File size: 1,503 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
"""Methods for scaling, centering, normalization, binarization, and more."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from ._data import (
Binarizer,
KernelCenterer,
MaxAbsScaler,
MinMaxScaler,
Normalizer,
PowerTransformer,
QuantileTransformer,
RobustScaler,
StandardScaler,
add_dummy_feature,
binarize,
maxabs_scale,
minmax_scale,
normalize,
power_transform,
quantile_transform,
robust_scale,
scale,
)
from ._discretization import KBinsDiscretizer
from ._encoders import OneHotEncoder, OrdinalEncoder
from ._function_transformer import FunctionTransformer
from ._label import LabelBinarizer, LabelEncoder, MultiLabelBinarizer, label_binarize
from ._polynomial import PolynomialFeatures, SplineTransformer
from ._target_encoder import TargetEncoder
__all__ = [
"Binarizer",
"FunctionTransformer",
"KBinsDiscretizer",
"KernelCenterer",
"LabelBinarizer",
"LabelEncoder",
"MultiLabelBinarizer",
"MinMaxScaler",
"MaxAbsScaler",
"QuantileTransformer",
"Normalizer",
"OneHotEncoder",
"OrdinalEncoder",
"PowerTransformer",
"RobustScaler",
"SplineTransformer",
"StandardScaler",
"TargetEncoder",
"add_dummy_feature",
"PolynomialFeatures",
"binarize",
"normalize",
"scale",
"robust_scale",
"maxabs_scale",
"minmax_scale",
"label_binarize",
"quantile_transform",
"power_transform",
]
|