixture (an infinite
    sum) of RBF kernels with different characteristic length scales. It is
    parameterized by a length scale parameter :math:`l>0` and a scale
    mixture parameter :math:`\\alpha>0`. Only the isotropic variant
    where length_scale :math:`l` is a scalar is supported at the moment.
    The kernel is given by:

    .. math::
        k(x_i, x_j) = \\left(
        1 + \\frac{d(x_i, x_j)^2 }{ 2\\alpha  l^2}\\right)^{-\\alpha}

    where :math:`\\alpha` is the scale mixture parameter, :math:`l` is
    the length scale of the kernel and :math:`d(\\cdot,\\cdot)` is the
    Euclidean distance.
    For advice on how to set the parameters, see e.g. [1]_.

    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    length_scale : float > 0, default=1.0
        The length scale of the kernel.

    alpha : float > 0, default=1.0
        Scale mixture parameter

    length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'length_scale'.
        If set to "fixed", 'length_scale' cannot be changed during
        hyperparameter tuning.

    alpha_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'alpha'.
        If set to "fixed", 'alpha' cannot be changed during
        hyperparameter tuning.

    References
    ----------
    .. [1] `David Duvenaud (2014). "The Kernel Cookbook:
        Advice on Covariance functions".
        <https://www.cs.toronto.edu/~duvenaud/cookbook/>`_

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.gaussian_process import GaussianProcessClassifier
    >>> from sklearn.gaussian_process.kernels import RationalQuadratic
    >>> X, y = load_iris(return_X_y=True)
    >>> kernel = RationalQuadratic(length_scale=1.0, alpha=1.5)
    >>> gpc = GaussianProcessClassifier(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpc.score(X, y)
    0.9733...
    >>> gpc.predict_proba(X[:2,:])
    array([[0.8881..., 0.0566..., 0.05518...],
            [0.8678..., 0.0707... , 0.0614...]])
    """

    def __init__(
        self,
        length_scale=1.0,
        alpha=1.0,
        length_scale_bounds=(1e-5, 1e5),
        alpha_bounds=(1e-5, 1e5),
    ):
        self.length_scale = length_scale
        self.alpha = alpha
        self.length_scale_bounds = length_scale_bounds
        self.alpha_bounds = alpha_bounds

    @property
    def hyperparameter_length_scale(self):
        return Hyperparameter("length_scale", "numeric", self.length_scale_bounds)

    @property
    def hyperparameter_alpha(self):
        return Hyperparameter("alpha", "numeric", self.alpha_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Y : ndarray of shape (n_samples_Y, n_features), default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            if evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims)
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when eval_gradient
            is True.
        """
        if len(np.atleast_1d(self.length_scale)) > 1:
            raise AttributeError(
                "RationalQuadratic kernel only supports isotropic version, "
                "please use a single scalar for length_scale"
            )
        X = np.atleast_2d(X)
        if Y is None:
            dists = squareform(pdist(X, metric="sqeuclidean"))
            tmp = dists / (2 * self.alpha * self.length_scale**2)
            base = 1 + tmp
            K = base**-self.alpha
            np.fill_diagonal(K, 1)
        else:
            if eval_gradient:
                raise ValueError("Gradient can only be evaluated when Y is None.")
            dists = cdist(X, Y, metric="sqeuclidean")
            K = (1 + dists / (2 * self.alpha * self.length_scale**2)) ** -self.alpha

        if eval_gradient:
            # gradient with respect to length_scale
            if not self.hyperparameter_length_scale.fixed:
                length_scale_gradient = dists * K / (self.length_scale**2 * base)
                length_scale_gradient = length_scale_gradient[:, :, np.newaxis]
            else:  # l is kept fixed
                length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0))

            # gradient with respect to alpha
            if not self.hyperparameter_alpha.fixed:
                alpha_gradient = K * (
                    -self.alpha * np.log(base)
                    + dists / (2 * self.length_scale**2 * base)
                )
                alpha_gradient = alpha_gradient[:, :, np.newaxis]
            else:  # alpha is kept fixed
                alpha_gradient = np.empty((K.shape[0], K.shape[1], 0))

            return K, np.dstack((alpha_gradient, length_scale_gradient))
        else:
            return K

    def __repr__(self):
        return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format(
            self.__class__.__name__, self.alpha, self.length_scale
        )


class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
    r"""Exp-Sine-Squared kernel (aka periodic kernel).

