File size: 16,579 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import re

import numpy as np
import pytest

from sklearn.datasets import make_classification
from sklearn.kernel_approximation import (
    AdditiveChi2Sampler,
    Nystroem,
    PolynomialCountSketch,
    RBFSampler,
    SkewedChi2Sampler,
)
from sklearn.metrics.pairwise import (
    chi2_kernel,
    kernel_metrics,
    polynomial_kernel,
    rbf_kernel,
)
from sklearn.utils._testing import (
    assert_allclose,
    assert_array_almost_equal,
    assert_array_equal,
)
from sklearn.utils.fixes import CSR_CONTAINERS

# generate data
rng = np.random.RandomState(0)
X = rng.random_sample(size=(300, 50))
Y = rng.random_sample(size=(300, 50))
X /= X.sum(axis=1)[:, np.newaxis]
Y /= Y.sum(axis=1)[:, np.newaxis]

# Make sure X and Y are not writable to avoid introducing dependencies between
# tests.
X.flags.writeable = False
Y.flags.writeable = False


@pytest.mark.parametrize("gamma", [0.1, 1, 2.5])
@pytest.mark.parametrize("degree, n_components", [(1, 500), (2, 500), (3, 5000)])
@pytest.mark.parametrize("coef0", [0, 2.5])
def test_polynomial_count_sketch(gamma, degree, coef0, n_components):
    # test that PolynomialCountSketch approximates polynomial
    # kernel on random data

    # compute exact kernel
    kernel = polynomial_kernel(X, Y, gamma=gamma, degree=degree, coef0=coef0)

    # approximate kernel mapping
    ps_transform = PolynomialCountSketch(
        n_components=n_components,
        gamma=gamma,
        coef0=coef0,
        degree=degree,
        random_state=42,
    )
    X_trans = ps_transform.fit_transform(X)
    Y_trans = ps_transform.transform(Y)
    kernel_approx = np.dot(X_trans, Y_trans.T)

    error = kernel - kernel_approx
    assert np.abs(np.mean(error)) <= 0.05  # close to unbiased
    np.abs(error, out=error)
    assert np.max(error) <= 0.1  # nothing too far off
    assert np.mean(error) <= 0.05  # mean is fairly close


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("gamma", [0.1, 1.0])
@pytest.mark.parametrize("degree", [1, 2, 3])
@pytest.mark.parametrize("coef0", [0, 2.5])
def test_polynomial_count_sketch_dense_sparse(gamma, degree, coef0, csr_container):
    """Check that PolynomialCountSketch results are the same for dense and sparse
    input.
    """
    ps_dense = PolynomialCountSketch(
        n_components=500, gamma=gamma, degree=degree, coef0=coef0, random_state=42
    )
    Xt_dense = ps_dense.fit_transform(X)
    Yt_dense = ps_dense.transform(Y)

    ps_sparse = PolynomialCountSketch(
        n_components=500, gamma=gamma, degree=degree, coef0=coef0, random_state=42
    )
    Xt_sparse = ps_sparse.fit_transform(csr_container(X))
    Yt_sparse = ps_sparse.transform(csr_container(Y))

    assert_allclose(Xt_dense, Xt_sparse)
    assert_allclose(Yt_dense, Yt_sparse)


def _linear_kernel(X, Y):
    return np.dot(X, Y.T)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_additive_chi2_sampler(csr_container):
    # test that AdditiveChi2Sampler approximates kernel on random data

    # compute exact kernel
    # abbreviations for easier formula
    X_ = X[:, np.newaxis, :].copy()
    Y_ = Y[np.newaxis, :, :].copy()

    large_kernel = 2 * X_ * Y_ / (X_ + Y_)

    # reduce to n_samples_x x n_samples_y by summing over features
    kernel = large_kernel.sum(axis=2)

    # approximate kernel mapping
    transform = AdditiveChi2Sampler(sample_steps=3)
    X_trans = transform.fit_transform(X)
    Y_trans = transform.transform(Y)

    kernel_approx = np.dot(X_trans, Y_trans.T)

    assert_array_almost_equal(kernel, kernel_approx, 1)

    X_sp_trans = transform.fit_transform(csr_container(X))
    Y_sp_trans = transform.transform(csr_container(Y))

    assert_array_equal(X_trans, X_sp_trans.toarray())
    assert_array_equal(Y_trans, Y_sp_trans.toarray())

