File size: 33,902 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 |
import atexit
import os
import warnings
import numpy as np
import pytest
from scipy import sparse
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils._testing import (
TempMemmap,
_convert_container,
_delete_folder,
_get_warnings_filters_info_list,
assert_allclose,
assert_allclose_dense_sparse,
assert_docstring_consistency,
assert_run_python_script_without_output,
check_docstring_parameters,
create_memmap_backed_data,
ignore_warnings,
raises,
set_random_state,
skip_if_no_numpydoc,
turn_warnings_into_errors,
)
from sklearn.utils.deprecation import deprecated
from sklearn.utils.fixes import (
_IS_WASM,
CSC_CONTAINERS,
CSR_CONTAINERS,
parse_version,
sp_version,
)
from sklearn.utils.metaestimators import available_if
def test_set_random_state():
lda = LinearDiscriminantAnalysis()
tree = DecisionTreeClassifier()
# Linear Discriminant Analysis doesn't have random state: smoke test
set_random_state(lda, 3)
set_random_state(tree, 3)
assert tree.random_state == 3
@pytest.mark.parametrize("csr_container", CSC_CONTAINERS)
def test_assert_allclose_dense_sparse(csr_container):
x = np.arange(9).reshape(3, 3)
msg = "Not equal to tolerance "
y = csr_container(x)
for X in [x, y]:
# basic compare
with pytest.raises(AssertionError, match=msg):
assert_allclose_dense_sparse(X, X * 2)
assert_allclose_dense_sparse(X, X)
with pytest.raises(ValueError, match="Can only compare two sparse"):
assert_allclose_dense_sparse(x, y)
A = sparse.diags(np.ones(5), offsets=0).tocsr()
B = csr_container(np.ones((1, 5)))
with pytest.raises(AssertionError, match="Arrays are not equal"):
assert_allclose_dense_sparse(B, A)
def test_ignore_warning():
# This check that ignore_warning decorator and context manager are working
# as expected
def _warning_function():
warnings.warn("deprecation warning", DeprecationWarning)
def _multiple_warning_function():
warnings.warn("deprecation warning", DeprecationWarning)
warnings.warn("deprecation warning")
# Check the function directly
with warnings.catch_warnings():
warnings.simplefilter("error")
ignore_warnings(_warning_function)
ignore_warnings(_warning_function, category=DeprecationWarning)
with pytest.warns(DeprecationWarning):
ignore_warnings(_warning_function, category=UserWarning)()
with pytest.warns() as record:
ignore_warnings(_multiple_warning_function, category=FutureWarning)()
assert len(record) == 2
assert isinstance(record[0].message, DeprecationWarning)
assert isinstance(record[1].message, UserWarning)
with pytest.warns() as record:
ignore_warnings(_multiple_warning_function, category=UserWarning)()
assert len(record) == 1
assert isinstance(record[0].message, DeprecationWarning)
with warnings.catch_warnings():
warnings.simplefilter("error")
ignore_warnings(_warning_function, category=(DeprecationWarning, UserWarning))
# Check the decorator
@ignore_warnings
def decorator_no_warning():
_warning_function()
_multiple_warning_function()
@ignore_warnings(category=(DeprecationWarning, UserWarning))
def decorator_no_warning_multiple():
_multiple_warning_function()
@ignore_warnings(category=DeprecationWarning)
def decorator_no_deprecation_warning():
_warning_function()
@ignore_warnings(category=UserWarning)
def decorator_no_user_warning():
_warning_function()
@ignore_warnings(category=DeprecationWarning)
def decorator_no_deprecation_multiple_warning():
_multiple_warning_function()
@ignore_warnings(category=UserWarning)
def decorator_no_user_multiple_warning():
_multiple_warning_function()
with warnings.catch_warnings():
warnings.simplefilter("error")
decorator_no_warning()
decorator_no_warning_multiple()
decorator_no_deprecation_warning()
with pytest.warns(DeprecationWarning):
decorator_no_user_warning()
with pytest.warns(UserWarning):
decorator_no_deprecation_multiple_warning()
with pytest.warns(DeprecationWarning):
