File size: 27,906 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import re
from pprint import PrettyPrinter

import numpy as np
import pytest

from sklearn.utils._pprint import _EstimatorPrettyPrinter
from sklearn.linear_model import LogisticRegressionCV
from sklearn.pipeline import make_pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_selection import SelectKBest, chi2
from sklearn import config_context


# Ignore flake8 (lots of line too long issues)
# ruff: noqa


# Constructors excerpted to test pprinting
class LogisticRegression(BaseEstimator):
    def __init__(
        self,
        penalty="l2",
        dual=False,
        tol=1e-4,
        C=1.0,
        fit_intercept=True,
        intercept_scaling=1,
        class_weight=None,
        random_state=None,
        solver="warn",
        max_iter=100,
        multi_class="warn",
        verbose=0,
        warm_start=False,
        n_jobs=None,
        l1_ratio=None,
    ):
        self.penalty = penalty
        self.dual = dual
        self.tol = tol
        self.C = C
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.random_state = random_state
        self.solver = solver
        self.max_iter = max_iter
        self.multi_class = multi_class
        self.verbose = verbose
        self.warm_start = warm_start
        self.n_jobs = n_jobs
        self.l1_ratio = l1_ratio

    def fit(self, X, y):
        return self


class StandardScaler(TransformerMixin, BaseEstimator):
    def __init__(self, copy=True, with_mean=True, with_std=True):
        self.with_mean = with_mean
        self.with_std = with_std
        self.copy = copy

    def transform(self, X, copy=None):
        return self


class RFE(BaseEstimator):
    def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0):
        self.estimator = estimator
        self.n_features_to_select = n_features_to_select
        self.step = step
        self.verbose = verbose


class GridSearchCV(BaseEstimator):
    def __init__(
        self,
        estimator,
        param_grid,
        scoring=None,
        n_jobs=None,
        iid="warn",
        refit=True,
        cv="warn",
        verbose=0,
        pre_dispatch="2*n_jobs",
        error_score="raise-deprecating",
        return_train_score=False,
    ):
        self.estimator = estimator
        self.param_grid = param_grid
        self.scoring = scoring
        self.n_jobs = n_jobs
        self.iid = iid
        self.refit = refit
        self.cv = cv
        self.verbose = verbose
        self.pre_dispatch = pre_dispatch
        self.error_score = error_score
        self.return_train_score = return_train_score


class CountVectorizer(BaseEstimator):
    def __init__(
        self,
        input="content",
        encoding="utf-8",
        decode_error="strict",
        strip_accents=None,
        lowercase=True,
        preprocessor=None,
        tokenizer=None,
        stop_words=None,
        token_pattern=r"(?u)\b\w\w+\b",
        ngram_range=(1, 1),
        analyzer="word",
        max_df=1.0,
        min_df=1,
        max_features=None,
        vocabulary=None,
        binary=False,
        dtype=np.int64,
    ):
        self.input = input
        self.encoding = encoding
        self.decode_error = decode_error
        self.strip_accents = strip_accents
        self.preprocessor = preprocessor
        self.tokenizer = tokenizer
        self.analyzer = analyzer
        self.lowercase = lowercase
        self.token_pattern = token_pattern
        self.stop_words = stop_words
        self.max_df = max_df
        self.min_df = min_df
        self.max_features = max_features
        self.ngram_range = ngram_range
        self.vocabulary = vocabulary
        self.binary = binary
        self.dtype = dtype


class Pipeline(BaseEstimator):
    def __init__(self, steps, memory=None):
        self.steps = steps
        self.memory = memory


class SVC(BaseEstimator):
    def __init__(
        self,
        C=1.0,
        kernel="rbf",
        degree=3,
        gamma="auto_deprecated",
        coef0=0.0,
        shrinking=True,
        probability=False,
        tol=1e-3,
        cache_size=200,
        class_weight=None,
        verbose=False,
        max_iter=-1,
        decision_function_shape="ovr",
        random_state=None,
    ):
        self.kernel = kernel
        self.degree = degree
        self.gamma = gamma
        self.coef0 = coef0
        self.tol = tol
        self.C = C
        self.shrinking = shrinking
        self.probability = probability
        self.cache_size = cache_size
        self.class_weight = class_weight
        self.verbose = verbose
        self.max_iter = max_iter
        self.decision_function_shape = decision_function_shape
        self.random_state = random_state


class PCA(BaseEstimator):
    def __init__(
        self,
        n_components=None,
        copy=True,
        whiten=False,
        svd_solver="auto",
        tol=0.0,
        iterated_power="auto",
        random_state=None,
    ):
        self.n_components = n_components
        self.copy = copy
        self.whiten = whiten
        self.svd_solver = svd_solver
        self.tol = tol
        self.iterated_power = iterated_power
        self.random_state = random_state