    # test error is raised on negative input
    Y_neg = Y.copy()
    Y_neg[0, 0] = -1
    msg = "Negative values in data passed to"
    with pytest.raises(ValueError, match=msg):
        transform.fit(Y_neg)


@pytest.mark.parametrize("method", ["fit", "fit_transform", "transform"])
@pytest.mark.parametrize("sample_steps", range(1, 4))
def test_additive_chi2_sampler_sample_steps(method, sample_steps):
    """Check that the input sample step doesn't raise an error
    and that sample interval doesn't change after fit.
    """
    transformer = AdditiveChi2Sampler(sample_steps=sample_steps)
    getattr(transformer, method)(X)

    sample_interval = 0.5
    transformer = AdditiveChi2Sampler(
        sample_steps=sample_steps,
        sample_interval=sample_interval,
    )
    getattr(transformer, method)(X)
    assert transformer.sample_interval == sample_interval


@pytest.mark.parametrize("method", ["fit", "fit_transform", "transform"])
def test_additive_chi2_sampler_wrong_sample_steps(method):
    """Check that we raise a ValueError on invalid sample_steps"""
    transformer = AdditiveChi2Sampler(sample_steps=4)
    msg = re.escape(
        "If sample_steps is not in [1, 2, 3], you need to provide sample_interval"
    )
    with pytest.raises(ValueError, match=msg):
        getattr(transformer, method)(X)


def test_skewed_chi2_sampler():
    # test that RBFSampler approximates kernel on random data

    # compute exact kernel
    c = 0.03
    # set on negative component but greater than c to ensure that the kernel
    # approximation is valid on the group (-c; +\infty) endowed with the skewed
    # multiplication.
    Y_ = Y.copy()
    Y_[0, 0] = -c / 2.0

    # abbreviations for easier formula
    X_c = (X + c)[:, np.newaxis, :]
    Y_c = (Y_ + c)[np.newaxis, :, :]

    # we do it in log-space in the hope that it's more stable
    # this array is n_samples_x x n_samples_y big x n_features
    log_kernel = (
        (np.log(X_c) / 2.0) + (np.log(Y_c) / 2.0) + np.log(2.0) - np.log(X_c + Y_c)
    )
    # reduce to n_samples_x x n_samples_y by summing over features in log-space
    kernel = np.exp(log_kernel.sum(axis=2))

    # approximate kernel mapping
    transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42)
    X_trans = transform.fit_transform(X)
    Y_trans = transform.transform(Y_)

    kernel_approx = np.dot(X_trans, Y_trans.T)
    assert_array_almost_equal(kernel, kernel_approx, 1)
    assert np.isfinite(kernel).all(), "NaNs found in the Gram matrix"
    assert np.isfinite(kernel_approx).all(), "NaNs found in the approximate Gram matrix"

    # test error is raised on when inputs contains values smaller than -c
    Y_neg = Y_.copy()
    Y_neg[0, 0] = -c * 2.0
    msg = "X may not contain entries smaller than -skewedness"
    with pytest.raises(ValueError, match=msg):
        transform.transform(Y_neg)


def test_additive_chi2_sampler_exceptions():
    """Ensures correct error message"""
    transformer = AdditiveChi2Sampler()
    X_neg = X.copy()
    X_neg[0, 0] = -1
    with pytest.raises(ValueError, match="X in AdditiveChi2Sampler"):
        transformer.fit(X_neg)
    with pytest.raises(ValueError, match="X in AdditiveChi2Sampler"):
        transformer.fit(X)
        transformer.transform(X_neg)


def test_rbf_sampler():
    # test that RBFSampler approximates kernel on random data
    # compute exact kernel
    gamma = 10.0
    kernel = rbf_kernel(X, Y, gamma=gamma)

    # approximate kernel mapping
    rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42)
    X_trans = rbf_transform.fit_transform(X)
    Y_trans = rbf_transform.transform(Y)
    kernel_approx = np.dot(X_trans, Y_trans.T)

    error = kernel - kernel_approx
    assert np.abs(np.mean(error)) <= 0.01  # close to unbiased
    np.abs(error, out=error)
    assert np.max(error) <= 0.1  # nothing too far off
    assert np.mean(error) <= 0.05  # mean is fairly close


def test_rbf_sampler_fitted_attributes_dtype(global_dtype):
    """Check that the fitted attributes are stored accordingly to the
    data type of X."""
    rbf = RBFSampler()

