File size: 40,621 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
"""
Metadata Routing Utility Tests
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import re

import numpy as np
import pytest

from sklearn import config_context
from sklearn.base import (
    BaseEstimator,
    clone,
)
from sklearn.exceptions import UnsetMetadataPassedError
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.tests.metadata_routing_common import (
    ConsumingClassifier,
    ConsumingRegressor,
    ConsumingTransformer,
    MetaRegressor,
    MetaTransformer,
    NonConsumingClassifier,
    WeightedMetaClassifier,
    WeightedMetaRegressor,
    _Registry,
    assert_request_equal,
    assert_request_is_empty,
    check_recorded_metadata,
)
from sklearn.utils import metadata_routing
from sklearn.utils._metadata_requests import (
    COMPOSITE_METHODS,
    METHODS,
    SIMPLE_METHODS,
    MethodMetadataRequest,
    MethodPair,
    _MetadataRequester,
    request_is_alias,
    request_is_valid,
)
from sklearn.utils.metadata_routing import (
    MetadataRequest,
    MetadataRouter,
    MethodMapping,
    _RoutingNotSupportedMixin,
    get_routing_for_object,
    process_routing,
)
from sklearn.utils.validation import check_is_fitted

rng = np.random.RandomState(42)
N, M = 100, 4
X = rng.rand(N, M)
y = rng.randint(0, 2, size=N)
my_groups = rng.randint(0, 10, size=N)
my_weights = rng.rand(N)
my_other_weights = rng.rand(N)


class SimplePipeline(BaseEstimator):
    """A very simple pipeline, assuming the last step is always a predictor.

    Parameters
    ----------
    steps : iterable of objects
        An iterable of transformers with the last step being a predictor.
    """

    def __init__(self, steps):
        self.steps = steps

    def fit(self, X, y, **fit_params):
        self.steps_ = []
        params = process_routing(self, "fit", **fit_params)
        X_transformed = X
        for i, step in enumerate(self.steps[:-1]):
            transformer = clone(step).fit(
                X_transformed, y, **params.get(f"step_{i}").fit
            )
            self.steps_.append(transformer)
            X_transformed = transformer.transform(
                X_transformed, **params.get(f"step_{i}").transform
            )

        self.steps_.append(
            clone(self.steps[-1]).fit(X_transformed, y, **params.predictor.fit)
        )
        return self

    def predict(self, X, **predict_params):
        check_is_fitted(self)
        X_transformed = X
        params = process_routing(self, "predict", **predict_params)
        for i, step in enumerate(self.steps_[:-1]):
            X_transformed = step.transform(X, **params.get(f"step_{i}").transform)

        return self.steps_[-1].predict(X_transformed, **params.predictor.predict)

    def get_metadata_routing(self):
        router = MetadataRouter(owner=self.__class__.__name__)
        for i, step in enumerate(self.steps[:-1]):
            router.add(
                **{f"step_{i}": step},
                method_mapping=MethodMapping()
                .add(caller="fit", callee="fit")
                .add(caller="fit", callee="transform")
                .add(caller="predict", callee="transform"),
            )
        router.add(
            predictor=self.steps[-1],
            method_mapping=MethodMapping()
            .add(caller="fit", callee="fit")
            .add(caller="predict", callee="predict"),
        )
        return router


@config_context(enable_metadata_routing=True)
def test_assert_request_is_empty():
    requests = MetadataRequest(owner="test")
    assert_request_is_empty(requests)

    requests.fit.add_request(param="foo", alias=None)
    # this should still work, since None is the default value
    assert_request_is_empty(requests)

    requests.fit.add_request(param="bar", alias="value")
    with pytest.raises(AssertionError):
        # now requests is no more empty
        assert_request_is_empty(requests)

    # but one can exclude a method
    assert_request_is_empty(requests, exclude="fit")

    requests.score.add_request(param="carrot", alias=True)
    with pytest.raises(AssertionError):
        # excluding `fit` is not enough
        assert_request_is_empty(requests, exclude="fit")

    # and excluding both fit and score would avoid an exception
    assert_request_is_empty(requests, exclude=["fit", "score"])

    # test if a router is empty
    assert_request_is_empty(
        MetadataRouter(owner="test")
        .add_self_request(WeightedMetaRegressor(estimator=None))
        .add(
            estimator=ConsumingRegressor(),
            method_mapping=MethodMapping().add(caller="fit", callee="fit"),
        )
    )


@pytest.mark.parametrize(
    "estimator",
    [
        ConsumingClassifier(registry=_Registry()),
        ConsumingRegressor(registry=_Registry()),
        ConsumingTransformer(registry=_Registry()),
        WeightedMetaClassifier(estimator=ConsumingClassifier(), registry=_Registry()),
        WeightedMetaRegressor(estimator=ConsumingRegressor(), registry=_Registry()),
    ],
)
@config_context(enable_metadata_routing=True)
def test_estimator_puts_self_in_registry(estimator):
    """Check that an estimator puts itself in the registry upon fit."""
    estimator.fit(X, y)
    assert estimator in estimator.registry