class NMF(BaseEstimator):
    def __init__(
        self,
        n_components=None,
        init=None,
        solver="cd",
        beta_loss="frobenius",
        tol=1e-4,
        max_iter=200,
        random_state=None,
        alpha=0.0,
        l1_ratio=0.0,
        verbose=0,
        shuffle=False,
    ):
        self.n_components = n_components
        self.init = init
        self.solver = solver
        self.beta_loss = beta_loss
        self.tol = tol
        self.max_iter = max_iter
        self.random_state = random_state
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.verbose = verbose
        self.shuffle = shuffle


class SimpleImputer(BaseEstimator):
    def __init__(
        self,
        missing_values=np.nan,
        strategy="mean",
        fill_value=None,
        verbose=0,
        copy=True,
    ):
        self.missing_values = missing_values
        self.strategy = strategy
        self.fill_value = fill_value
        self.verbose = verbose
        self.copy = copy


def test_basic(print_changed_only_false):
    # Basic pprint test
    lr = LogisticRegression()
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""

    expected = expected[1:]  # remove first \n
    assert lr.__repr__() == expected


def test_changed_only():
    # Make sure the changed_only param is correctly used when True (default)
    lr = LogisticRegression(C=99)
    expected = """LogisticRegression(C=99)"""
    assert lr.__repr__() == expected

    # Check with a repr that doesn't fit on a single line
    lr = LogisticRegression(
        C=99, class_weight=0.4, fit_intercept=False, tol=1234, verbose=True
    )
    expected = """
LogisticRegression(C=99, class_weight=0.4, fit_intercept=False, tol=1234,
                   verbose=True)"""
    expected = expected[1:]  # remove first \n
    assert lr.__repr__() == expected

    imputer = SimpleImputer(missing_values=0)
    expected = """SimpleImputer(missing_values=0)"""
    assert imputer.__repr__() == expected

    # Defaults to np.nan, trying with float('NaN')
    imputer = SimpleImputer(missing_values=float("NaN"))
    expected = """SimpleImputer()"""
    assert imputer.__repr__() == expected

    # make sure array parameters don't throw error (see #13583)
    repr(LogisticRegressionCV(Cs=np.array([0.1, 1])))


def test_pipeline(print_changed_only_false):
    # Render a pipeline object
    pipeline = make_pipeline(StandardScaler(), LogisticRegression(C=999))
    expected = """
Pipeline(memory=None,
         steps=[('standardscaler',
                 StandardScaler(copy=True, with_mean=True, with_std=True)),
                ('logisticregression',
                 LogisticRegression(C=999, class_weight=None, dual=False,
                                    fit_intercept=True, intercept_scaling=1,
                                    l1_ratio=None, max_iter=100,
                                    multi_class='warn', n_jobs=None,
                                    penalty='l2', random_state=None,
                                    solver='warn', tol=0.0001, verbose=0,
                                    warm_start=False))],
         transform_input=None, verbose=False)"""

    expected = expected[1:]  # remove first \n
    assert pipeline.__repr__() == expected


def test_deeply_nested(print_changed_only_false):
    # Render a deeply nested estimator
    rfe = RFE(RFE(RFE(RFE(RFE(RFE(RFE(LogisticRegression())))))))
    expected = """
RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=LogisticRegression(C=1.0,
                                                                                                                     class_weight=None,
                                                                                                                     dual=False,
                                                                                                                     fit_intercept=True,
                                                                                                                     intercept_scaling=1,
                                                                                                                     l1_ratio=None,
                                                                                                                     max_iter=100,
                                                                                                                     multi_class='warn',
                                                                                                                     n_jobs=None,
                                                                                                                     penalty='l2',
                                                                                                                     random_state=None,
                                                                                                                     solver='warn',
                                                                                                                     tol=0.0001,
                                                                                                                     verbose=0,
                                                                                                                     warm_start=False),
                                                                                        n_features_to_select=None,
                                                                                        step=1,
                                                                                        verbose=0),
                                                                          n_features_to_select=None,
                                                                          step=1,
                                                                          verbose=0),
                                                            n_features_to_select=None,
                                                            step=1, verbose=0),
                                              n_features_to_select=None, step=1,
                                              verbose=0),
                                n_features_to_select=None, step=1, verbose=0),
                  n_features_to_select=None, step=1, verbose=0),
    n_features_to_select=None, step=1, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert rfe.__repr__() == expected