    X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype)

    rbf.fit(X)

    assert rbf.random_offset_.dtype == global_dtype
    assert rbf.random_weights_.dtype == global_dtype


def test_rbf_sampler_dtype_equivalence():
    """Check the equivalence of the results with 32 and 64 bits input."""
    rbf32 = RBFSampler(random_state=42)
    X32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
    rbf32.fit(X32)

    rbf64 = RBFSampler(random_state=42)
    X64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64)
    rbf64.fit(X64)

    assert_allclose(rbf32.random_offset_, rbf64.random_offset_)
    assert_allclose(rbf32.random_weights_, rbf64.random_weights_)


def test_rbf_sampler_gamma_scale():
    """Check the inner value computed when `gamma='scale'`."""
    X, y = [[0.0], [1.0]], [0, 1]
    rbf = RBFSampler(gamma="scale")
    rbf.fit(X, y)
    assert rbf._gamma == pytest.approx(4)


def test_skewed_chi2_sampler_fitted_attributes_dtype(global_dtype):
    """Check that the fitted attributes are stored accordingly to the
    data type of X."""
    skewed_chi2_sampler = SkewedChi2Sampler()

    X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype)

    skewed_chi2_sampler.fit(X)

    assert skewed_chi2_sampler.random_offset_.dtype == global_dtype
    assert skewed_chi2_sampler.random_weights_.dtype == global_dtype


def test_skewed_chi2_sampler_dtype_equivalence():
    """Check the equivalence of the results with 32 and 64 bits input."""
    skewed_chi2_sampler_32 = SkewedChi2Sampler(random_state=42)
    X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
    skewed_chi2_sampler_32.fit(X_32)

    skewed_chi2_sampler_64 = SkewedChi2Sampler(random_state=42)
    X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64)
    skewed_chi2_sampler_64.fit(X_64)

    assert_allclose(
        skewed_chi2_sampler_32.random_offset_, skewed_chi2_sampler_64.random_offset_
    )
    assert_allclose(
        skewed_chi2_sampler_32.random_weights_, skewed_chi2_sampler_64.random_weights_
    )


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_input_validation(csr_container):
    # Regression test: kernel approx. transformers should work on lists
    # No assertions; the old versions would simply crash
    X = [[1, 2], [3, 4], [5, 6]]
    AdditiveChi2Sampler().fit(X).transform(X)
    SkewedChi2Sampler().fit(X).transform(X)
    RBFSampler().fit(X).transform(X)

    X = csr_container(X)
    RBFSampler().fit(X).transform(X)


def test_nystroem_approximation():
    # some basic tests
    rnd = np.random.RandomState(0)
    X = rnd.uniform(size=(10, 4))

    # With n_components = n_samples this is exact
    X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X)
    K = rbf_kernel(X)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)

    trans = Nystroem(n_components=2, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert X_transformed.shape == (X.shape[0], 2)

    # test callable kernel
    trans = Nystroem(n_components=2, kernel=_linear_kernel, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert X_transformed.shape == (X.shape[0], 2)

    # test that available kernels fit and transform
    kernels_available = kernel_metrics()
    for kern in kernels_available:
        trans = Nystroem(n_components=2, kernel=kern, random_state=rnd)
        X_transformed = trans.fit(X).transform(X)
        assert X_transformed.shape == (X.shape[0], 2)


def test_nystroem_default_parameters():
    rnd = np.random.RandomState(42)
    X = rnd.uniform(size=(10, 4))

    # rbf kernel should behave as gamma=None by default
    # aka gamma = 1 / n_features
    nystroem = Nystroem(n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = rbf_kernel(X, gamma=None)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2)

    # chi2 kernel should behave as gamma=1 by default
    nystroem = Nystroem(kernel="chi2", n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = chi2_kernel(X, gamma=1)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2)


def test_nystroem_singular_kernel():
    # test that nystroem works with singular kernel matrix
    rng = np.random.RandomState(0)
    X = rng.rand(10, 20)
    X = np.vstack([X] * 2)  # duplicate samples

    gamma = 100
    N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X)
    X_transformed = N.transform(X)