decorator_no_user_multiple_warning()
# Check the context manager
def context_manager_no_warning():
with ignore_warnings():
_warning_function()
def context_manager_no_warning_multiple():
with ignore_warnings(category=(DeprecationWarning, UserWarning)):
_multiple_warning_function()
def context_manager_no_deprecation_warning():
with ignore_warnings(category=DeprecationWarning):
_warning_function()
def context_manager_no_user_warning():
with ignore_warnings(category=UserWarning):
_warning_function()
def context_manager_no_deprecation_multiple_warning():
with ignore_warnings(category=DeprecationWarning):
_multiple_warning_function()
def context_manager_no_user_multiple_warning():
with ignore_warnings(category=UserWarning):
_multiple_warning_function()
with warnings.catch_warnings():
warnings.simplefilter("error")
context_manager_no_warning()
context_manager_no_warning_multiple()
context_manager_no_deprecation_warning()
with pytest.warns(DeprecationWarning):
context_manager_no_user_warning()
with pytest.warns(UserWarning):
context_manager_no_deprecation_multiple_warning()
with pytest.warns(DeprecationWarning):
context_manager_no_user_multiple_warning()
# Check that passing warning class as first positional argument
warning_class = UserWarning
match = "'obj' should be a callable.+you should use 'category=UserWarning'"
with pytest.raises(ValueError, match=match):
silence_warnings_func = ignore_warnings(warning_class)(_warning_function)
silence_warnings_func()
with pytest.raises(ValueError, match=match):
@ignore_warnings(warning_class)
def test():
pass
# Tests for docstrings:
def f_ok(a, b):
"""Function f
Parameters
----------
a : int
Parameter a
b : float
Parameter b
Returns
-------
c : list
Parameter c
"""
c = a + b
return c
def f_bad_sections(a, b):
"""Function f
Parameters
----------
a : int
Parameter a
b : float
Parameter b
Results
-------
c : list
Parameter c
"""
c = a + b
return c
def f_bad_order(b, a):
"""Function f
Parameters
----------
a : int
Parameter a
b : float
Parameter b
Returns
-------
c : list
Parameter c
"""
c = a + b
return c
def f_too_many_param_docstring(a, b):
"""Function f
Parameters
----------
a : int
Parameter a
b : int
Parameter b
c : int
Parameter c
Returns
-------
d : list
Parameter c
"""
d = a + b
return d
def f_missing(a, b):
"""Function f
Parameters
----------
a : int
Parameter a
Returns
-------
c : list
Parameter c
"""
c = a + b
return c
def f_check_param_definition(a, b, c, d, e):
"""Function f
Parameters
----------
a: int
Parameter a
b:
Parameter b
c :
This is parsed correctly in numpydoc 1.2
d:int
Parameter d
e
No typespec is allowed without colon
"""
return a + b + c + d
class Klass:
def f_missing(self, X, y):
pass
def f_bad_sections(self, X, y):
"""Function f
Parameter
---------
a : int
Parameter a
b : float
Parameter b
Results
-------
c : list
Parameter c
"""
pass
class MockEst:
def __init__(self):
"""MockEstimator"""
def fit(self, X, y):
return X
def predict(self, X):
return X
def predict_proba(self, X):
return X
def score(self, X):
return 1.0
class MockMetaEstimator:
def __init__(self, delegate):
"""MetaEstimator to check if doctest on delegated methods work.
Parameters
---------
delegate : estimator
Delegated estimator.
"""
self.delegate = delegate
@available_if(lambda self: hasattr(self.delegate, "predict"))
def predict(self, X):
"""This is available only if delegate has predict.
Parameters
----------
y : ndarray
Parameter y
"""
return self.delegate.predict(X)
@available_if(lambda self: hasattr(self.delegate, "score"))
@deprecated("Testing a deprecated delegated method")
def score(self, X):
"""This is available only if delegate has score.
Parameters
---------
y : ndarray
Parameter y
"""
@available_if(lambda self: hasattr(self.delegate, "predict_proba"))
def predict_proba(self, X):
"""This is available only if delegate has predict_proba.