@pytest.mark.parametrize(
    ("print_changed_only", "expected"),
    [
        (True, "RFE(estimator=RFE(...))"),
        (
            False,
            "RFE(estimator=RFE(...), n_features_to_select=None, step=1, verbose=0)",
        ),
    ],
)
def test_print_estimator_max_depth(print_changed_only, expected):
    with config_context(print_changed_only=print_changed_only):
        pp = _EstimatorPrettyPrinter(depth=1)

        rfe = RFE(RFE(RFE(RFE(RFE(LogisticRegression())))))
        assert pp.pformat(rfe) == expected


def test_gridsearch(print_changed_only_false):
    # render a gridsearch
    param_grid = [
        {"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]},
        {"kernel": ["linear"], "C": [1, 10, 100, 1000]},
    ]
    gs = GridSearchCV(SVC(), param_grid, cv=5)

    expected = """
GridSearchCV(cv=5, error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-1,
                           probability=False, random_state=None, shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=None,
             param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
                          'kernel': ['rbf']},
                         {'C': [1, 10, 100, 1000], 'kernel': ['linear']}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert gs.__repr__() == expected


def test_gridsearch_pipeline(print_changed_only_false):
    # render a pipeline inside a gridsearch
    pp = _EstimatorPrettyPrinter(compact=True, indent=1, indent_at_name=True)

    pipeline = Pipeline([("reduce_dim", PCA()), ("classify", SVC())])
    N_FEATURES_OPTIONS = [2, 4, 8]
    C_OPTIONS = [1, 10, 100, 1000]
    param_grid = [
        {
            "reduce_dim": [PCA(iterated_power=7), NMF()],
            "reduce_dim__n_components": N_FEATURES_OPTIONS,
            "classify__C": C_OPTIONS,
        },
        {
            "reduce_dim": [SelectKBest(chi2)],
            "reduce_dim__k": N_FEATURES_OPTIONS,
            "classify__C": C_OPTIONS,
        },
    ]
    gspipline = GridSearchCV(pipeline, cv=3, n_jobs=1, param_grid=param_grid)
    expected = """
GridSearchCV(cv=3, error_score='raise-deprecating',
             estimator=Pipeline(memory=None,
                                steps=[('reduce_dim',
                                        PCA(copy=True, iterated_power='auto',
                                            n_components=None,
                                            random_state=None,
                                            svd_solver='auto', tol=0.0,
                                            whiten=False)),
                                       ('classify',
                                        SVC(C=1.0, cache_size=200,
                                            class_weight=None, coef0=0.0,
                                            decision_function_shape='ovr',
                                            degree=3, gamma='auto_deprecated',
                                            kernel='rbf', max_iter=-1,
                                            probability=False,
                                            random_state=None, shrinking=True,
                                            tol=0.001, verbose=False))]),
             iid='warn', n_jobs=1,
             param_grid=[{'classify__C': [1, 10, 100, 1000],
                          'reduce_dim': [PCA(copy=True, iterated_power=7,
                                             n_components=None,
                                             random_state=None,
                                             svd_solver='auto', tol=0.0,
                                             whiten=False),
                                         NMF(alpha=0.0, beta_loss='frobenius',
                                             init=None, l1_ratio=0.0,
                                             max_iter=200, n_components=None,
                                             random_state=None, shuffle=False,
                                             solver='cd', tol=0.0001,
                                             verbose=0)],
                          'reduce_dim__n_components': [2, 4, 8]},
                         {'classify__C': [1, 10, 100, 1000],
                          'reduce_dim': [SelectKBest(k=10,
                                                     score_func=<function chi2 at some_address>)],
                          'reduce_dim__k': [2, 4, 8]}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    repr_ = pp.pformat(gspipline)
    # Remove address of '<function chi2 at 0x.....>' for reproducibility
    repr_ = re.sub("function chi2 at 0x.*>", "function chi2 at some_address>", repr_)
    assert repr_ == expected


def test_n_max_elements_to_show(print_changed_only_false):
    n_max_elements_to_show = 30
    pp = _EstimatorPrettyPrinter(
        compact=True,
        indent=1,
        indent_at_name=True,
        n_max_elements_to_show=n_max_elements_to_show,
    )

    # No ellipsis
    vocabulary = {i: i for i in range(n_max_elements_to_show)}
    vectorizer = CountVectorizer(vocabulary=vocabulary)

    expected = r"""
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
                dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                lowercase=True, max_df=1.0, max_features=None, min_df=1,
                ngram_range=(1, 1), preprocessor=None, stop_words=None,
                strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
                tokenizer=None,
                vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7,
                            8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14,
                            15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20,
                            21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26,
                            27: 27, 28: 28, 29: 29})"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(vectorizer) == expected

    # Now with ellipsis
    vocabulary = {i: i for i in range(n_max_elements_to_show + 1)}
    vectorizer = CountVectorizer(vocabulary=vocabulary)

    expected = r"""
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
                dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                lowercase=True, max_df=1.0, max_features=None, min_df=1,
                ngram_range=(1, 1), preprocessor=None, stop_words=None,
                strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
                tokenizer=None,
                vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7,
                            8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14,
                            15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20,
                            21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26,
                            27: 27, 28: 28, 29: 29, ...})"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(vectorizer) == expected

