File size: 31,265 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import pickle
import re
import warnings

import numpy as np
import pytest
import scipy.sparse as sp
from numpy.testing import assert_allclose

import sklearn
from sklearn import config_context, datasets
from sklearn.base import (
    BaseEstimator,
    OutlierMixin,
    TransformerMixin,
    clone,
    is_classifier,
    is_clusterer,
    is_outlier_detector,
    is_regressor,
)
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.ensemble import IsolationForest
from sklearn.exceptions import InconsistentVersionWarning
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC, SVR
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._mocking import MockDataFrame
from sklearn.utils._set_output import _get_output_config
from sklearn.utils._testing import (
    _convert_container,
    assert_array_equal,
)
from sklearn.utils.validation import _check_n_features, validate_data


#############################################################################
# A few test classes
class MyEstimator(BaseEstimator):
    def __init__(self, l1=0, empty=None):
        self.l1 = l1
        self.empty = empty


class K(BaseEstimator):
    def __init__(self, c=None, d=None):
        self.c = c
        self.d = d


class T(BaseEstimator):
    def __init__(self, a=None, b=None):
        self.a = a
        self.b = b


class NaNTag(BaseEstimator):
    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.allow_nan = True
        return tags


class NoNaNTag(BaseEstimator):
    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.allow_nan = False
        return tags


class OverrideTag(NaNTag):
    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.allow_nan = False
        return tags


class DiamondOverwriteTag(NaNTag, NoNaNTag):
    pass


class InheritDiamondOverwriteTag(DiamondOverwriteTag):
    pass


class ModifyInitParams(BaseEstimator):
    """Deprecated behavior.
    Equal parameters but with a type cast.
    Doesn't fulfill a is a
    """

    def __init__(self, a=np.array([0])):
        self.a = a.copy()


class Buggy(BaseEstimator):
    "A buggy estimator that does not set its parameters right."

    def __init__(self, a=None):
        self.a = 1


class NoEstimator:
    def __init__(self):
        pass

    def fit(self, X=None, y=None):
        return self

    def predict(self, X=None):
        return None


class VargEstimator(BaseEstimator):
    """scikit-learn estimators shouldn't have vargs."""

    def __init__(self, *vargs):
        pass


#############################################################################
# The tests


def test_clone():
    # Tests that clone creates a correct deep copy.
    # We create an estimator, make a copy of its original state
    # (which, in this case, is the current state of the estimator),
    # and check that the obtained copy is a correct deep copy.

    from sklearn.feature_selection import SelectFpr, f_classif

    selector = SelectFpr(f_classif, alpha=0.1)
    new_selector = clone(selector)
    assert selector is not new_selector
    assert selector.get_params() == new_selector.get_params()

    selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
    new_selector = clone(selector)
    assert selector is not new_selector


def test_clone_2():
    # Tests that clone doesn't copy everything.
    # We first create an estimator, give it an own attribute, and
    # make a copy of its original state. Then we check that the copy doesn't
    # have the specific attribute we manually added to the initial estimator.

    from sklearn.feature_selection import SelectFpr, f_classif

    selector = SelectFpr(f_classif, alpha=0.1)
    selector.own_attribute = "test"
    new_selector = clone(selector)
    assert not hasattr(new_selector, "own_attribute")


def test_clone_buggy():
    # Check that clone raises an error on buggy estimators.
    buggy = Buggy()
    buggy.a = 2
    with pytest.raises(RuntimeError):
        clone(buggy)

    no_estimator = NoEstimator()
    with pytest.raises(TypeError):
        clone(no_estimator)

    varg_est = VargEstimator()
    with pytest.raises(RuntimeError):
        clone(varg_est)

    est = ModifyInitParams()
    with pytest.raises(RuntimeError):
        clone(est)


def test_clone_empty_array():
    # Regression test for cloning estimators with empty arrays
    clf = MyEstimator(empty=np.array([]))
    clf2 = clone(clf)
    assert_array_equal(clf.empty, clf2.empty)

    clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]])))
    clf2 = clone(clf)
    assert_array_equal(clf.empty.data, clf2.empty.data)


def test_clone_nan():
    # Regression test for cloning estimators with default parameter as np.nan
    clf = MyEstimator(empty=np.nan)
    clf2 = clone(clf)