Parameters
---------
X : ndarray
Parameter X
"""
return X
@deprecated("Testing deprecated function with wrong params")
def fit(self, X, y):
"""Incorrect docstring but should not be tested"""
@skip_if_no_numpydoc
def test_check_docstring_parameters():
incorrect = check_docstring_parameters(f_ok)
assert incorrect == []
incorrect = check_docstring_parameters(f_ok, ignore=["b"])
assert incorrect == []
incorrect = check_docstring_parameters(f_missing, ignore=["b"])
assert incorrect == []
with pytest.raises(RuntimeError, match="Unknown section Results"):
check_docstring_parameters(f_bad_sections)
with pytest.raises(RuntimeError, match="Unknown section Parameter"):
check_docstring_parameters(Klass.f_bad_sections)
incorrect = check_docstring_parameters(f_check_param_definition)
mock_meta = MockMetaEstimator(delegate=MockEst())
mock_meta_name = mock_meta.__class__.__name__
assert incorrect == [
(
"sklearn.utils.tests.test_testing.f_check_param_definition There "
"was no space between the param name and colon ('a: int')"
),
(
"sklearn.utils.tests.test_testing.f_check_param_definition There "
"was no space between the param name and colon ('b:')"
),
(
"sklearn.utils.tests.test_testing.f_check_param_definition There "
"was no space between the param name and colon ('d:int')"
),
]
messages = [
[
"In function: sklearn.utils.tests.test_testing.f_bad_order",
(
"There's a parameter name mismatch in function docstring w.r.t."
" function signature, at index 0 diff: 'b' != 'a'"
),
"Full diff:",
"- ['b', 'a']",
"+ ['a', 'b']",
],
[
"In function: "
+ "sklearn.utils.tests.test_testing.f_too_many_param_docstring",
(
"Parameters in function docstring have more items w.r.t. function"
" signature, first extra item: c"
),
"Full diff:",
"- ['a', 'b']",
"+ ['a', 'b', 'c']",
"? +++++",
],
[
"In function: sklearn.utils.tests.test_testing.f_missing",
(
"Parameters in function docstring have less items w.r.t. function"
" signature, first missing item: b"
),
"Full diff:",
"- ['a', 'b']",
"+ ['a']",
],
[
"In function: sklearn.utils.tests.test_testing.Klass.f_missing",
(
"Parameters in function docstring have less items w.r.t. function"
" signature, first missing item: X"
),
"Full diff:",
"- ['X', 'y']",
"+ []",
],
[
"In function: "
+ f"sklearn.utils.tests.test_testing.{mock_meta_name}.predict",
(
"There's a parameter name mismatch in function docstring w.r.t."
" function signature, at index 0 diff: 'X' != 'y'"
),
"Full diff:",
"- ['X']",
"? ^",
"+ ['y']",
"? ^",
],
[
"In function: "
+ f"sklearn.utils.tests.test_testing.{mock_meta_name}."
+ "predict_proba",
"potentially wrong underline length... ",
"Parameters ",
"--------- in ",
],
[
"In function: "
+ f"sklearn.utils.tests.test_testing.{mock_meta_name}.score",
"potentially wrong underline length... ",
"Parameters ",
"--------- in ",
],
[
"In function: " + f"sklearn.utils.tests.test_testing.{mock_meta_name}.fit",
(
"Parameters in function docstring have less items w.r.t. function"
" signature, first missing item: X"
),
"Full diff:",
"- ['X', 'y']",
"+ []",
],
]
for msg, f in zip(
messages,
[
f_bad_order,
f_too_many_param_docstring,
f_missing,
Klass.f_missing,
mock_meta.predict,
mock_meta.predict_proba,
mock_meta.score,
mock_meta.fit,
],
):
incorrect = check_docstring_parameters(f)
assert msg == incorrect, '\n"%s"\n not in \n"%s"' % (msg, incorrect)
def f_one(a, b): # pragma: no cover
"""Function one.
Parameters
----------
a : int, float
Parameter a.
Second line.
b : str
Parameter b.
Returns
-------
c : int
Returning
d : int
Returning
"""
pass
def f_two(a, b): # pragma: no cover
"""Function two.
Parameters
----------
a : int, float
Parameter a.
Second line.
b : str
Parameter bb.
e : int
Extra parameter.
Returns
-------
c : int
Returning
d : int
Returning
"""
pass
def f_three(a, b): # pragma: no cover
"""Function two.
Parameters
----------
a : int, float
Parameter a.
b : str
Parameter B!
e :
Extra parameter.
