File size: 13,452 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import numpy as np
import pytest

from sklearn.datasets import (
    load_iris,
    make_classification,
    make_multilabel_classification,
    make_regression,
)
from sklearn.ensemble import IsolationForest
from sklearn.linear_model import (
    LinearRegression,
    LogisticRegression,
)
from sklearn.multioutput import ClassifierChain
from sklearn.preprocessing import scale
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._mocking import _MockEstimatorOnOffPrediction
from sklearn.utils._response import _get_response_values, _get_response_values_binary
from sklearn.utils._testing import assert_allclose, assert_array_equal

X, y = load_iris(return_X_y=True)
# scale the data to avoid ConvergenceWarning with LogisticRegression
X = scale(X, copy=False)
X_binary, y_binary = X[:100], y[:100]


@pytest.mark.parametrize(
    "response_method", ["decision_function", "predict_proba", "predict_log_proba"]
)
def test_get_response_values_regressor_error(response_method):
    """Check the error message with regressor an not supported response
    method."""
    my_estimator = _MockEstimatorOnOffPrediction(response_methods=[response_method])
    X = "mocking_data", "mocking_target"
    err_msg = f"{my_estimator.__class__.__name__} should either be a classifier"
    with pytest.raises(ValueError, match=err_msg):
        _get_response_values(my_estimator, X, response_method=response_method)


@pytest.mark.parametrize("return_response_method_used", [True, False])
def test_get_response_values_regressor(return_response_method_used):
    """Check the behaviour of `_get_response_values` with regressor."""
    X, y = make_regression(n_samples=10, random_state=0)
    regressor = LinearRegression().fit(X, y)
    results = _get_response_values(
        regressor,
        X,
        response_method="predict",
        return_response_method_used=return_response_method_used,
    )
    assert_array_equal(results[0], regressor.predict(X))
    assert results[1] is None
    if return_response_method_used:
        assert results[2] == "predict"


@pytest.mark.parametrize(
    "response_method",
    ["predict", "decision_function", ["decision_function", "predict"]],
)
@pytest.mark.parametrize("return_response_method_used", [True, False])
def test_get_response_values_outlier_detection(
    response_method, return_response_method_used
):
    """Check the behaviour of `_get_response_values` with outlier detector."""
    X, y = make_classification(n_samples=50, random_state=0)
    outlier_detector = IsolationForest(random_state=0).fit(X, y)
    results = _get_response_values(
        outlier_detector,
        X,
        response_method=response_method,
        return_response_method_used=return_response_method_used,
    )
    chosen_response_method = (
        response_method[0] if isinstance(response_method, list) else response_method
    )
    prediction_method = getattr(outlier_detector, chosen_response_method)
    assert_array_equal(results[0], prediction_method(X))
    assert results[1] is None
    if return_response_method_used:
        assert results[2] == chosen_response_method


@pytest.mark.parametrize(
    "response_method",
    ["predict_proba", "decision_function", "predict", "predict_log_proba"],
)
def test_get_response_values_classifier_unknown_pos_label(response_method):
    """Check that `_get_response_values` raises the proper error message with
    classifier."""
    X, y = make_classification(n_samples=10, n_classes=2, random_state=0)
    classifier = LogisticRegression().fit(X, y)

    # provide a `pos_label` which is not in `y`
    err_msg = r"pos_label=whatever is not a valid label: It should be one of \[0 1\]"
    with pytest.raises(ValueError, match=err_msg):
        _get_response_values(
            classifier,
            X,
            response_method=response_method,
            pos_label="whatever",
        )


@pytest.mark.parametrize("response_method", ["predict_proba", "predict_log_proba"])
def test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba(
    response_method,
):
    """Check that `_get_response_values` will raise an error when `y_pred` has a
    single class with `predict_proba`."""
    X, y_two_class = make_classification(n_samples=10, n_classes=2, random_state=0)
    y_single_class = np.zeros_like(y_two_class)
    classifier = DecisionTreeClassifier().fit(X, y_single_class)

    err_msg = (
        r"Got predict_proba of shape \(10, 1\), but need classifier with "
        r"two classes"
    )
    with pytest.raises(ValueError, match=err_msg):
        _get_response_values(classifier, X, response_method=response_method)