    assert clf.empty is clf2.empty


def test_clone_dict():
    # test that clone creates a clone of a dict
    orig = {"a": MyEstimator()}
    cloned = clone(orig)
    assert orig["a"] is not cloned["a"]


def test_clone_sparse_matrices():
    sparse_matrix_classes = [
        cls
        for name in dir(sp)
        if name.endswith("_matrix") and type(cls := getattr(sp, name)) is type
    ]

    for cls in sparse_matrix_classes:
        sparse_matrix = cls(np.eye(5))
        clf = MyEstimator(empty=sparse_matrix)
        clf_cloned = clone(clf)
        assert clf.empty.__class__ is clf_cloned.empty.__class__
        assert_array_equal(clf.empty.toarray(), clf_cloned.empty.toarray())


def test_clone_estimator_types():
    # Check that clone works for parameters that are types rather than
    # instances
    clf = MyEstimator(empty=MyEstimator)
    clf2 = clone(clf)

    assert clf.empty is clf2.empty


def test_clone_class_rather_than_instance():
    # Check that clone raises expected error message when
    # cloning class rather than instance
    msg = "You should provide an instance of scikit-learn estimator"
    with pytest.raises(TypeError, match=msg):
        clone(MyEstimator)


def test_repr():
    # Smoke test the repr of the base estimator.
    my_estimator = MyEstimator()
    repr(my_estimator)
    test = T(K(), K())
    assert repr(test) == "T(a=K(), b=K())"

    some_est = T(a=["long_params"] * 1000)
    assert len(repr(some_est)) == 485


def test_str():
    # Smoke test the str of the base estimator
    my_estimator = MyEstimator()
    str(my_estimator)


def test_get_params():
    test = T(K(), K)

    assert "a__d" in test.get_params(deep=True)
    assert "a__d" not in test.get_params(deep=False)

    test.set_params(a__d=2)
    assert test.a.d == 2

    with pytest.raises(ValueError):
        test.set_params(a__a=2)


# TODO(1.8): Remove this test when the deprecation is removed
def test_is_estimator_type_class():
    with pytest.warns(FutureWarning, match="passing a class to.*is deprecated"):
        assert is_classifier(SVC)

    with pytest.warns(FutureWarning, match="passing a class to.*is deprecated"):
        assert is_regressor(SVR)

    with pytest.warns(FutureWarning, match="passing a class to.*is deprecated"):
        assert is_clusterer(KMeans)

    with pytest.warns(FutureWarning, match="passing a class to.*is deprecated"):
        assert is_outlier_detector(IsolationForest)


@pytest.mark.parametrize(
    "estimator, expected_result",
    [
        (SVC(), True),
        (GridSearchCV(SVC(), {"C": [0.1, 1]}), True),
        (Pipeline([("svc", SVC())]), True),
        (Pipeline([("svc_cv", GridSearchCV(SVC(), {"C": [0.1, 1]}))]), True),
        (SVR(), False),
        (GridSearchCV(SVR(), {"C": [0.1, 1]}), False),
        (Pipeline([("svr", SVR())]), False),
        (Pipeline([("svr_cv", GridSearchCV(SVR(), {"C": [0.1, 1]}))]), False),
    ],
)
def test_is_classifier(estimator, expected_result):
    assert is_classifier(estimator) == expected_result


@pytest.mark.parametrize(
    "estimator, expected_result",
    [
        (SVR(), True),
        (GridSearchCV(SVR(), {"C": [0.1, 1]}), True),
        (Pipeline([("svr", SVR())]), True),
        (Pipeline([("svr_cv", GridSearchCV(SVR(), {"C": [0.1, 1]}))]), True),
        (SVC(), False),
        (GridSearchCV(SVC(), {"C": [0.1, 1]}), False),
        (Pipeline([("svc", SVC())]), False),
        (Pipeline([("svc_cv", GridSearchCV(SVC(), {"C": [0.1, 1]}))]), False),
    ],
)
def test_is_regressor(estimator, expected_result):
    assert is_regressor(estimator) == expected_result