Returns
-------
c : int
Returning.
d : int
Returning
"""
pass
@skip_if_no_numpydoc
def test_assert_docstring_consistency_object_type():
"""Check error raised when `objects` incorrect type."""
with pytest.raises(TypeError, match="All 'objects' must be one of"):
assert_docstring_consistency(["string", f_one])
@skip_if_no_numpydoc
@pytest.mark.parametrize(
"objects, kwargs, error",
[
(
[f_one, f_two],
{"include_params": ["a"], "exclude_params": ["b"]},
"The 'exclude_params' argument",
),
(
[f_one, f_two],
{"include_returns": False, "exclude_returns": ["c"]},
"The 'exclude_returns' argument",
),
],
)
def test_assert_docstring_consistency_arg_checks(objects, kwargs, error):
"""Check `assert_docstring_consistency` argument checking correct."""
with pytest.raises(TypeError, match=error):
assert_docstring_consistency(objects, **kwargs)
@skip_if_no_numpydoc
@pytest.mark.parametrize(
"objects, kwargs, error, warn",
[
pytest.param(
[f_one, f_two], {"include_params": ["a"]}, "", "", id="whitespace"
),
pytest.param([f_one, f_two], {"include_returns": True}, "", "", id="incl_all"),
pytest.param(
[f_one, f_two, f_three],
{"include_params": ["a"]},
(
r"The description of Parameter 'a' is inconsistent between "
r"\['f_one',\n'f_two'\]"
),
"",
id="2-1 group",
),
pytest.param(
[f_one, f_two, f_three],
{"include_params": ["b"]},
(
r"The description of Parameter 'b' is inconsistent between "
r"\['f_one'\] and\n\['f_two'\] and"
),
"",
id="1-1-1 group",
),
pytest.param(
[f_two, f_three],
{"include_params": ["e"]},
(
r"The type specification of Parameter 'e' is inconsistent between\n"
r"\['f_two'\] and"
),
"",
id="empty type",
),
pytest.param(
[f_one, f_two],
{"include_params": True, "exclude_params": ["b"]},
"",
r"Checking was skipped for Parameters: \['e'\]",
id="skip warn",
),
],
)
def test_assert_docstring_consistency(objects, kwargs, error, warn):
"""Check `assert_docstring_consistency` gives correct results."""
if error:
with pytest.raises(AssertionError, match=error):
assert_docstring_consistency(objects, **kwargs)
elif warn:
with pytest.warns(UserWarning, match=warn):
assert_docstring_consistency(objects, **kwargs)
else:
assert_docstring_consistency(objects, **kwargs)
def f_four(labels): # pragma: no cover
"""Function four.
Parameters
----------
labels : array-like, default=None
The set of labels to include when `average != 'binary'`, and their
order if `average is None`. Labels present in the data can be excluded.
"""
pass
def f_five(labels): # pragma: no cover
"""Function five.
Parameters
----------
labels : array-like, default=None
The set of labels to include when `average != 'binary'`, and their
order if `average is None`. This is an extra line. Labels present in the
data can be excluded.
"""
pass
def f_six(labels): # pragma: no cover
"""Function six.
Parameters
----------
labels : array-like, default=None
The group of labels to add when `average != 'binary'`, and the
order if `average is None`. Labels present on them datas can be excluded.
"""
pass
@skip_if_no_numpydoc
def test_assert_docstring_consistency_error_msg():
"""Check `assert_docstring_consistency` difference message."""
msg = r"""The description of Parameter 'labels' is inconsistent between
\['f_four'\] and \['f_five'\] and \['f_six'\]:
\*\*\* \['f_four'\]
--- \['f_five'\]
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
\*\*\* 10,25 \*\*\*\*
--- 10,30 ----
'binary'`, and their order if `average is None`.
\+ This is an extra line.
Labels present in the data can be excluded.
\*\*\* \['f_four'\]
--- \['f_six'\]
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
\*\*\* 1,25 \*\*\*\*
The
! set
of labels to
! include
when `average != 'binary'`, and
! their
order if `average is None`. Labels present
! in the data
can be excluded.
--- 1,25 ----
The
! group
of labels to
! add
when `average != 'binary'`, and
! the
order if `average is None`. Labels present
! on them datas
can be excluded."""
with pytest.raises(AssertionError, match=msg):
assert_docstring_consistency([f_four, f_five, f_six], include_params=True)
@skip_if_no_numpydoc
def test_assert_docstring_consistency_descr_regex_pattern():
"""Check `assert_docstring_consistency` `descr_regex_pattern` works."""