@pytest.mark.parametrize(
    "val, res",
    [
        (False, False),
        (True, False),
        (None, False),
        ("$UNUSED$", False),
        ("$WARN$", False),
        ("invalid-input", False),
        ("valid_arg", True),
    ],
)
@config_context(enable_metadata_routing=True)
def test_request_type_is_alias(val, res):
    # Test request_is_alias
    assert request_is_alias(val) == res


@pytest.mark.parametrize(
    "val, res",
    [
        (False, True),
        (True, True),
        (None, True),
        ("$UNUSED$", True),
        ("$WARN$", True),
        ("invalid-input", False),
        ("alias_arg", False),
    ],
)
@config_context(enable_metadata_routing=True)
def test_request_type_is_valid(val, res):
    # Test request_is_valid
    assert request_is_valid(val) == res


@config_context(enable_metadata_routing=True)
def test_default_requests():
    class OddEstimator(BaseEstimator):
        __metadata_request__fit = {
            # set a different default request
            "sample_weight": True
        }  # type: ignore

    odd_request = get_routing_for_object(OddEstimator())
    assert odd_request.fit.requests == {"sample_weight": True}

    # check other test estimators
    assert not len(get_routing_for_object(NonConsumingClassifier()).fit.requests)
    assert_request_is_empty(NonConsumingClassifier().get_metadata_routing())

    trs_request = get_routing_for_object(ConsumingTransformer())
    assert trs_request.fit.requests == {
        "sample_weight": None,
        "metadata": None,
    }
    assert trs_request.transform.requests == {"metadata": None, "sample_weight": None}
    assert_request_is_empty(trs_request)

    est_request = get_routing_for_object(ConsumingClassifier())
    assert est_request.fit.requests == {
        "sample_weight": None,
        "metadata": None,
    }
    assert_request_is_empty(est_request)


@config_context(enable_metadata_routing=True)
def test_default_request_override():
    """Test that default requests are correctly overridden regardless of the ASCII order
    of the class names, hence testing small and capital letter class name starts.
    Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28430
    """

    class Base(BaseEstimator):
        __metadata_request__split = {"groups": True}

    class class_1(Base):
        __metadata_request__split = {"groups": "sample_domain"}

    class Class_1(Base):
        __metadata_request__split = {"groups": "sample_domain"}

    assert_request_equal(
        class_1()._get_metadata_request(), {"split": {"groups": "sample_domain"}}
    )
    assert_request_equal(
        Class_1()._get_metadata_request(), {"split": {"groups": "sample_domain"}}
    )


@config_context(enable_metadata_routing=True)
def test_process_routing_invalid_method():
    with pytest.raises(TypeError, match="Can only route and process input"):
        process_routing(ConsumingClassifier(), "invalid_method", groups=my_groups)


@config_context(enable_metadata_routing=True)
def test_process_routing_invalid_object():
    class InvalidObject:
        pass

    with pytest.raises(AttributeError, match="either implement the routing method"):
        process_routing(InvalidObject(), "fit", groups=my_groups)


@pytest.mark.parametrize("method", METHODS)
@pytest.mark.parametrize("default", [None, "default", []])
@config_context(enable_metadata_routing=True)
def test_process_routing_empty_params_get_with_default(method, default):
    empty_params = {}
    routed_params = process_routing(ConsumingClassifier(), "fit", **empty_params)

    # Behaviour should be an empty dictionary returned for each method when retrieved.
    params_for_method = routed_params[method]
    assert isinstance(params_for_method, dict)
    assert set(params_for_method.keys()) == set(METHODS)

    # No default to `get` should be equivalent to the default
    default_params_for_method = routed_params.get(method, default=default)
    assert default_params_for_method == params_for_method


@config_context(enable_metadata_routing=True)
def test_simple_metadata_routing():
    # Tests that metadata is properly routed

    # The underlying estimator doesn't accept or request metadata
    clf = WeightedMetaClassifier(estimator=NonConsumingClassifier())
    clf.fit(X, y)

    # Meta-estimator consumes sample_weight, but doesn't forward it to the underlying
    # estimator
    clf = WeightedMetaClassifier(estimator=NonConsumingClassifier())
    clf.fit(X, y, sample_weight=my_weights)

    # If the estimator accepts the metadata but doesn't explicitly say it doesn't
    # need it, there's an error
    clf = WeightedMetaClassifier(estimator=ConsumingClassifier())
    err_message = (
        "[sample_weight] are passed but are not explicitly set as requested or"
        " not requested for ConsumingClassifier.fit"
    )
    with pytest.raises(ValueError, match=re.escape(err_message)):
        clf.fit(X, y, sample_weight=my_weights)