@pytest.mark.parametrize(
    "estimator, expected_result",
    [
        (KMeans(), True),
        (GridSearchCV(KMeans(), {"n_clusters": [3, 8]}), True),
        (Pipeline([("km", KMeans())]), True),
        (Pipeline([("km_cv", GridSearchCV(KMeans(), {"n_clusters": [3, 8]}))]), True),
        (SVC(), False),
        (GridSearchCV(SVC(), {"C": [0.1, 1]}), False),
        (Pipeline([("svc", SVC())]), False),
        (Pipeline([("svc_cv", GridSearchCV(SVC(), {"C": [0.1, 1]}))]), False),
    ],
)
def test_is_clusterer(estimator, expected_result):
    assert is_clusterer(estimator) == expected_result


def test_set_params():
    # test nested estimator parameter setting
    clf = Pipeline([("svc", SVC())])

    # non-existing parameter in svc
    with pytest.raises(ValueError):
        clf.set_params(svc__stupid_param=True)

    # non-existing parameter of pipeline
    with pytest.raises(ValueError):
        clf.set_params(svm__stupid_param=True)

    # we don't currently catch if the things in pipeline are estimators
    # bad_pipeline = Pipeline([("bad", NoEstimator())])
    # with pytest.raises(AttributeError):
    #    bad_pipeline.set_params(bad__stupid_param=True)


def test_set_params_passes_all_parameters():
    # Make sure all parameters are passed together to set_params
    # of nested estimator. Regression test for #9944

    class TestDecisionTree(DecisionTreeClassifier):
        def set_params(self, **kwargs):
            super().set_params(**kwargs)
            # expected_kwargs is in test scope
            assert kwargs == expected_kwargs
            return self

    expected_kwargs = {"max_depth": 5, "min_samples_leaf": 2}
    for est in [
        Pipeline([("estimator", TestDecisionTree())]),
        GridSearchCV(TestDecisionTree(), {}),
    ]:
        est.set_params(estimator__max_depth=5, estimator__min_samples_leaf=2)


def test_set_params_updates_valid_params():
    # Check that set_params tries to set SVC().C, not
    # DecisionTreeClassifier().C
    gscv = GridSearchCV(DecisionTreeClassifier(), {})
    gscv.set_params(estimator=SVC(), estimator__C=42.0)
    assert gscv.estimator.C == 42.0


@pytest.mark.parametrize(
    "tree,dataset",
    [
        (
            DecisionTreeClassifier(max_depth=2, random_state=0),
            datasets.make_classification(random_state=0),
        ),
        (
            DecisionTreeRegressor(max_depth=2, random_state=0),
            datasets.make_regression(random_state=0),
        ),
    ],
)
def test_score_sample_weight(tree, dataset):
    rng = np.random.RandomState(0)
    # check that the score with and without sample weights are different
    X, y = dataset

    tree.fit(X, y)
    # generate random sample weights
    sample_weight = rng.randint(1, 10, size=len(y))
    score_unweighted = tree.score(X, y)
    score_weighted = tree.score(X, y, sample_weight=sample_weight)
    msg = "Unweighted and weighted scores are unexpectedly equal"
    assert score_unweighted != score_weighted, msg


def test_clone_pandas_dataframe():
    class DummyEstimator(TransformerMixin, BaseEstimator):
        """This is a dummy class for generating numerical features

        This feature extractor extracts numerical features from pandas data
        frame.

        Parameters
        ----------

        df: pandas data frame
            The pandas data frame parameter.

        Notes
        -----
        """

        def __init__(self, df=None, scalar_param=1):
            self.df = df
            self.scalar_param = scalar_param

        def fit(self, X, y=None):
            pass

        def transform(self, X):
            pass

    # build and clone estimator
    d = np.arange(10)
    df = MockDataFrame(d)
    e = DummyEstimator(df, scalar_param=1)
    cloned_e = clone(e)

    # the test
    assert (e.df == cloned_e.df).values.all()
    assert e.scalar_param == cloned_e.scalar_param


def test_clone_protocol():
    """Checks that clone works with `__sklearn_clone__` protocol."""

    class FrozenEstimator(BaseEstimator):
        def __init__(self, fitted_estimator):
            self.fitted_estimator = fitted_estimator

        def __getattr__(self, name):
            return getattr(self.fitted_estimator, name)

        def __sklearn_clone__(self):
            return self

        def fit(self, *args, **kwargs):
            return self

        def fit_transform(self, *args, **kwargs):
            return self.fitted_estimator.transform(*args, **kwargs)

    X = np.array([[-1, -1], [-2, -1], [-3, -2]])
    pca = PCA().fit(X)
    components = pca.components_

    frozen_pca = FrozenEstimator(pca)
    assert_allclose(frozen_pca.components_, components)