# Check regex that matches full parameter descriptions
regex_full = (
r"The (set|group) " # match 'set' or 'group'
+ r"of labels to (include|add) " # match 'include' or 'add'
+ r"when `average \!\= 'binary'`, and (their|the) " # match 'their' or 'the'
+ r"order if `average is None`\."
+ r"[\s\w]*\.* " # optionally match additonal sentence
+ r"Labels present (on|in) " # match 'on' or 'in'
+ r"(them|the) " # match 'them' or 'the'
+ r"datas? can be excluded\." # match 'data' or 'datas'
)
assert_docstring_consistency(
[f_four, f_five, f_six],
include_params=True,
descr_regex_pattern=" ".join(regex_full.split()),
)
# Check we can just match a few alternate words
regex_words = r"(labels|average|binary)" # match any of these 3 words
assert_docstring_consistency(
[f_four, f_five, f_six],
include_params=True,
descr_regex_pattern=" ".join(regex_words.split()),
)
# Check error raised when regex doesn't match
regex_error = r"The set of labels to include when.+"
msg = r"The description of Parameter 'labels' in \['f_six'\] does not match"
with pytest.raises(AssertionError, match=msg):
assert_docstring_consistency(
[f_four, f_five, f_six],
include_params=True,
descr_regex_pattern=" ".join(regex_error.split()),
)
class RegistrationCounter:
def __init__(self):
self.nb_calls = 0
def __call__(self, to_register_func):
self.nb_calls += 1
assert to_register_func.func is _delete_folder
def check_memmap(input_array, mmap_data, mmap_mode="r"):
assert isinstance(mmap_data, np.memmap)
writeable = mmap_mode != "r"
assert mmap_data.flags.writeable is writeable
np.testing.assert_array_equal(input_array, mmap_data)
def test_tempmemmap(monkeypatch):
registration_counter = RegistrationCounter()
monkeypatch.setattr(atexit, "register", registration_counter)
input_array = np.ones(3)
with TempMemmap(input_array) as data:
check_memmap(input_array, data)
temp_folder = os.path.dirname(data.filename)
if os.name != "nt":
assert not os.path.exists(temp_folder)
assert registration_counter.nb_calls == 1
mmap_mode = "r+"
with TempMemmap(input_array, mmap_mode=mmap_mode) as data:
check_memmap(input_array, data, mmap_mode=mmap_mode)
temp_folder = os.path.dirname(data.filename)
if os.name != "nt":
assert not os.path.exists(temp_folder)
assert registration_counter.nb_calls == 2
@pytest.mark.xfail(_IS_WASM, reason="memmap not fully supported")
def test_create_memmap_backed_data(monkeypatch):
registration_counter = RegistrationCounter()
monkeypatch.setattr(atexit, "register", registration_counter)
input_array = np.ones(3)
data = create_memmap_backed_data(input_array)
check_memmap(input_array, data)
assert registration_counter.nb_calls == 1
data, folder = create_memmap_backed_data(input_array, return_folder=True)
check_memmap(input_array, data)
assert folder == os.path.dirname(data.filename)
assert registration_counter.nb_calls == 2
mmap_mode = "r+"
data = create_memmap_backed_data(input_array, mmap_mode=mmap_mode)
check_memmap(input_array, data, mmap_mode)
assert registration_counter.nb_calls == 3
input_list = [input_array, input_array + 1, input_array + 2]
mmap_data_list = create_memmap_backed_data(input_list)
for input_array, data in zip(input_list, mmap_data_list):
check_memmap(input_array, data)
assert registration_counter.nb_calls == 4
output_data, other = create_memmap_backed_data([input_array, "not-an-array"])
check_memmap(input_array, output_data)
assert other == "not-an-array"
@pytest.mark.parametrize(
"constructor_name, container_type",
[
("list", list),
("tuple", tuple),
("array", np.ndarray),
("sparse", sparse.csr_matrix),
# using `zip` will only keep the available sparse containers
# depending of the installed SciPy version
*zip(["sparse_csr", "sparse_csr_array"], CSR_CONTAINERS),
*zip(["sparse_csc", "sparse_csc_array"], CSC_CONTAINERS),
("dataframe", lambda: pytest.importorskip("pandas").DataFrame),
("series", lambda: pytest.importorskip("pandas").Series),
("index", lambda: pytest.importorskip("pandas").Index),
("slice", slice),
],
)
@pytest.mark.parametrize(
"dtype, superdtype",
[
(np.int32, np.integer),
(np.int64, np.integer),
(np.float32, np.floating),
(np.float64, np.floating),
],
)
def test_convert_container(
constructor_name,
container_type,
dtype,
superdtype,
):
"""Check that we convert the container to the right type of array with the
right data type."""