    The ExpSineSquared kernel allows one to model functions which repeat
    themselves exactly. It is parameterized by a length scale
    parameter :math:`l>0` and a periodicity parameter :math:`p>0`.
    Only the isotropic variant where :math:`l` is a scalar is
    supported at the moment. The kernel is given by:

    .. math::
        k(x_i, x_j) = \text{exp}\left(-
        \frac{ 2\sin^2(\pi d(x_i, x_j)/p) }{ l^ 2} \right)

    where :math:`l` is the length scale of the kernel, :math:`p` the
    periodicity of the kernel and :math:`d(\cdot,\cdot)` is the
    Euclidean distance.

    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------

    length_scale : float > 0, default=1.0
        The length scale of the kernel.

    periodicity : float > 0, default=1.0
        The periodicity of the kernel.

    length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'length_scale'.
        If set to "fixed", 'length_scale' cannot be changed during
        hyperparameter tuning.

    periodicity_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'periodicity'.
        If set to "fixed", 'periodicity' cannot be changed during
        hyperparameter tuning.

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import ExpSineSquared
    >>> X, y = make_friedman2(n_samples=50, noise=0, random_state=0)
    >>> kernel = ExpSineSquared(length_scale=1, periodicity=1)
    >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.0144...
    >>> gpr.predict(X[:2,:], return_std=True)
    (array([425.6..., 457.5...]), array([0.3894..., 0.3467...]))
    """

    def __init__(
        self,
        length_scale=1.0,
        periodicity=1.0,
        length_scale_bounds=(1e-5, 1e5),
        periodicity_bounds=(1e-5, 1e5),
    ):
        self.length_scale = length_scale
        self.periodicity = periodicity
        self.length_scale_bounds = length_scale_bounds
        self.periodicity_bounds = periodicity_bounds

    @property
    def hyperparameter_length_scale(self):
        """Returns the length scale"""
        return Hyperparameter("length_scale", "numeric", self.length_scale_bounds)

    @property
    def hyperparameter_periodicity(self):
        return Hyperparameter("periodicity", "numeric", self.periodicity_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Y : ndarray of shape (n_samples_Y, n_features), default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            if evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        X = np.atleast_2d(X)
        if Y is None:
            dists = squareform(pdist(X, metric="euclidean"))
            arg = np.pi * dists / self.periodicity
            sin_of_arg = np.sin(arg)
            K = np.exp(-2 * (sin_of_arg / self.length_scale) ** 2)
        else:
            if eval_gradient:
                raise ValueError("Gradient can only be evaluated when Y is None.")
            dists = cdist(X, Y, metric="euclidean")
            K = np.exp(
                -2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2
            )

        if eval_gradient:
            cos_of_arg = np.cos(arg)
            # gradient with respect to length_scale
            if not self.hyperparameter_length_scale.fixed:
                length_scale_gradient = 4 / self.length_scale**2 * sin_of_arg**2 * K
                length_scale_gradient = length_scale_gradient[:, :, np.newaxis]
            else:  # length_scale is kept fixed
                length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0))
            # gradient with respect to p
            if not self.hyperparameter_periodicity.fixed:
                periodicity_gradient = (
                    4 * arg / self.length_scale**2 * cos_of_arg * sin_of_arg * K
                )
                periodicity_gradient = periodicity_gradient[:, :, np.newaxis]
            else:  # p is kept fixed
                periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0))

            return K, np.dstack((length_scale_gradient, periodicity_gradient))
        else:
            return K

    def __repr__(self):
        return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format(
            self.__class__.__name__, self.length_scale, self.periodicity
        )


class DotProduct(Kernel):
    r"""Dot-Product kernel.