    # Also test with lists
    param_grid = {"C": list(range(n_max_elements_to_show))}
    gs = GridSearchCV(SVC(), param_grid)
    expected = """
GridSearchCV(cv='warn', error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-1,
                           probability=False, random_state=None, shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=None,
             param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                               15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
                               27, 28, 29]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(gs) == expected

    # Now with ellipsis
    param_grid = {"C": list(range(n_max_elements_to_show + 1))}
    gs = GridSearchCV(SVC(), param_grid)
    expected = """
GridSearchCV(cv='warn', error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-1,
                           probability=False, random_state=None, shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=None,
             param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                               15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
                               27, 28, 29, ...]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(gs) == expected


def test_bruteforce_ellipsis(print_changed_only_false):
    # Check that the bruteforce ellipsis (used when the number of non-blank
    # characters exceeds N_CHAR_MAX) renders correctly.

    lr = LogisticRegression()

    # test when the left and right side of the ellipsis aren't on the same
    # line.
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   in...
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""

    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=150)

    # test with very small N_CHAR_MAX
    # Note that N_CHAR_MAX is not strictly enforced, but it's normal: to avoid
    # weird reprs we still keep the whole line of the right part (after the
    # ellipsis).
    expected = """
Lo...
                   warm_start=False)"""

    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=4)

    # test with N_CHAR_MAX == number of non-blank characters: In this case we
    # don't want ellipsis
    full_repr = lr.__repr__(N_CHAR_MAX=float("inf"))
    n_nonblank = len("".join(full_repr.split()))
    assert lr.__repr__(N_CHAR_MAX=n_nonblank) == full_repr
    assert "..." not in full_repr

    # test with N_CHAR_MAX == number of non-blank characters - 10: the left and
    # right side of the ellispsis are on different lines. In this case we
    # want to expend the whole line of the right side
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_i...
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""
    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 10)

    # test with N_CHAR_MAX == number of non-blank characters - 10: the left and
    # right side of the ellispsis are on the same line. In this case we don't
    # want to expend the whole line of the right side, just add the ellispsis
    # between the 2 sides.
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter...,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""
    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 4)

    # test with N_CHAR_MAX == number of non-blank characters - 2: the left and
    # right side of the ellispsis are on the same line, but adding the ellipsis
    # would actually make the repr longer. So we don't add the ellipsis.
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""
    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 2)


def test_builtin_prettyprinter():
    # non regression test than ensures we can still use the builtin
    # PrettyPrinter class for estimators (as done e.g. by joblib).
    # Used to be a bug

    PrettyPrinter().pprint(LogisticRegression())


def test_kwargs_in_init():
    # Make sure the changed_only=True mode is OK when an argument is passed as
    # kwargs.
    # Non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/17206

    class WithKWargs(BaseEstimator):
        # Estimator with a kwargs argument. These need to hack around
        # set_params and get_params. Here we mimic what LightGBM does.
        def __init__(self, a="willchange", b="unchanged", **kwargs):
            self.a = a
            self.b = b
            self._other_params = {}
            self.set_params(**kwargs)

        def get_params(self, deep=True):
            params = super().get_params(deep=deep)
            params.update(self._other_params)
            return params

        def set_params(self, **params):
            for key, value in params.items():
                setattr(self, key, value)
                self._other_params[key] = value
            return self

    est = WithKWargs(a="something", c="abcd", d=None)

    expected = "WithKWargs(a='something', c='abcd', d=None)"
    assert expected == est.__repr__()

    with config_context(print_changed_only=False):
        expected = "WithKWargs(a='something', b='unchanged', c='abcd', d=None)"
        assert expected == est.__repr__()


def test_complexity_print_changed_only():
    # Make sure `__repr__` is called the same amount of times
    # whether `print_changed_only` is True or False
    # Non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/18490

    class DummyEstimator(TransformerMixin, BaseEstimator):
        nb_times_repr_called = 0

        def __init__(self, estimator=None):
            self.estimator = estimator

        def __repr__(self):
            DummyEstimator.nb_times_repr_called += 1
            return super().__repr__()

        def transform(self, X, copy=None):  # pragma: no cover
            return X

    estimator = DummyEstimator(
        make_pipeline(DummyEstimator(DummyEstimator()), DummyEstimator(), "passthrough")
    )
    with config_context(print_changed_only=False):
        repr(estimator)
        nb_repr_print_changed_only_false = DummyEstimator.nb_times_repr_called

    DummyEstimator.nb_times_repr_called = 0
    with config_context(print_changed_only=True):
        repr(estimator)
        nb_repr_print_changed_only_true = DummyEstimator.nb_times_repr_called

    assert nb_repr_print_changed_only_false == nb_repr_print_changed_only_true