    # Explicitly saying the estimator doesn't need it, makes the error go away,
    # because in this case `WeightedMetaClassifier` consumes `sample_weight`. If
    # there was no consumer of sample_weight, passing it would result in an
    # error.
    clf = WeightedMetaClassifier(
        estimator=ConsumingClassifier().set_fit_request(sample_weight=False)
    )
    # this doesn't raise since WeightedMetaClassifier itself is a consumer,
    # and passing metadata to the consumer directly is fine regardless of its
    # metadata_request values.
    clf.fit(X, y, sample_weight=my_weights)
    check_recorded_metadata(clf.estimator_, method="fit", parent="fit")

    # Requesting a metadata will make the meta-estimator forward it correctly
    clf = WeightedMetaClassifier(
        estimator=ConsumingClassifier().set_fit_request(sample_weight=True)
    )
    clf.fit(X, y, sample_weight=my_weights)
    check_recorded_metadata(
        clf.estimator_, method="fit", parent="fit", sample_weight=my_weights
    )

    # And requesting it with an alias
    clf = WeightedMetaClassifier(
        estimator=ConsumingClassifier().set_fit_request(
            sample_weight="alternative_weight"
        )
    )
    clf.fit(X, y, alternative_weight=my_weights)
    check_recorded_metadata(
        clf.estimator_, method="fit", parent="fit", sample_weight=my_weights
    )


@config_context(enable_metadata_routing=True)
def test_nested_routing():
    # check if metadata is routed in a nested routing situation.
    pipeline = SimplePipeline(
        [
            MetaTransformer(
                transformer=ConsumingTransformer()
                .set_fit_request(metadata=True, sample_weight=False)
                .set_transform_request(sample_weight=True, metadata=False)
            ),
            WeightedMetaRegressor(
                estimator=ConsumingRegressor()
                .set_fit_request(sample_weight="inner_weights", metadata=False)
                .set_predict_request(sample_weight=False)
            ).set_fit_request(sample_weight="outer_weights"),
        ]
    )
    w1, w2, w3 = [1], [2], [3]
    pipeline.fit(
        X, y, metadata=my_groups, sample_weight=w1, outer_weights=w2, inner_weights=w3
    )
    check_recorded_metadata(
        pipeline.steps_[0].transformer_,
        method="fit",
        parent="fit",
        metadata=my_groups,
    )
    check_recorded_metadata(
        pipeline.steps_[0].transformer_,
        method="transform",
        parent="fit",
        sample_weight=w1,
    )
    check_recorded_metadata(
        pipeline.steps_[1], method="fit", parent="fit", sample_weight=w2
    )
    check_recorded_metadata(
        pipeline.steps_[1].estimator_, method="fit", parent="fit", sample_weight=w3
    )

    pipeline.predict(X, sample_weight=w3)
    check_recorded_metadata(
        pipeline.steps_[0].transformer_,
        method="transform",
        parent="fit",
        sample_weight=w3,
    )


@config_context(enable_metadata_routing=True)
def test_nested_routing_conflict():
    # check if an error is raised if there's a conflict between keys
    pipeline = SimplePipeline(
        [
            MetaTransformer(
                transformer=ConsumingTransformer()
                .set_fit_request(metadata=True, sample_weight=False)
                .set_transform_request(sample_weight=True)
            ),
            WeightedMetaRegressor(
                estimator=ConsumingRegressor().set_fit_request(sample_weight=True)
            ).set_fit_request(sample_weight="outer_weights"),
        ]
    )
    w1, w2 = [1], [2]
    with pytest.raises(
        ValueError,
        match=(
            re.escape(
                "In WeightedMetaRegressor, there is a conflict on sample_weight between"
                " what is requested for this estimator and what is requested by its"
                " children. You can resolve this conflict by using an alias for the"
                " child estimator(s) requested metadata."
            )
        ),
    ):
        pipeline.fit(X, y, metadata=my_groups, sample_weight=w1, outer_weights=w2)


@config_context(enable_metadata_routing=True)
def test_invalid_metadata():
    # check that passing wrong metadata raises an error
    trs = MetaTransformer(
        transformer=ConsumingTransformer().set_transform_request(sample_weight=True)
    )
    with pytest.raises(
        TypeError,
        match=(re.escape("transform got unexpected argument(s) {'other_param'}")),
    ):
        trs.fit(X, y).transform(X, other_param=my_weights)

    # passing a metadata which is not requested by any estimator should also raise
    trs = MetaTransformer(
        transformer=ConsumingTransformer().set_transform_request(sample_weight=False)
    )
    with pytest.raises(
        TypeError,
        match=(re.escape("transform got unexpected argument(s) {'sample_weight'}")),
    ):
        trs.fit(X, y).transform(X, sample_weight=my_weights)