    The DotProduct kernel is non-stationary and can be obtained from linear
    regression by putting :math:`N(0, 1)` priors on the coefficients
    of :math:`x_d (d = 1, . . . , D)` and a prior of :math:`N(0, \sigma_0^2)`
    on the bias. The DotProduct kernel is invariant to a rotation of
    the coordinates about the origin, but not translations.
    It is parameterized by a parameter sigma_0 :math:`\sigma`
    which controls the inhomogenity of the kernel. For :math:`\sigma_0^2 =0`,
    the kernel is called the homogeneous linear kernel, otherwise
    it is inhomogeneous. The kernel is given by

    .. math::
        k(x_i, x_j) = \sigma_0 ^ 2 + x_i \cdot x_j

    The DotProduct kernel is commonly combined with exponentiation.

    See [1]_, Chapter 4, Section 4.2, for further details regarding the
    DotProduct kernel.

    Read more in the :ref:`User Guide <gp_kernels>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    sigma_0 : float >= 0, default=1.0
        Parameter controlling the inhomogenity of the kernel. If sigma_0=0,
        the kernel is homogeneous.

    sigma_0_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'sigma_0'.
        If set to "fixed", 'sigma_0' cannot be changed during
        hyperparameter tuning.

    References
    ----------
    .. [1] `Carl Edward Rasmussen, Christopher K. I. Williams (2006).
        "Gaussian Processes for Machine Learning". The MIT Press.
        <http://www.gaussianprocess.org/gpml/>`_

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = DotProduct() + WhiteKernel()
    >>> gpr = GaussianProcessRegressor(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.3680...
    >>> gpr.predict(X[:2,:], return_std=True)
    (array([653.0..., 592.1...]), array([316.6..., 316.6...]))
    """

    def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)):
        self.sigma_0 = sigma_0
        self.sigma_0_bounds = sigma_0_bounds

    @property
    def hyperparameter_sigma_0(self):
        return Hyperparameter("sigma_0", "numeric", self.sigma_0_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Y : ndarray of shape (n_samples_Y, n_features), default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            if evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        X = np.atleast_2d(X)
        if Y is None:
            K = np.inner(X, X) + self.sigma_0**2
        else:
            if eval_gradient:
                raise ValueError("Gradient can only be evaluated when Y is None.")
            K = np.inner(X, Y) + self.sigma_0**2

        if eval_gradient:
            if not self.hyperparameter_sigma_0.fixed:
                K_gradient = np.empty((K.shape[0], K.shape[1], 1))
                K_gradient[..., 0] = 2 * self.sigma_0**2
                return K, K_gradient
            else:
                return K, np.empty((X.shape[0], X.shape[0], 0))
        else:
            return K

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y).

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X).
        """
        return np.einsum("ij,ij->i", X, X) + self.sigma_0**2

    def is_stationary(self):
        """Returns whether the kernel is stationary."""
        return False

    def __repr__(self):
        return "{0}(sigma_0={1:.3g})".format(self.__class__.__name__, self.sigma_0)


# adapted from scipy/optimize/optimize.py for functions with 2d output
def _approx_fprime(xk, f, epsilon, args=()):
    f0 = f(*((xk,) + args))
    grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float)
    ei = np.zeros((len(xk),), float)
    for k in range(len(xk)):
        ei[k] = 1.0
        d = epsilon * ei
        grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k]
        ei[k] = 0.0
    return grad


class PairwiseKernel(Kernel):
    """Wrapper for kernels in sklearn.metrics.pairwise.

    A thin wrapper around the functionality of the kernels in
    sklearn.metrics.pairwise.

    Note: Evaluation of eval_gradient is not analytic but numeric and all
          kernels support only isotropic distances. The parameter gamma is
          considered to be a hyperparameter and may be optimized. The other
          kernel parameters are set directly at initialization and are kept
          fixed.

