File size: 8,132 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Spectral Algorithm for Nonlinear Equations
"""
import collections

import numpy as np
from scipy.optimize import OptimizeResult
from scipy.optimize._optimize import _check_unknown_options
from ._linesearch import _nonmonotone_line_search_cruz, _nonmonotone_line_search_cheng

class _NoConvergence(Exception):
    pass


def _root_df_sane(func, x0, args=(), ftol=1e-8, fatol=1e-300, maxfev=1000,
                  fnorm=None, callback=None, disp=False, M=10, eta_strategy=None,
                  sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options):
    r"""
    Solve nonlinear equation with the DF-SANE method

    Options
    -------
    ftol : float, optional
        Relative norm tolerance.
    fatol : float, optional
        Absolute norm tolerance.
        Algorithm terminates when ``||func(x)|| < fatol + ftol ||func(x_0)||``.
    fnorm : callable, optional
        Norm to use in the convergence check. If None, 2-norm is used.
    maxfev : int, optional
        Maximum number of function evaluations.
    disp : bool, optional
        Whether to print convergence process to stdout.
    eta_strategy : callable, optional
        Choice of the ``eta_k`` parameter, which gives slack for growth
        of ``||F||**2``.  Called as ``eta_k = eta_strategy(k, x, F)`` with
        `k` the iteration number, `x` the current iterate and `F` the current
        residual. Should satisfy ``eta_k > 0`` and ``sum(eta, k=0..inf) < inf``.
        Default: ``||F||**2 / (1 + k)**2``.
    sigma_eps : float, optional
        The spectral coefficient is constrained to ``sigma_eps < sigma < 1/sigma_eps``.
        Default: 1e-10
    sigma_0 : float, optional
        Initial spectral coefficient.
        Default: 1.0
    M : int, optional
        Number of iterates to include in the nonmonotonic line search.
        Default: 10
    line_search : {'cruz', 'cheng'}
        Type of line search to employ. 'cruz' is the original one defined in
        [Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is
        a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)].
        Default: 'cruz'

    References
    ----------
    .. [1] "Spectral residual method without gradient information for solving
           large-scale nonlinear systems of equations." W. La Cruz,
           J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
    .. [2] W. La Cruz, Opt. Meth. Software, 29, 24 (2014).
    .. [3] W. Cheng, D.-H. Li. IMA J. Numer. Anal. **29**, 814 (2009).

    """
    _check_unknown_options(unknown_options)

    if line_search not in ('cheng', 'cruz'):
        raise ValueError(f"Invalid value {line_search!r} for 'line_search'")

    nexp = 2

    if eta_strategy is None:
        # Different choice from [1], as their eta is not invariant
        # vs. scaling of F.
        def eta_strategy(k, x, F):
            # Obtain squared 2-norm of the initial residual from the outer scope
            return f_0 / (1 + k)**2

    if fnorm is None:
        def fnorm(F):
            # Obtain squared 2-norm of the current residual from the outer scope
            return f_k**(1.0/nexp)

    def fmerit(F):
        return np.linalg.norm(F)**nexp

    nfev = [0]
    f, x_k, x_shape, f_k, F_k, is_complex = _wrap_func(func, x0, fmerit,
                                                       nfev, maxfev, args)

    k = 0
    f_0 = f_k
    sigma_k = sigma_0

    F_0_norm = fnorm(F_k)

    # For the 'cruz' line search
    prev_fs = collections.deque([f_k], M)

    # For the 'cheng' line search
    Q = 1.0
    C = f_0

    converged = False
    message = "too many function evaluations required"

    while True:
        F_k_norm = fnorm(F_k)

        if disp:
            print("iter %d: ||F|| = %g, sigma = %g" % (k, F_k_norm, sigma_k))

        if callback is not None:
            callback(x_k, F_k)

        if F_k_norm < ftol * F_0_norm + fatol:
            # Converged!
            message = "successful convergence"
            converged = True
            break