    # Calling PCA methods such as `get_feature_names_out` still works
    assert_array_equal(frozen_pca.get_feature_names_out(), pca.get_feature_names_out())

    # Fitting on a new data does not alter `components_`
    X_new = np.asarray([[-1, 2], [3, 4], [1, 2]])
    frozen_pca.fit(X_new)
    assert_allclose(frozen_pca.components_, components)

    # `fit_transform` does not alter state
    frozen_pca.fit_transform(X_new)
    assert_allclose(frozen_pca.components_, components)

    # Cloning estimator is a no-op
    clone_frozen_pca = clone(frozen_pca)
    assert clone_frozen_pca is frozen_pca
    assert_allclose(clone_frozen_pca.components_, components)


def test_pickle_version_warning_is_not_raised_with_matching_version():
    iris = datasets.load_iris()
    tree = DecisionTreeClassifier().fit(iris.data, iris.target)
    tree_pickle = pickle.dumps(tree)
    assert b"_sklearn_version" in tree_pickle

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        tree_restored = pickle.loads(tree_pickle)

    # test that we can predict with the restored decision tree classifier
    score_of_original = tree.score(iris.data, iris.target)
    score_of_restored = tree_restored.score(iris.data, iris.target)
    assert score_of_original == score_of_restored


class TreeBadVersion(DecisionTreeClassifier):
    def __getstate__(self):
        return dict(self.__dict__.items(), _sklearn_version="something")


pickle_error_message = (
    "Trying to unpickle estimator {estimator} from "
    "version {old_version} when using version "
    "{current_version}. This might "
    "lead to breaking code or invalid results. "
    "Use at your own risk."
)


def test_pickle_version_warning_is_issued_upon_different_version():
    iris = datasets.load_iris()
    tree = TreeBadVersion().fit(iris.data, iris.target)
    tree_pickle_other = pickle.dumps(tree)
    message = pickle_error_message.format(
        estimator="TreeBadVersion",
        old_version="something",
        current_version=sklearn.__version__,
    )
    with pytest.warns(UserWarning, match=message) as warning_record:
        pickle.loads(tree_pickle_other)

    message = warning_record.list[0].message
    assert isinstance(message, InconsistentVersionWarning)
    assert message.estimator_name == "TreeBadVersion"
    assert message.original_sklearn_version == "something"
    assert message.current_sklearn_version == sklearn.__version__


class TreeNoVersion(DecisionTreeClassifier):
    def __getstate__(self):
        return self.__dict__


def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle():
    iris = datasets.load_iris()
    # TreeNoVersion has no getstate, like pre-0.18
    tree = TreeNoVersion().fit(iris.data, iris.target)

    tree_pickle_noversion = pickle.dumps(tree)
    assert b"_sklearn_version" not in tree_pickle_noversion
    message = pickle_error_message.format(
        estimator="TreeNoVersion",
        old_version="pre-0.18",
        current_version=sklearn.__version__,
    )
    # check we got the warning about using pre-0.18 pickle
    with pytest.warns(UserWarning, match=message):
        pickle.loads(tree_pickle_noversion)


def test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator():
    iris = datasets.load_iris()
    tree = TreeNoVersion().fit(iris.data, iris.target)
    tree_pickle_noversion = pickle.dumps(tree)
    try:
        module_backup = TreeNoVersion.__module__
        TreeNoVersion.__module__ = "notsklearn"

        with warnings.catch_warnings():
            warnings.simplefilter("error")

            pickle.loads(tree_pickle_noversion)
    finally:
        TreeNoVersion.__module__ = module_backup


class DontPickleAttributeMixin:
    def __getstate__(self):
        data = self.__dict__.copy()
        data["_attribute_not_pickled"] = None
        return data

    def __setstate__(self, state):
        state["_restored"] = True
        self.__dict__.update(state)


class MultiInheritanceEstimator(DontPickleAttributeMixin, BaseEstimator):
    def __init__(self, attribute_pickled=5):
        self.attribute_pickled = attribute_pickled
        self._attribute_not_pickled = None


def test_pickling_when_getstate_is_overwritten_by_mixin():
    estimator = MultiInheritanceEstimator()
    estimator._attribute_not_pickled = "this attribute should not be pickled"

    serialized = pickle.dumps(estimator)
    estimator_restored = pickle.loads(serialized)
    assert estimator_restored.attribute_pickled == 5
    assert estimator_restored._attribute_not_pickled is None
    assert estimator_restored._restored