@config_context(enable_metadata_routing=True)
def test_get_metadata_routing():
    class TestDefaultsBadMethodName(_MetadataRequester):
        __metadata_request__fit = {
            "sample_weight": None,
            "my_param": None,
        }
        __metadata_request__score = {
            "sample_weight": None,
            "my_param": True,
            "my_other_param": None,
        }
        # this will raise an error since we don't understand "other_method" as a method
        __metadata_request__other_method = {"my_param": True}

    class TestDefaults(_MetadataRequester):
        __metadata_request__fit = {
            "sample_weight": None,
            "my_other_param": None,
        }
        __metadata_request__score = {
            "sample_weight": None,
            "my_param": True,
            "my_other_param": None,
        }
        __metadata_request__predict = {"my_param": True}

    with pytest.raises(
        AttributeError, match="'MetadataRequest' object has no attribute 'other_method'"
    ):
        TestDefaultsBadMethodName().get_metadata_routing()

    expected = {
        "score": {
            "my_param": True,
            "my_other_param": None,
            "sample_weight": None,
        },
        "fit": {
            "my_other_param": None,
            "sample_weight": None,
        },
        "predict": {"my_param": True},
    }
    assert_request_equal(TestDefaults().get_metadata_routing(), expected)

    est = TestDefaults().set_score_request(my_param="other_param")
    expected = {
        "score": {
            "my_param": "other_param",
            "my_other_param": None,
            "sample_weight": None,
        },
        "fit": {
            "my_other_param": None,
            "sample_weight": None,
        },
        "predict": {"my_param": True},
    }
    assert_request_equal(est.get_metadata_routing(), expected)

    est = TestDefaults().set_fit_request(sample_weight=True)
    expected = {
        "score": {
            "my_param": True,
            "my_other_param": None,
            "sample_weight": None,
        },
        "fit": {
            "my_other_param": None,
            "sample_weight": True,
        },
        "predict": {"my_param": True},
    }
    assert_request_equal(est.get_metadata_routing(), expected)


@config_context(enable_metadata_routing=True)
def test_setting_default_requests():
    # Test _get_default_requests method
    test_cases = dict()

    class ExplicitRequest(BaseEstimator):
        # `fit` doesn't accept `props` explicitly, but we want to request it
        __metadata_request__fit = {"prop": None}

        def fit(self, X, y, **kwargs):
            return self

    test_cases[ExplicitRequest] = {"prop": None}

    class ExplicitRequestOverwrite(BaseEstimator):
        # `fit` explicitly accepts `props`, but we want to change the default
        # request value from None to True
        __metadata_request__fit = {"prop": True}

        def fit(self, X, y, prop=None, **kwargs):
            return self

    test_cases[ExplicitRequestOverwrite] = {"prop": True}

    class ImplicitRequest(BaseEstimator):
        # `fit` requests `prop` and the default None should be used
        def fit(self, X, y, prop=None, **kwargs):
            return self

    test_cases[ImplicitRequest] = {"prop": None}

    class ImplicitRequestRemoval(BaseEstimator):
        # `fit` (in this class or a parent) requests `prop`, but we don't want
        # it requested at all.
        __metadata_request__fit = {"prop": metadata_routing.UNUSED}

        def fit(self, X, y, prop=None, **kwargs):
            return self

    test_cases[ImplicitRequestRemoval] = {}

    for Klass, requests in test_cases.items():
        assert get_routing_for_object(Klass()).fit.requests == requests
        assert_request_is_empty(Klass().get_metadata_routing(), exclude="fit")
        Klass().fit(None, None)  # for coverage


@config_context(enable_metadata_routing=True)
def test_removing_non_existing_param_raises():
    """Test that removing a metadata using UNUSED which doesn't exist raises."""

    class InvalidRequestRemoval(BaseEstimator):
        # `fit` (in this class or a parent) requests `prop`, but we don't want
        # it requested at all.
        __metadata_request__fit = {"prop": metadata_routing.UNUSED}

        def fit(self, X, y, **kwargs):
            return self

    with pytest.raises(ValueError, match="Trying to remove parameter"):
        InvalidRequestRemoval().get_metadata_routing()


@config_context(enable_metadata_routing=True)
def test_method_metadata_request():
    mmr = MethodMetadataRequest(owner="test", method="fit")

    with pytest.raises(ValueError, match="The alias you're setting for"):
        mmr.add_request(param="foo", alias=1.4)

    mmr.add_request(param="foo", alias=None)
    assert mmr.requests == {"foo": None}
    mmr.add_request(param="foo", alias=False)
    assert mmr.requests == {"foo": False}
    mmr.add_request(param="foo", alias=True)
    assert mmr.requests == {"foo": True}
    mmr.add_request(param="foo", alias="foo")
    assert mmr.requests == {"foo": True}
    mmr.add_request(param="foo", alias="bar")
    assert mmr.requests == {"foo": "bar"}
    assert mmr._get_param_names(return_alias=False) == {"foo"}
    assert mmr._get_param_names(return_alias=True) == {"bar"}