if constructor_name in ("dataframe", "polars", "series", "polars_series", "index"):
# delay the import of pandas/polars within the function to only skip this test
# instead of the whole file
container_type = container_type()
container = [0, 1]
container_converted = _convert_container(
container,
constructor_name,
dtype=dtype,
)
assert isinstance(container_converted, container_type)
if constructor_name in ("list", "tuple", "index"):
# list and tuple will use Python class dtype: int, float
# pandas index will always use high precision: np.int64 and np.float64
assert np.issubdtype(type(container_converted[0]), superdtype)
elif hasattr(container_converted, "dtype"):
assert container_converted.dtype == dtype
elif hasattr(container_converted, "dtypes"):
assert container_converted.dtypes[0] == dtype
def test_convert_container_categories_pandas():
pytest.importorskip("pandas")
df = _convert_container(
[["x"]], "dataframe", ["A"], categorical_feature_names=["A"]
)
assert df.dtypes.iloc[0] == "category"
def test_convert_container_categories_polars():
pl = pytest.importorskip("polars")
df = _convert_container([["x"]], "polars", ["A"], categorical_feature_names=["A"])
assert df.schema["A"] == pl.Categorical()
def test_convert_container_categories_pyarrow():
pa = pytest.importorskip("pyarrow")
df = _convert_container([["x"]], "pyarrow", ["A"], categorical_feature_names=["A"])
assert type(df.schema[0].type) is pa.DictionaryType
@pytest.mark.skipif(
sp_version >= parse_version("1.8"),
reason="sparse arrays are available as of scipy 1.8.0",
)
@pytest.mark.parametrize("constructor_name", ["sparse_csr_array", "sparse_csc_array"])
@pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64])
def test_convert_container_raise_when_sparray_not_available(constructor_name, dtype):
"""Check that if we convert to sparse array but sparse array are not supported
(scipy<1.8.0), we should raise an explicit error."""
container = [0, 1]
with pytest.raises(
ValueError,
match=f"only available with scipy>=1.8.0, got {sp_version}",
):
_convert_container(container, constructor_name, dtype=dtype)
def test_raises():
# Tests for the raises context manager
# Proper type, no match
with raises(TypeError):
raise TypeError()
# Proper type, proper match
with raises(TypeError, match="how are you") as cm:
raise TypeError("hello how are you")
assert cm.raised_and_matched
# Proper type, proper match with multiple patterns
with raises(TypeError, match=["not this one", "how are you"]) as cm:
raise TypeError("hello how are you")
assert cm.raised_and_matched
# bad type, no match
with pytest.raises(ValueError, match="this will be raised"):
with raises(TypeError) as cm:
raise ValueError("this will be raised")
assert not cm.raised_and_matched
# Bad type, no match, with a err_msg
with pytest.raises(AssertionError, match="the failure message"):
with raises(TypeError, err_msg="the failure message") as cm:
raise ValueError()
assert not cm.raised_and_matched
# bad type, with match (is ignored anyway)
with pytest.raises(ValueError, match="this will be raised"):
with raises(TypeError, match="this is ignored") as cm:
raise ValueError("this will be raised")
assert not cm.raised_and_matched
# proper type but bad match
with pytest.raises(
AssertionError, match="should contain one of the following patterns"
):
with raises(TypeError, match="hello") as cm:
raise TypeError("Bad message")
assert not cm.raised_and_matched
# proper type but bad match, with err_msg
with pytest.raises(AssertionError, match="the failure message"):
with raises(TypeError, match="hello", err_msg="the failure message") as cm:
raise TypeError("Bad message")
assert not cm.raised_and_matched
# no raise with default may_pass=False
with pytest.raises(AssertionError, match="Did not raise"):
with raises(TypeError) as cm:
pass
assert not cm.raised_and_matched
# no raise with may_pass=True
with raises(TypeError, match="hello", may_pass=True) as cm:
pass # still OK
assert not cm.raised_and_matched
# Multiple exception types:
with raises((TypeError, ValueError)):
raise TypeError()
with raises((TypeError, ValueError)):
raise ValueError()
with pytest.raises(AssertionError):
with raises((TypeError, ValueError)):
pass
def test_float32_aware_assert_allclose():
# The relative tolerance for float32 inputs is 1e-4
assert_allclose(np.array([1.0 + 2e-5], dtype=np.float32), 1.0)
with pytest.raises(AssertionError):
assert_allclose(np.array([1.0 + 2e-4], dtype=np.float32), 1.0)