def test_pickling_when_getstate_is_overwritten_by_mixin_outside_of_sklearn():
    try:
        estimator = MultiInheritanceEstimator()
        text = "this attribute should not be pickled"
        estimator._attribute_not_pickled = text
        old_mod = type(estimator).__module__
        type(estimator).__module__ = "notsklearn"

        serialized = estimator.__getstate__()
        assert serialized == {"_attribute_not_pickled": None, "attribute_pickled": 5}

        serialized["attribute_pickled"] = 4
        estimator.__setstate__(serialized)
        assert estimator.attribute_pickled == 4
        assert estimator._restored
    finally:
        type(estimator).__module__ = old_mod


class SingleInheritanceEstimator(BaseEstimator):
    def __init__(self, attribute_pickled=5):
        self.attribute_pickled = attribute_pickled
        self._attribute_not_pickled = None

    def __getstate__(self):
        state = super().__getstate__()
        state["_attribute_not_pickled"] = None
        return state


def test_pickling_works_when_getstate_is_overwritten_in_the_child_class():
    estimator = SingleInheritanceEstimator()
    estimator._attribute_not_pickled = "this attribute should not be pickled"

    serialized = pickle.dumps(estimator)
    estimator_restored = pickle.loads(serialized)
    assert estimator_restored.attribute_pickled == 5
    assert estimator_restored._attribute_not_pickled is None


def test_tag_inheritance():
    # test that changing tags by inheritance is not allowed

    nan_tag_est = NaNTag()
    no_nan_tag_est = NoNaNTag()
    assert nan_tag_est.__sklearn_tags__().input_tags.allow_nan
    assert not no_nan_tag_est.__sklearn_tags__().input_tags.allow_nan

    redefine_tags_est = OverrideTag()
    assert not redefine_tags_est.__sklearn_tags__().input_tags.allow_nan

    diamond_tag_est = DiamondOverwriteTag()
    assert diamond_tag_est.__sklearn_tags__().input_tags.allow_nan

    inherit_diamond_tag_est = InheritDiamondOverwriteTag()
    assert inherit_diamond_tag_est.__sklearn_tags__().input_tags.allow_nan


def test_raises_on_get_params_non_attribute():
    class MyEstimator(BaseEstimator):
        def __init__(self, param=5):
            pass

        def fit(self, X, y=None):
            return self

    est = MyEstimator()
    msg = "'MyEstimator' object has no attribute 'param'"

    with pytest.raises(AttributeError, match=msg):
        est.get_params()


def test_repr_mimebundle_():
    # Checks the display configuration flag controls the json output
    tree = DecisionTreeClassifier()
    output = tree._repr_mimebundle_()
    assert "text/plain" in output
    assert "text/html" in output

    with config_context(display="text"):
        output = tree._repr_mimebundle_()
        assert "text/plain" in output
        assert "text/html" not in output


def test_repr_html_wraps():
    # Checks the display configuration flag controls the html output
    tree = DecisionTreeClassifier()

    output = tree._repr_html_()
    assert "<style>" in output

    with config_context(display="text"):
        msg = "_repr_html_ is only defined when"
        with pytest.raises(AttributeError, match=msg):
            output = tree._repr_html_()


def test_n_features_in_validation():
    """Check that `_check_n_features` validates data when reset=False"""
    est = MyEstimator()
    X_train = [[1, 2, 3], [4, 5, 6]]
    _check_n_features(est, X_train, reset=True)

    assert est.n_features_in_ == 3

    msg = "X does not contain any features, but MyEstimator is expecting 3 features"
    with pytest.raises(ValueError, match=msg):
        _check_n_features(est, "invalid X", reset=False)


def test_n_features_in_no_validation():
    """Check that `_check_n_features` does not validate data when
    n_features_in_ is not defined."""
    est = MyEstimator()
    _check_n_features(est, "invalid X", reset=True)

    assert not hasattr(est, "n_features_in_")

    # does not raise
    _check_n_features(est, "invalid X", reset=False)


def test_feature_names_in():
    """Check that feature_name_in are recorded by `_validate_data`"""
    pd = pytest.importorskip("pandas")
    iris = datasets.load_iris()
    X_np = iris.data
    df = pd.DataFrame(X_np, columns=iris.feature_names)

    class NoOpTransformer(TransformerMixin, BaseEstimator):
        def fit(self, X, y=None):
            validate_data(self, X)
            return self

        def transform(self, X):
            validate_data(self, X, reset=False)
            return X