@config_context(enable_metadata_routing=True)
def test_get_routing_for_object():
    class Consumer(BaseEstimator):
        __metadata_request__fit = {"prop": None}

    assert_request_is_empty(get_routing_for_object(None))
    assert_request_is_empty(get_routing_for_object(object()))

    mr = MetadataRequest(owner="test")
    mr.fit.add_request(param="foo", alias="bar")
    mr_factory = get_routing_for_object(mr)
    assert_request_is_empty(mr_factory, exclude="fit")
    assert mr_factory.fit.requests == {"foo": "bar"}

    mr = get_routing_for_object(Consumer())
    assert_request_is_empty(mr, exclude="fit")
    assert mr.fit.requests == {"prop": None}


@config_context(enable_metadata_routing=True)
def test_metadata_request_consumes_method():
    """Test that MetadataRequest().consumes() method works as expected."""
    request = MetadataRouter(owner="test")
    assert request.consumes(method="fit", params={"foo"}) == set()

    request = MetadataRequest(owner="test")
    request.fit.add_request(param="foo", alias=True)
    assert request.consumes(method="fit", params={"foo"}) == {"foo"}

    request = MetadataRequest(owner="test")
    request.fit.add_request(param="foo", alias="bar")
    assert request.consumes(method="fit", params={"bar", "foo"}) == {"bar"}


@config_context(enable_metadata_routing=True)
def test_metadata_router_consumes_method():
    """Test that MetadataRouter().consumes method works as expected."""
    # having it here instead of parametrizing the test since `set_fit_request`
    # is not available while collecting the tests.
    cases = [
        (
            WeightedMetaRegressor(
                estimator=ConsumingRegressor().set_fit_request(sample_weight=True)
            ),
            {"sample_weight"},
            {"sample_weight"},
        ),
        (
            WeightedMetaRegressor(
                estimator=ConsumingRegressor().set_fit_request(
                    sample_weight="my_weights"
                )
            ),
            {"my_weights", "sample_weight"},
            {"my_weights"},
        ),
    ]

    for obj, input, output in cases:
        assert obj.get_metadata_routing().consumes(method="fit", params=input) == output


@config_context(enable_metadata_routing=True)
def test_metaestimator_warnings():
    class WeightedMetaRegressorWarn(WeightedMetaRegressor):
        __metadata_request__fit = {"sample_weight": metadata_routing.WARN}

    with pytest.warns(
        UserWarning, match="Support for .* has recently been added to this class"
    ):
        WeightedMetaRegressorWarn(
            estimator=LinearRegression().set_fit_request(sample_weight=False)
        ).fit(X, y, sample_weight=my_weights)


@config_context(enable_metadata_routing=True)
def test_estimator_warnings():
    class ConsumingRegressorWarn(ConsumingRegressor):
        __metadata_request__fit = {"sample_weight": metadata_routing.WARN}

    with pytest.warns(
        UserWarning, match="Support for .* has recently been added to this class"
    ):
        MetaRegressor(estimator=ConsumingRegressorWarn()).fit(
            X, y, sample_weight=my_weights
        )


@config_context(enable_metadata_routing=True)
@pytest.mark.parametrize(
    "obj, string",
    [
        (
            MethodMetadataRequest(owner="test", method="fit").add_request(
                param="foo", alias="bar"
            ),
            "{'foo': 'bar'}",
        ),
        (
            MetadataRequest(owner="test"),
            "{}",
        ),
        (
            MetadataRouter(owner="test").add(
                estimator=ConsumingRegressor(),
                method_mapping=MethodMapping().add(caller="predict", callee="predict"),
            ),
            (
                "{'estimator': {'mapping': [{'caller': 'predict', 'callee':"
                " 'predict'}], 'router': {'fit': {'sample_weight': None, 'metadata':"
                " None}, 'partial_fit': {'sample_weight': None, 'metadata': None},"
                " 'predict': {'sample_weight': None, 'metadata': None}, 'score':"
                " {'sample_weight': None, 'metadata': None}}}}"
            ),
        ),
    ],
)
@config_context(enable_metadata_routing=True)
def test_string_representations(obj, string):
    assert str(obj) == string