    .. versionadded:: 0.18

    Parameters
    ----------
    gamma : float, default=1.0
        Parameter gamma of the pairwise kernel specified by metric. It should
        be positive.

    gamma_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
        The lower and upper bound on 'gamma'.
        If set to "fixed", 'gamma' cannot be changed during
        hyperparameter tuning.

    metric : {"linear", "additive_chi2", "chi2", "poly", "polynomial", \
              "rbf", "laplacian", "sigmoid", "cosine"} or callable, \
              default="linear"
        The metric to use when calculating kernel between instances in a
        feature array. If metric is a string, it must be one of the metrics
        in pairwise.PAIRWISE_KERNEL_FUNCTIONS.
        If metric is "precomputed", X is assumed to be a kernel matrix.
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays from X as input and return a value indicating
        the distance between them.

    pairwise_kernels_kwargs : dict, default=None
        All entries of this dict (if any) are passed as keyword arguments to
        the pairwise kernel function.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.gaussian_process import GaussianProcessClassifier
    >>> from sklearn.gaussian_process.kernels import PairwiseKernel
    >>> X, y = load_iris(return_X_y=True)
    >>> kernel = PairwiseKernel(metric='rbf')
    >>> gpc = GaussianProcessClassifier(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpc.score(X, y)
    0.9733...
    >>> gpc.predict_proba(X[:2,:])
    array([[0.8880..., 0.05663..., 0.05532...],
           [0.8676..., 0.07073..., 0.06165...]])
    """

    def __init__(
        self,
        gamma=1.0,
        gamma_bounds=(1e-5, 1e5),
        metric="linear",
        pairwise_kernels_kwargs=None,
    ):
        self.gamma = gamma
        self.gamma_bounds = gamma_bounds
        self.metric = metric
        self.pairwise_kernels_kwargs = pairwise_kernels_kwargs

    @property
    def hyperparameter_gamma(self):
        return Hyperparameter("gamma", "numeric", self.gamma_bounds)

    def __call__(self, X, Y=None, eval_gradient=False):
        """Return the kernel k(X, Y) and optionally its gradient.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Y : ndarray of shape (n_samples_Y, n_features), default=None
            Right argument of the returned kernel k(X, Y). If None, k(X, X)
            if evaluated instead.

        eval_gradient : bool, default=False
            Determines whether the gradient with respect to the log of
            the kernel hyperparameter is computed.
            Only supported when Y is None.

        Returns
        -------
        K : ndarray of shape (n_samples_X, n_samples_Y)
            Kernel k(X, Y)

        K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
                optional
            The gradient of the kernel k(X, X) with respect to the log of the
            hyperparameter of the kernel. Only returned when `eval_gradient`
            is True.
        """
        pairwise_kernels_kwargs = self.pairwise_kernels_kwargs
        if self.pairwise_kernels_kwargs is None:
            pairwise_kernels_kwargs = {}

        X = np.atleast_2d(X)
        K = pairwise_kernels(
            X,
            Y,
            metric=self.metric,
            gamma=self.gamma,
            filter_params=True,
            **pairwise_kernels_kwargs,
        )
        if eval_gradient:
            if self.hyperparameter_gamma.fixed:
                return K, np.empty((X.shape[0], X.shape[0], 0))
            else:
                # approximate gradient numerically
                def f(gamma):  # helper function
                    return pairwise_kernels(
                        X,
                        Y,
                        metric=self.metric,
                        gamma=np.exp(gamma),
                        filter_params=True,
                        **pairwise_kernels_kwargs,
                    )

                return K, _approx_fprime(self.theta, f, 1e-10)
        else:
            return K

    def diag(self, X):
        """Returns the diagonal of the kernel k(X, X).

        The result of this method is identical to np.diag(self(X)); however,
        it can be evaluated more efficiently since only the diagonal is
        evaluated.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            Left argument of the returned kernel k(X, Y)

        Returns
        -------
        K_diag : ndarray of shape (n_samples_X,)
            Diagonal of kernel k(X, X)
        """
        # We have to fall back to slow way of computing diagonal
        return np.apply_along_axis(self, 1, X).ravel()

    def is_stationary(self):
        """Returns whether the kernel is stationary."""
        return self.metric in ["rbf"]

    def __repr__(self):
        return "{0}(gamma={1}, metric={2})".format(
            self.__class__.__name__, self.gamma, self.metric
        )