    # fit on dataframe saves the feature names
    trans = NoOpTransformer().fit(df)
    assert_array_equal(trans.feature_names_in_, df.columns)

    # fit again but on ndarray does not keep the previous feature names (see #21383)
    trans.fit(X_np)
    assert not hasattr(trans, "feature_names_in_")

    trans.fit(df)
    msg = "The feature names should match those that were passed"
    df_bad = pd.DataFrame(X_np, columns=iris.feature_names[::-1])
    with pytest.raises(ValueError, match=msg):
        trans.transform(df_bad)

    # warns when fitted on dataframe and transforming a ndarray
    msg = (
        "X does not have valid feature names, but NoOpTransformer was "
        "fitted with feature names"
    )
    with pytest.warns(UserWarning, match=msg):
        trans.transform(X_np)

    # warns when fitted on a ndarray and transforming dataframe
    msg = "X has feature names, but NoOpTransformer was fitted without feature names"
    trans = NoOpTransformer().fit(X_np)
    with pytest.warns(UserWarning, match=msg):
        trans.transform(df)

    # fit on dataframe with all integer feature names works without warning
    df_int_names = pd.DataFrame(X_np)
    trans = NoOpTransformer()
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        trans.fit(df_int_names)

    # fit on dataframe with no feature names or all integer feature names
    # -> do not warn on transform
    Xs = [X_np, df_int_names]
    for X in Xs:
        with warnings.catch_warnings():
            warnings.simplefilter("error", UserWarning)
            trans.transform(X)

    # fit on dataframe with feature names that are mixed raises an error:
    df_mixed = pd.DataFrame(X_np, columns=["a", "b", 1, 2])
    trans = NoOpTransformer()
    msg = re.escape(
        "Feature names are only supported if all input features have string names, "
        "but your input has ['int', 'str'] as feature name / column name types. "
        "If you want feature names to be stored and validated, you must convert "
        "them all to strings, by using X.columns = X.columns.astype(str) for "
        "example. Otherwise you can remove feature / column names from your input "
        "data, or convert them all to a non-string data type."
    )
    with pytest.raises(TypeError, match=msg):
        trans.fit(df_mixed)

    # transform on feature names that are mixed also raises:
    with pytest.raises(TypeError, match=msg):
        trans.transform(df_mixed)


def test_validate_data_skip_check_array():
    """Check skip_check_array option of _validate_data."""

    pd = pytest.importorskip("pandas")
    iris = datasets.load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    y = pd.Series(iris.target)

    class NoOpTransformer(TransformerMixin, BaseEstimator):
        pass

    no_op = NoOpTransformer()
    X_np_out = validate_data(no_op, df, skip_check_array=False)
    assert isinstance(X_np_out, np.ndarray)
    assert_allclose(X_np_out, df.to_numpy())

    X_df_out = validate_data(no_op, df, skip_check_array=True)
    assert X_df_out is df

    y_np_out = validate_data(no_op, y=y, skip_check_array=False)
    assert isinstance(y_np_out, np.ndarray)
    assert_allclose(y_np_out, y.to_numpy())

    y_series_out = validate_data(no_op, y=y, skip_check_array=True)
    assert y_series_out is y

    X_np_out, y_np_out = validate_data(no_op, df, y, skip_check_array=False)
    assert isinstance(X_np_out, np.ndarray)
    assert_allclose(X_np_out, df.to_numpy())
    assert isinstance(y_np_out, np.ndarray)
    assert_allclose(y_np_out, y.to_numpy())

    X_df_out, y_series_out = validate_data(no_op, df, y, skip_check_array=True)
    assert X_df_out is df
    assert y_series_out is y

    msg = "Validation should be done on X, y or both."
    with pytest.raises(ValueError, match=msg):
        validate_data(no_op)


def test_clone_keeps_output_config():
    """Check that clone keeps the set_output config."""

    ss = StandardScaler().set_output(transform="pandas")
    config = _get_output_config("transform", ss)

    ss_clone = clone(ss)
    config_clone = _get_output_config("transform", ss_clone)
    assert config == config_clone


class _Empty:
    pass


class EmptyEstimator(_Empty, BaseEstimator):
    pass


@pytest.mark.parametrize("estimator", [BaseEstimator(), EmptyEstimator()])
def test_estimator_empty_instance_dict(estimator):
    """Check that ``__getstate__`` returns an empty ``dict`` with an empty
    instance.