@pytest.mark.parametrize("return_response_method_used", [True, False])
def test_get_response_values_binary_classifier_decision_function(
    return_response_method_used,
):
    """Check the behaviour of `_get_response_values` with `decision_function`
    and binary classifier."""
    X, y = make_classification(
        n_samples=10,
        n_classes=2,
        weights=[0.3, 0.7],
        random_state=0,
    )
    classifier = LogisticRegression().fit(X, y)
    response_method = "decision_function"

    # default `pos_label`
    results = _get_response_values(
        classifier,
        X,
        response_method=response_method,
        pos_label=None,
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], classifier.decision_function(X))
    assert results[1] == 1
    if return_response_method_used:
        assert results[2] == "decision_function"

    # when forcing `pos_label=classifier.classes_[0]`
    results = _get_response_values(
        classifier,
        X,
        response_method=response_method,
        pos_label=classifier.classes_[0],
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], classifier.decision_function(X) * -1)
    assert results[1] == 0
    if return_response_method_used:
        assert results[2] == "decision_function"


@pytest.mark.parametrize("return_response_method_used", [True, False])
@pytest.mark.parametrize("response_method", ["predict_proba", "predict_log_proba"])
def test_get_response_values_binary_classifier_predict_proba(
    return_response_method_used, response_method
):
    """Check that `_get_response_values` with `predict_proba` and binary
    classifier."""
    X, y = make_classification(
        n_samples=10,
        n_classes=2,
        weights=[0.3, 0.7],
        random_state=0,
    )
    classifier = LogisticRegression().fit(X, y)

    # default `pos_label`
    results = _get_response_values(
        classifier,
        X,
        response_method=response_method,
        pos_label=None,
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], getattr(classifier, response_method)(X)[:, 1])
    assert results[1] == 1
    if return_response_method_used:
        assert len(results) == 3
        assert results[2] == response_method
    else:
        assert len(results) == 2

    # when forcing `pos_label=classifier.classes_[0]`
    y_pred, pos_label, *_ = _get_response_values(
        classifier,
        X,
        response_method=response_method,
        pos_label=classifier.classes_[0],
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(y_pred, getattr(classifier, response_method)(X)[:, 0])
    assert pos_label == 0


@pytest.mark.parametrize(
    "estimator, X, y, err_msg, params",
    [
        (
            DecisionTreeRegressor(),
            X_binary,
            y_binary,
            "Expected 'estimator' to be a binary classifier",
            {"response_method": "auto"},
        ),
        (
            DecisionTreeClassifier(),
            X_binary,
            y_binary,
            r"pos_label=unknown is not a valid label: It should be one of \[0 1\]",
            {"response_method": "auto", "pos_label": "unknown"},
        ),
        (
            DecisionTreeClassifier(),
            X,
            y,
            "be a binary classifier. Got 3 classes instead.",
            {"response_method": "predict_proba"},
        ),
    ],
)
def test_get_response_error(estimator, X, y, err_msg, params):
    """Check that we raise the proper error messages in _get_response_values_binary."""

    estimator.fit(X, y)
    with pytest.raises(ValueError, match=err_msg):
        _get_response_values_binary(estimator, X, **params)


@pytest.mark.parametrize("return_response_method_used", [True, False])
def test_get_response_predict_proba(return_response_method_used):
    """Check the behaviour of `_get_response_values_binary` using `predict_proba`."""
    classifier = DecisionTreeClassifier().fit(X_binary, y_binary)
    results = _get_response_values_binary(
        classifier,
        X_binary,
        response_method="predict_proba",
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], classifier.predict_proba(X_binary)[:, 1])
    assert results[1] == 1
    if return_response_method_used:
        assert results[2] == "predict_proba"

    results = _get_response_values_binary(
        classifier,
        X_binary,
        response_method="predict_proba",
        pos_label=0,
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], classifier.predict_proba(X_binary)[:, 0])
    assert results[1] == 0
    if return_response_method_used:
        assert results[2] == "predict_proba"