    K = rbf_kernel(X, gamma=gamma)

    assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T))
    assert np.all(np.isfinite(Y))


def test_nystroem_poly_kernel_params():
    # Non-regression: Nystroem should pass other parameters beside gamma.
    rnd = np.random.RandomState(37)
    X = rnd.uniform(size=(10, 4))

    K = polynomial_kernel(X, degree=3.1, coef0=0.1)
    nystroem = Nystroem(
        kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=0.1
    )
    X_transformed = nystroem.fit_transform(X)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)


def test_nystroem_callable():
    # Test Nystroem on a callable.
    rnd = np.random.RandomState(42)
    n_samples = 10
    X = rnd.uniform(size=(n_samples, 4))

    def logging_histogram_kernel(x, y, log):
        """Histogram kernel that writes to a log."""
        log.append(1)
        return np.minimum(x, y).sum()

    kernel_log = []
    X = list(X)  # test input validation
    Nystroem(
        kernel=logging_histogram_kernel,
        n_components=(n_samples - 1),
        kernel_params={"log": kernel_log},
    ).fit(X)
    assert len(kernel_log) == n_samples * (n_samples - 1) / 2

    # if degree, gamma or coef0 is passed, we raise a ValueError
    msg = "Don't pass gamma, coef0 or degree to Nystroem"
    params = ({"gamma": 1}, {"coef0": 1}, {"degree": 2})
    for param in params:
        ny = Nystroem(kernel=_linear_kernel, n_components=(n_samples - 1), **param)
        with pytest.raises(ValueError, match=msg):
            ny.fit(X)


def test_nystroem_precomputed_kernel():
    # Non-regression: test Nystroem on precomputed kernel.
    # PR - 14706
    rnd = np.random.RandomState(12)
    X = rnd.uniform(size=(10, 4))

    K = polynomial_kernel(X, degree=2, coef0=0.1)
    nystroem = Nystroem(kernel="precomputed", n_components=X.shape[0])
    X_transformed = nystroem.fit_transform(K)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)

    # if degree, gamma or coef0 is passed, we raise a ValueError
    msg = "Don't pass gamma, coef0 or degree to Nystroem"
    params = ({"gamma": 1}, {"coef0": 1}, {"degree": 2})
    for param in params:
        ny = Nystroem(kernel="precomputed", n_components=X.shape[0], **param)
        with pytest.raises(ValueError, match=msg):
            ny.fit(K)


def test_nystroem_component_indices():
    """Check that `component_indices_` corresponds to the subset of
    training points used to construct the feature map.
    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/20474
    """
    X, _ = make_classification(n_samples=100, n_features=20)
    feature_map_nystroem = Nystroem(
        n_components=10,
        random_state=0,
    )
    feature_map_nystroem.fit(X)
    assert feature_map_nystroem.component_indices_.shape == (10,)


@pytest.mark.parametrize(
    "Estimator", [PolynomialCountSketch, RBFSampler, SkewedChi2Sampler, Nystroem]
)
def test_get_feature_names_out(Estimator):
    """Check get_feature_names_out"""
    est = Estimator().fit(X)
    X_trans = est.transform(X)

    names_out = est.get_feature_names_out()
    class_name = Estimator.__name__.lower()
    expected_names = [f"{class_name}{i}" for i in range(X_trans.shape[1])]
    assert_array_equal(names_out, expected_names)


def test_additivechi2sampler_get_feature_names_out():
    """Check get_feature_names_out for AdditiveChi2Sampler."""
    rng = np.random.RandomState(0)
    X = rng.random_sample(size=(300, 3))

    chi2_sampler = AdditiveChi2Sampler(sample_steps=3).fit(X)
    input_names = ["f0", "f1", "f2"]
    suffixes = [
        "f0_sqrt",
        "f1_sqrt",
        "f2_sqrt",
        "f0_cos1",
        "f1_cos1",
        "f2_cos1",
        "f0_sin1",
        "f1_sin1",
        "f2_sin1",
        "f0_cos2",
        "f1_cos2",
        "f2_cos2",
        "f0_sin2",
        "f1_sin2",
        "f2_sin2",
    ]

    names_out = chi2_sampler.get_feature_names_out(input_features=input_names)
    expected_names = [f"additivechi2sampler_{suffix}" for suffix in suffixes]
    assert_array_equal(names_out, expected_names)