    Python 3.11+ changed behaviour by returning ``None`` instead of raising an
    ``AttributeError``. Non-regression test for gh-25188.
    """
    state = estimator.__getstate__()
    expected = {"_sklearn_version": sklearn.__version__}
    assert state == expected

    # this should not raise
    pickle.loads(pickle.dumps(BaseEstimator()))


def test_estimator_getstate_using_slots_error_message():
    """Using a `BaseEstimator` with `__slots__` is not supported."""

    class WithSlots:
        __slots__ = ("x",)

    class Estimator(BaseEstimator, WithSlots):
        pass

    msg = (
        "You cannot use `__slots__` in objects inheriting from "
        "`sklearn.base.BaseEstimator`"
    )

    with pytest.raises(TypeError, match=msg):
        Estimator().__getstate__()

    with pytest.raises(TypeError, match=msg):
        pickle.dumps(Estimator())


@pytest.mark.parametrize(
    "constructor_name, minversion",
    [
        ("dataframe", "1.5.0"),
        ("pyarrow", "12.0.0"),
        ("polars", "0.20.23"),
    ],
)
def test_dataframe_protocol(constructor_name, minversion):
    """Uses the dataframe exchange protocol to get feature names."""
    data = [[1, 4, 2], [3, 3, 6]]
    columns = ["col_0", "col_1", "col_2"]
    df = _convert_container(
        data, constructor_name, columns_name=columns, minversion=minversion
    )

    class NoOpTransformer(TransformerMixin, BaseEstimator):
        def fit(self, X, y=None):
            validate_data(self, X)
            return self

        def transform(self, X):
            return validate_data(self, X, reset=False)

    no_op = NoOpTransformer()
    no_op.fit(df)
    assert_array_equal(no_op.feature_names_in_, columns)
    X_out = no_op.transform(df)

    if constructor_name != "pyarrow":
        # pyarrow does not work with `np.asarray`
        # https://github.com/apache/arrow/issues/34886
        assert_allclose(df, X_out)

    bad_names = ["a", "b", "c"]
    df_bad = _convert_container(data, constructor_name, columns_name=bad_names)
    with pytest.raises(ValueError, match="The feature names should match"):
        no_op.transform(df_bad)


@config_context(enable_metadata_routing=True)
def test_transformer_fit_transform_with_metadata_in_transform():
    """Test that having a transformer with metadata for transform raises a
    warning when calling fit_transform."""

    class CustomTransformer(BaseEstimator, TransformerMixin):
        def fit(self, X, y=None, prop=None):
            return self

        def transform(self, X, prop=None):
            return X

    # passing the metadata to `fit_transform` should raise a warning since it
    # could potentially be consumed by `transform`
    with pytest.warns(UserWarning, match="`transform` method which consumes metadata"):
        CustomTransformer().set_transform_request(prop=True).fit_transform(
            [[1]], [1], prop=1
        )

    # not passing a metadata which can potentially be consumed by `transform` should
    # not raise a warning
    with warnings.catch_warnings(record=True) as record:
        CustomTransformer().set_transform_request(prop=True).fit_transform([[1]], [1])
        assert len(record) == 0


@config_context(enable_metadata_routing=True)
def test_outlier_mixin_fit_predict_with_metadata_in_predict():
    """Test that having an OutlierMixin with metadata for predict raises a
    warning when calling fit_predict."""

    class CustomOutlierDetector(BaseEstimator, OutlierMixin):
        def fit(self, X, y=None, prop=None):
            return self

        def predict(self, X, prop=None):
            return X

    # passing the metadata to `fit_predict` should raise a warning since it
    # could potentially be consumed by `predict`
    with pytest.warns(UserWarning, match="`predict` method which consumes metadata"):
        CustomOutlierDetector().set_predict_request(prop=True).fit_predict(
            [[1]], [1], prop=1
        )

    # not passing a metadata which can potentially be consumed by `predict` should
    # not raise a warning
    with warnings.catch_warnings(record=True) as record:
        CustomOutlierDetector().set_predict_request(prop=True).fit_predict([[1]], [1])
        assert len(record) == 0