@pytest.mark.parametrize(
    "obj, method, inputs, err_cls, err_msg",
    [
        (
            MethodMapping(),
            "add",
            {"caller": "fit", "callee": "invalid"},
            ValueError,
            "Given callee",
        ),
        (
            MethodMapping(),
            "add",
            {"caller": "invalid", "callee": "fit"},
            ValueError,
            "Given caller",
        ),
        (
            MetadataRouter(owner="test"),
            "add_self_request",
            {"obj": MetadataRouter(owner="test")},
            ValueError,
            "Given `obj` is neither a `MetadataRequest` nor does it implement",
        ),
        (
            ConsumingClassifier(),
            "set_fit_request",
            {"invalid": True},
            TypeError,
            "Unexpected args",
        ),
    ],
)
@config_context(enable_metadata_routing=True)
def test_validations(obj, method, inputs, err_cls, err_msg):
    with pytest.raises(err_cls, match=err_msg):
        getattr(obj, method)(**inputs)


@config_context(enable_metadata_routing=True)
def test_methodmapping():
    mm = (
        MethodMapping()
        .add(caller="fit", callee="transform")
        .add(caller="fit", callee="fit")
    )

    mm_list = list(mm)
    assert mm_list[0] == ("fit", "transform")
    assert mm_list[1] == ("fit", "fit")

    mm = MethodMapping()
    for method in METHODS:
        mm.add(caller=method, callee=method)
        assert MethodPair(method, method) in mm._routes
    assert len(mm._routes) == len(METHODS)

    mm = MethodMapping().add(caller="score", callee="score")
    assert repr(mm) == "[{'caller': 'score', 'callee': 'score'}]"


@config_context(enable_metadata_routing=True)
def test_metadatarouter_add_self_request():
    # adding a MetadataRequest as `self` adds a copy
    request = MetadataRequest(owner="nested")
    request.fit.add_request(param="param", alias=True)
    router = MetadataRouter(owner="test").add_self_request(request)
    assert str(router._self_request) == str(request)
    # should be a copy, not the same object
    assert router._self_request is not request

    # one can add an estimator as self
    est = ConsumingRegressor().set_fit_request(sample_weight="my_weights")
    router = MetadataRouter(owner="test").add_self_request(obj=est)
    assert str(router._self_request) == str(est.get_metadata_routing())
    assert router._self_request is not est.get_metadata_routing()

    # adding a consumer+router as self should only add the consumer part
    est = WeightedMetaRegressor(
        estimator=ConsumingRegressor().set_fit_request(sample_weight="nested_weights")
    )
    router = MetadataRouter(owner="test").add_self_request(obj=est)
    # _get_metadata_request() returns the consumer part of the requests
    assert str(router._self_request) == str(est._get_metadata_request())
    # get_metadata_routing() returns the complete request set, consumer and
    # router included.
    assert str(router._self_request) != str(est.get_metadata_routing())
    # it should be a copy, not the same object
    assert router._self_request is not est._get_metadata_request()


@config_context(enable_metadata_routing=True)
def test_metadata_routing_add():
    # adding one with a string `method_mapping`
    router = MetadataRouter(owner="test").add(
        est=ConsumingRegressor().set_fit_request(sample_weight="weights"),
        method_mapping=MethodMapping().add(caller="fit", callee="fit"),
    )
    assert (
        str(router)
        == "{'est': {'mapping': [{'caller': 'fit', 'callee': 'fit'}], 'router': {'fit':"
        " {'sample_weight': 'weights', 'metadata': None}, 'partial_fit':"
        " {'sample_weight': None, 'metadata': None}, 'predict': {'sample_weight':"
        " None, 'metadata': None}, 'score': {'sample_weight': None, 'metadata':"
        " None}}}}"
    )

    # adding one with an instance of MethodMapping
    router = MetadataRouter(owner="test").add(
        method_mapping=MethodMapping().add(caller="fit", callee="score"),
        est=ConsumingRegressor().set_score_request(sample_weight=True),
    )
    assert (
        str(router)
        == "{'est': {'mapping': [{'caller': 'fit', 'callee': 'score'}], 'router':"
        " {'fit': {'sample_weight': None, 'metadata': None}, 'partial_fit':"
        " {'sample_weight': None, 'metadata': None}, 'predict': {'sample_weight':"
        " None, 'metadata': None}, 'score': {'sample_weight': True, 'metadata':"
        " None}}}}"
    )