# The relative tolerance for other inputs is left to 1e-7 as in
# the original numpy version.
assert_allclose(np.array([1.0 + 2e-8], dtype=np.float64), 1.0)
with pytest.raises(AssertionError):
assert_allclose(np.array([1.0 + 2e-7], dtype=np.float64), 1.0)
# atol is left to 0.0 by default, even for float32
with pytest.raises(AssertionError):
assert_allclose(np.array([1e-5], dtype=np.float32), 0.0)
assert_allclose(np.array([1e-5], dtype=np.float32), 0.0, atol=2e-5)
@pytest.mark.xfail(_IS_WASM, reason="cannot start subprocess")
def test_assert_run_python_script_without_output():
code = "x = 1"
assert_run_python_script_without_output(code)
code = "print('something to stdout')"
with pytest.raises(AssertionError, match="Expected no output"):
assert_run_python_script_without_output(code)
code = "print('something to stdout')"
with pytest.raises(
AssertionError,
match="output was not supposed to match.+got.+something to stdout",
):
assert_run_python_script_without_output(code, pattern="to.+stdout")
code = "\n".join(["import sys", "print('something to stderr', file=sys.stderr)"])
with pytest.raises(
AssertionError,
match="output was not supposed to match.+got.+something to stderr",
):
assert_run_python_script_without_output(code, pattern="to.+stderr")
@pytest.mark.parametrize(
"constructor_name",
[
"sparse_csr",
"sparse_csc",
pytest.param(
"sparse_csr_array",
marks=pytest.mark.skipif(
sp_version < parse_version("1.8"),
reason="sparse arrays are available as of scipy 1.8.0",
),
),
pytest.param(
"sparse_csc_array",
marks=pytest.mark.skipif(
sp_version < parse_version("1.8"),
reason="sparse arrays are available as of scipy 1.8.0",
),
),
],
)
def test_convert_container_sparse_to_sparse(constructor_name):
"""Non-regression test to check that we can still convert a sparse container
from a given format to another format.
"""
X_sparse = sparse.random(10, 10, density=0.1, format="csr")
_convert_container(X_sparse, constructor_name)
def check_warnings_as_errors(warning_info, warnings_as_errors):
if warning_info.action == "error" and warnings_as_errors:
with pytest.raises(warning_info.category, match=warning_info.message):
warnings.warn(
message=warning_info.message,
category=warning_info.category,
)
if warning_info.action == "ignore":
with warnings.catch_warnings(record=True) as record:
message = warning_info.message
# Special treatment when regex is used
if "Pyarrow" in message:
message = "\nPyarrow will become a required dependency"
warnings.warn(
message=message,
category=warning_info.category,
)
assert len(record) == 0 if warnings_as_errors else 1
if record:
assert str(record[0].message) == message
assert record[0].category == warning_info.category
@pytest.mark.parametrize("warning_info", _get_warnings_filters_info_list())
def test_sklearn_warnings_as_errors(warning_info):
warnings_as_errors = os.environ.get("SKLEARN_WARNINGS_AS_ERRORS", "0") != "0"
check_warnings_as_errors(warning_info, warnings_as_errors=warnings_as_errors)
@pytest.mark.parametrize("warning_info", _get_warnings_filters_info_list())
def test_turn_warnings_into_errors(warning_info):
with warnings.catch_warnings():
turn_warnings_into_errors()
check_warnings_as_errors(warning_info, warnings_as_errors=True)
|