@pytest.mark.parametrize("return_response_method_used", [True, False])
def test_get_response_decision_function(return_response_method_used):
    """Check the behaviour of `_get_response_values_binary` using decision_function."""
    classifier = LogisticRegression().fit(X_binary, y_binary)
    results = _get_response_values_binary(
        classifier,
        X_binary,
        response_method="decision_function",
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], classifier.decision_function(X_binary))
    assert results[1] == 1
    if return_response_method_used:
        assert results[2] == "decision_function"

    results = _get_response_values_binary(
        classifier,
        X_binary,
        response_method="decision_function",
        pos_label=0,
        return_response_method_used=return_response_method_used,
    )
    assert_allclose(results[0], classifier.decision_function(X_binary) * -1)
    assert results[1] == 0
    if return_response_method_used:
        assert results[2] == "decision_function"


@pytest.mark.parametrize(
    "estimator, response_method",
    [
        (DecisionTreeClassifier(max_depth=2, random_state=0), "predict_proba"),
        (DecisionTreeClassifier(max_depth=2, random_state=0), "predict_log_proba"),
        (LogisticRegression(), "decision_function"),
    ],
)
def test_get_response_values_multiclass(estimator, response_method):
    """Check that we can call `_get_response_values` with a multiclass estimator.
    It should return the predictions untouched.
    """
    estimator.fit(X, y)
    predictions, pos_label = _get_response_values(
        estimator, X, response_method=response_method
    )

    assert pos_label is None
    assert predictions.shape == (X.shape[0], len(estimator.classes_))
    if response_method == "predict_proba":
        assert np.logical_and(predictions >= 0, predictions <= 1).all()
    elif response_method == "predict_log_proba":
        assert (predictions <= 0.0).all()


def test_get_response_values_with_response_list():
    """Check the behaviour of passing a list of responses to `_get_response_values`."""
    classifier = LogisticRegression().fit(X_binary, y_binary)

    # it should use `predict_proba`
    y_pred, pos_label, response_method = _get_response_values(
        classifier,
        X_binary,
        response_method=["predict_proba", "decision_function"],
        return_response_method_used=True,
    )
    assert_allclose(y_pred, classifier.predict_proba(X_binary)[:, 1])
    assert pos_label == 1
    assert response_method == "predict_proba"

    # it should use `decision_function`
    y_pred, pos_label, response_method = _get_response_values(
        classifier,
        X_binary,
        response_method=["decision_function", "predict_proba"],
        return_response_method_used=True,
    )
    assert_allclose(y_pred, classifier.decision_function(X_binary))
    assert pos_label == 1
    assert response_method == "decision_function"


@pytest.mark.parametrize(
    "response_method", ["predict_proba", "decision_function", "predict"]
)
def test_get_response_values_multilabel_indicator(response_method):
    X, Y = make_multilabel_classification(random_state=0)
    estimator = ClassifierChain(LogisticRegression()).fit(X, Y)

    y_pred, pos_label = _get_response_values(
        estimator, X, response_method=response_method
    )
    assert pos_label is None
    assert y_pred.shape == Y.shape

    if response_method == "predict_proba":
        assert np.logical_and(y_pred >= 0, y_pred <= 1).all()
    elif response_method == "decision_function":
        # values returned by `decision_function` are not bounded in [0, 1]
        assert (y_pred < 0).sum() > 0
        assert (y_pred > 1).sum() > 0
    else:  # response_method == "predict"
        assert np.logical_or(y_pred == 0, y_pred == 1).all()