@config_context(enable_metadata_routing=True)
def test_metadata_routing_get_param_names():
    router = (
        MetadataRouter(owner="test")
        .add_self_request(
            WeightedMetaRegressor(estimator=ConsumingRegressor()).set_fit_request(
                sample_weight="self_weights"
            )
        )
        .add(
            trs=ConsumingTransformer().set_fit_request(
                sample_weight="transform_weights"
            ),
            method_mapping=MethodMapping().add(caller="fit", callee="fit"),
        )
    )

    assert (
        str(router)
        == "{'$self_request': {'fit': {'sample_weight': 'self_weights'}, 'score':"
        " {'sample_weight': None}}, 'trs': {'mapping': [{'caller': 'fit', 'callee':"
        " 'fit'}], 'router': {'fit': {'sample_weight': 'transform_weights',"
        " 'metadata': None}, 'transform': {'sample_weight': None, 'metadata': None},"
        " 'inverse_transform': {'sample_weight': None, 'metadata': None}}}}"
    )

    assert router._get_param_names(
        method="fit", return_alias=True, ignore_self_request=False
    ) == {"transform_weights", "metadata", "self_weights"}
    # return_alias=False will return original names for "self"
    assert router._get_param_names(
        method="fit", return_alias=False, ignore_self_request=False
    ) == {"sample_weight", "metadata", "transform_weights"}
    # ignoring self would remove "sample_weight"
    assert router._get_param_names(
        method="fit", return_alias=False, ignore_self_request=True
    ) == {"metadata", "transform_weights"}
    # return_alias is ignored when ignore_self_request=True
    assert router._get_param_names(
        method="fit", return_alias=True, ignore_self_request=True
    ) == router._get_param_names(
        method="fit", return_alias=False, ignore_self_request=True
    )


@config_context(enable_metadata_routing=True)
def test_method_generation():
    # Test if all required request methods are generated.

    # TODO: these test classes can be moved to sklearn.utils._testing once we
    # have a better idea of what the commonly used classes are.
    class SimpleEstimator(BaseEstimator):
        # This class should have no set_{method}_request
        def fit(self, X, y):
            pass  # pragma: no cover

        def fit_transform(self, X, y):
            pass  # pragma: no cover

        def fit_predict(self, X, y):
            pass  # pragma: no cover

        def partial_fit(self, X, y):
            pass  # pragma: no cover

        def predict(self, X):
            pass  # pragma: no cover

        def predict_proba(self, X):
            pass  # pragma: no cover

        def predict_log_proba(self, X):
            pass  # pragma: no cover

        def decision_function(self, X):
            pass  # pragma: no cover

        def score(self, X, y):
            pass  # pragma: no cover

        def split(self, X, y=None):
            pass  # pragma: no cover

        def transform(self, X):
            pass  # pragma: no cover

        def inverse_transform(self, X):
            pass  # pragma: no cover

    for method in METHODS:
        assert not hasattr(SimpleEstimator(), f"set_{method}_request")

    class SimpleEstimator(BaseEstimator):
        # This class should have every set_{method}_request
        def fit(self, X, y, sample_weight=None):
            pass  # pragma: no cover

        def fit_transform(self, X, y, sample_weight=None):
            pass  # pragma: no cover

        def fit_predict(self, X, y, sample_weight=None):
            pass  # pragma: no cover

        def partial_fit(self, X, y, sample_weight=None):
            pass  # pragma: no cover

        def predict(self, X, sample_weight=None):
            pass  # pragma: no cover

        def predict_proba(self, X, sample_weight=None):
            pass  # pragma: no cover

        def predict_log_proba(self, X, sample_weight=None):
            pass  # pragma: no cover

        def decision_function(self, X, sample_weight=None):
            pass  # pragma: no cover

        def score(self, X, y, sample_weight=None):
            pass  # pragma: no cover

        def split(self, X, y=None, sample_weight=None):
            pass  # pragma: no cover

        def transform(self, X, sample_weight=None):
            pass  # pragma: no cover

        def inverse_transform(self, X, sample_weight=None):
            pass  # pragma: no cover

    # composite methods shouldn't have a corresponding set method.
    for method in COMPOSITE_METHODS:
        assert not hasattr(SimpleEstimator(), f"set_{method}_request")

    # simple methods should have a corresponding set method.
    for method in SIMPLE_METHODS:
        assert hasattr(SimpleEstimator(), f"set_{method}_request")


@config_context(enable_metadata_routing=True)
def test_composite_methods():
    # Test the behavior and the values of methods (composite methods) whose
    # request values are a union of requests by other methods (simple methods).
    # fit_transform and fit_predict are the only composite methods we have in
    # scikit-learn.
    class SimpleEstimator(BaseEstimator):
        # This class should have every set_{method}_request
        def fit(self, X, y, foo=None, bar=None):
            pass  # pragma: no cover

        def predict(self, X, foo=None, bar=None):
            pass  # pragma: no cover

        def transform(self, X, other_param=None):
            pass  # pragma: no cover

    est = SimpleEstimator()
    # Since no request is set for fit or predict or transform, the request for
    # fit_transform and fit_predict should also be empty.
    assert est.get_metadata_routing().fit_transform.requests == {
        "bar": None,
        "foo": None,
        "other_param": None,
    }
    assert est.get_metadata_routing().fit_predict.requests == {"bar": None, "foo": None}