        # Control spectral parameter, from [2]
        if abs(sigma_k) > 1/sigma_eps:
            sigma_k = 1/sigma_eps * np.sign(sigma_k)
        elif abs(sigma_k) < sigma_eps:
            sigma_k = sigma_eps

        # Line search direction
        d = -sigma_k * F_k

        # Nonmonotone line search
        eta = eta_strategy(k, x_k, F_k)
        try:
            if line_search == 'cruz':
                alpha, xp, fp, Fp = _nonmonotone_line_search_cruz(f, x_k, d, prev_fs,
                                                                  eta=eta)
            elif line_search == 'cheng':
                alpha, xp, fp, Fp, C, Q = _nonmonotone_line_search_cheng(f, x_k, d, f_k,
                                                                         C, Q, eta=eta)
        except _NoConvergence:
            break

        # Update spectral parameter
        s_k = xp - x_k
        y_k = Fp - F_k
        sigma_k = np.vdot(s_k, s_k) / np.vdot(s_k, y_k)

        # Take step
        x_k = xp
        F_k = Fp
        f_k = fp

        # Store function value
        if line_search == 'cruz':
            prev_fs.append(fp)

        k += 1

    x = _wrap_result(x_k, is_complex, shape=x_shape)
    F = _wrap_result(F_k, is_complex)

    result = OptimizeResult(x=x, success=converged,
                            message=message,
                            fun=F, nfev=nfev[0], nit=k, method="df-sane")

    return result


def _wrap_func(func, x0, fmerit, nfev_list, maxfev, args=()):
    """
    Wrap a function and an initial value so that (i) complex values
    are wrapped to reals, and (ii) value for a merit function
    fmerit(x, f) is computed at the same time, (iii) iteration count
    is maintained and an exception is raised if it is exceeded.

    Parameters
    ----------
    func : callable
        Function to wrap
    x0 : ndarray
        Initial value
    fmerit : callable
        Merit function fmerit(f) for computing merit value from residual.
    nfev_list : list
        List to store number of evaluations in. Should be [0] in the beginning.
    maxfev : int
        Maximum number of evaluations before _NoConvergence is raised.
    args : tuple
        Extra arguments to func

    Returns
    -------
    wrap_func : callable
        Wrapped function, to be called as
        ``F, fp = wrap_func(x0)``
    x0_wrap : ndarray of float
        Wrapped initial value; raveled to 1-D and complex
        values mapped to reals.
    x0_shape : tuple
        Shape of the initial value array
    f : float
        Merit function at F
    F : ndarray of float
        Residual at x0_wrap
    is_complex : bool
        Whether complex values were mapped to reals

    """
    x0 = np.asarray(x0)
    x0_shape = x0.shape
    F = np.asarray(func(x0, *args)).ravel()
    is_complex = np.iscomplexobj(x0) or np.iscomplexobj(F)
    x0 = x0.ravel()

    nfev_list[0] = 1

    if is_complex:
        def wrap_func(x):
            if nfev_list[0] >= maxfev:
                raise _NoConvergence()
            nfev_list[0] += 1
            z = _real2complex(x).reshape(x0_shape)
            v = np.asarray(func(z, *args)).ravel()
            F = _complex2real(v)
            f = fmerit(F)
            return f, F

        x0 = _complex2real(x0)
        F = _complex2real(F)
    else:
        def wrap_func(x):
            if nfev_list[0] >= maxfev:
                raise _NoConvergence()
            nfev_list[0] += 1
            x = x.reshape(x0_shape)
            F = np.asarray(func(x, *args)).ravel()
            f = fmerit(F)
            return f, F

    return wrap_func, x0, x0_shape, fmerit(F), F, is_complex


def _wrap_result(result, is_complex, shape=None):
    """
    Convert from real to complex and reshape result arrays.
    """
    if is_complex:
        z = _real2complex(result)
    else:
        z = result
    if shape is not None:
        z = z.reshape(shape)
    return z


def _real2complex(x):
    return np.ascontiguousarray(x, dtype=float).view(np.complex128)


def _complex2real(z):
    return np.ascontiguousarray(z, dtype=complex).view(np.float64)