    # setting the request on only one of them should raise an error
    est.set_fit_request(foo=True, bar="test")
    with pytest.raises(ValueError, match="Conflicting metadata requests for"):
        est.get_metadata_routing().fit_predict

    # setting the request on the other one should fail if not the same as the
    # first method
    est.set_predict_request(bar=True)
    with pytest.raises(ValueError, match="Conflicting metadata requests for"):
        est.get_metadata_routing().fit_predict

    # now the requests are consistent and getting the requests for fit_predict
    # shouldn't raise.
    est.set_predict_request(foo=True, bar="test")
    est.get_metadata_routing().fit_predict

    # setting the request for a none-overlapping parameter would merge them
    # together.
    est.set_transform_request(other_param=True)
    assert est.get_metadata_routing().fit_transform.requests == {
        "bar": "test",
        "foo": True,
        "other_param": True,
    }


@config_context(enable_metadata_routing=True)
def test_no_feature_flag_raises_error():
    """Test that when feature flag disabled, set_{method}_requests raises."""
    with config_context(enable_metadata_routing=False):
        with pytest.raises(RuntimeError, match="This method is only available"):
            ConsumingClassifier().set_fit_request(sample_weight=True)


@config_context(enable_metadata_routing=True)
def test_none_metadata_passed():
    """Test that passing None as metadata when not requested doesn't raise"""
    MetaRegressor(estimator=ConsumingRegressor()).fit(X, y, sample_weight=None)


@config_context(enable_metadata_routing=True)
def test_no_metadata_always_works():
    """Test that when no metadata is passed, having a meta-estimator which does
    not yet support metadata routing works.

    Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28246
    """

    class Estimator(_RoutingNotSupportedMixin, BaseEstimator):
        def fit(self, X, y, metadata=None):
            return self

    # This passes since no metadata is passed.
    MetaRegressor(estimator=Estimator()).fit(X, y)
    # This fails since metadata is passed but Estimator() does not support it.
    with pytest.raises(
        NotImplementedError, match="Estimator has not implemented metadata routing yet."
    ):
        MetaRegressor(estimator=Estimator()).fit(X, y, metadata=my_groups)


@config_context(enable_metadata_routing=True)
def test_unsetmetadatapassederror_correct():
    """Test that UnsetMetadataPassedError raises the correct error message when
    set_{method}_request is not set in nested cases."""
    weighted_meta = WeightedMetaClassifier(estimator=ConsumingClassifier())
    pipe = SimplePipeline([weighted_meta])
    msg = re.escape(
        "[metadata] are passed but are not explicitly set as requested or not requested"
        " for ConsumingClassifier.fit, which is used within WeightedMetaClassifier.fit."
        " Call `ConsumingClassifier.set_fit_request({metadata}=True/False)` for each"
        " metadata you want to request/ignore."
    )

    with pytest.raises(UnsetMetadataPassedError, match=msg):
        pipe.fit(X, y, metadata="blah")


@config_context(enable_metadata_routing=True)
def test_unsetmetadatapassederror_correct_for_composite_methods():
    """Test that UnsetMetadataPassedError raises the correct error message when
    composite metadata request methods are not set in nested cases."""
    consuming_transformer = ConsumingTransformer()
    pipe = Pipeline([("consuming_transformer", consuming_transformer)])

    msg = re.escape(
        "[metadata] are passed but are not explicitly set as requested or not requested"
        " for ConsumingTransformer.fit_transform, which is used within"
        " Pipeline.fit_transform. Call"
        " `ConsumingTransformer.set_fit_request({metadata}=True/False)"
        ".set_transform_request({metadata}=True/False)`"
        " for each metadata you want to request/ignore."
    )
    with pytest.raises(UnsetMetadataPassedError, match=msg):
        pipe.fit_transform(X, y, metadata="blah")


@config_context(enable_metadata_routing=True)
def test_unbound_set_methods_work():
    """Tests that if the set_{method}_request is unbound, it still works.

    Also test that passing positional arguments to the set_{method}_request fails
    with the right TypeError message.

    Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28632
    """

    class A(BaseEstimator):
        def fit(self, X, y, sample_weight=None):
            return self

    error_message = re.escape(
        "set_fit_request() takes 0 positional argument but 1 were given"
    )

    # Test positional arguments error before making the descriptor method unbound.
    with pytest.raises(TypeError, match=error_message):
        A().set_fit_request(True)

    # This somehow makes the descriptor method unbound, which results in the `instance`
    # argument being None, and instead `self` being passed as a positional argument
    # to the descriptor method.
    A.set_fit_request = A.set_fit_request

    # This should pass as usual
    A().set_fit_request(sample_weight=True)

    # Test positional arguments error after making the descriptor method unbound.
    with pytest.raises(TypeError, match=error_message):
        A().set_fit_request(True)