File size: 10,801 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""Trust-region optimization."""
import math
import warnings

import numpy as np
import scipy.linalg
from ._optimize import (_check_unknown_options, _status_message,
                        OptimizeResult, _prepare_scalar_function,
                        _call_callback_maybe_halt)
from scipy.optimize._hessian_update_strategy import HessianUpdateStrategy
from scipy.optimize._differentiable_functions import FD_METHODS
__all__ = []


def _wrap_function(function, args):
    # wraps a minimizer function to count number of evaluations
    # and to easily provide an args kwd.
    ncalls = [0]
    if function is None:
        return ncalls, None

    def function_wrapper(x, *wrapper_args):
        ncalls[0] += 1
        # A copy of x is sent to the user function (gh13740)
        return function(np.copy(x), *(wrapper_args + args))

    return ncalls, function_wrapper


class BaseQuadraticSubproblem:
    """
    Base/abstract class defining the quadratic model for trust-region
    minimization. Child classes must implement the ``solve`` method.

    Values of the objective function, Jacobian and Hessian (if provided) at
    the current iterate ``x`` are evaluated on demand and then stored as
    attributes ``fun``, ``jac``, ``hess``.
    """

    def __init__(self, x, fun, jac, hess=None, hessp=None):
        self._x = x
        self._f = None
        self._g = None
        self._h = None
        self._g_mag = None
        self._cauchy_point = None
        self._newton_point = None
        self._fun = fun
        self._jac = jac
        self._hess = hess
        self._hessp = hessp

    def __call__(self, p):
        return self.fun + np.dot(self.jac, p) + 0.5 * np.dot(p, self.hessp(p))

    @property
    def fun(self):
        """Value of objective function at current iteration."""
        if self._f is None:
            self._f = self._fun(self._x)
        return self._f

    @property
    def jac(self):
        """Value of Jacobian of objective function at current iteration."""
        if self._g is None:
            self._g = self._jac(self._x)
        return self._g

    @property
    def hess(self):
        """Value of Hessian of objective function at current iteration."""
        if self._h is None:
            self._h = self._hess(self._x)
        return self._h

    def hessp(self, p):
        if self._hessp is not None:
            return self._hessp(self._x, p)
        else:
            return np.dot(self.hess, p)

    @property
    def jac_mag(self):
        """Magnitude of jacobian of objective function at current iteration."""
        if self._g_mag is None:
            self._g_mag = scipy.linalg.norm(self.jac)
        return self._g_mag

    def get_boundaries_intersections(self, z, d, trust_radius):
        """
        Solve the scalar quadratic equation ``||z + t d|| == trust_radius``.
        This is like a line-sphere intersection.
        Return the two values of t, sorted from low to high.
        """
        a = np.dot(d, d)
        b = 2 * np.dot(z, d)
        c = np.dot(z, z) - trust_radius**2
        sqrt_discriminant = math.sqrt(b*b - 4*a*c)

        # The following calculation is mathematically
        # equivalent to:
        # ta = (-b - sqrt_discriminant) / (2*a)
        # tb = (-b + sqrt_discriminant) / (2*a)
        # but produce smaller round off errors.
        # Look at Matrix Computation p.97
        # for a better justification.
        aux = b + math.copysign(sqrt_discriminant, b)
        ta = -aux / (2*a)
        tb = -2*c / aux
        return sorted([ta, tb])

    def solve(self, trust_radius):
        raise NotImplementedError('The solve method should be implemented by '
                                  'the child class')


def _minimize_trust_region(fun, x0, args=(), jac=None, hess=None, hessp=None,
                           subproblem=None, initial_trust_radius=1.0,
                           max_trust_radius=1000.0, eta=0.15, gtol=1e-4,
                           maxiter=None, disp=False, return_all=False,
                           callback=None, inexact=True, **unknown_options):
    """
    Minimization of scalar function of one or more variables using a
    trust-region algorithm.

    Options for the trust-region algorithm are:
        initial_trust_radius : float
            Initial trust radius.
        max_trust_radius : float
            Never propose steps that are longer than this value.
        eta : float
            Trust region related acceptance stringency for proposed steps.
        gtol : float
            Gradient norm must be less than `gtol`
            before successful termination.
        maxiter : int
            Maximum number of iterations to perform.
        disp : bool
            If True, print convergence message.
        inexact : bool
            Accuracy to solve subproblems. If True requires less nonlinear
            iterations, but more vector products. Only effective for method
            trust-krylov.

    This function is called by the `minimize` function.
    It is not supposed to be called directly.
    """
    _check_unknown_options(unknown_options)

    if jac is None:
        raise ValueError('Jacobian is currently required for trust-region '
                         'methods')
    if hess is None and hessp is None:
        raise ValueError('Either the Hessian or the Hessian-vector product '
                         'is currently required for trust-region methods')
    if subproblem is None:
        raise ValueError('A subproblem solving strategy is required for '
                         'trust-region methods')
    if not (0 <= eta < 0.25):
        raise Exception('invalid acceptance stringency')
    if max_trust_radius <= 0:
        raise Exception('the max trust radius must be positive')
    if initial_trust_radius <= 0:
        raise ValueError('the initial trust radius must be positive')
    if initial_trust_radius >= max_trust_radius:
        raise ValueError('the initial trust radius must be less than the '
                         'max trust radius')

    # force the initial guess into a nice format
    x0 = np.asarray(x0).flatten()

    # A ScalarFunction representing the problem. This caches calls to fun, jac,
    # hess.
    sf = _prepare_scalar_function(fun, x0, jac=jac, hess=hess, args=args)
    fun = sf.fun
    jac = sf.grad
    if callable(hess):
        hess = sf.hess
    elif callable(hessp):
        # this elif statement must come before examining whether hess
        # is estimated by FD methods or a HessianUpdateStrategy
        pass
    elif (hess in FD_METHODS or isinstance(hess, HessianUpdateStrategy)):
        # If the Hessian is being estimated by finite differences or a
        # Hessian update strategy then ScalarFunction.hess returns a
        # LinearOperator or a HessianUpdateStrategy. This enables the
        # calculation/creation of a hessp. BUT you only want to do this
        # if the user *hasn't* provided a callable(hessp) function.
        hess = None

        def hessp(x, p, *args):
            return sf.hess(x).dot(p)
    else:
        raise ValueError('Either the Hessian or the Hessian-vector product '
                         'is currently required for trust-region methods')

    # ScalarFunction doesn't represent hessp
    nhessp, hessp = _wrap_function(hessp, args)

    # limit the number of iterations
    if maxiter is None:
        maxiter = len(x0)*200

    # init the search status
    warnflag = 0

    # initialize the search
    trust_radius = initial_trust_radius
    x = x0
    if return_all:
        allvecs = [x]
    m = subproblem(x, fun, jac, hess, hessp)
    k = 0

    # search for the function min
    # do not even start if the gradient is small enough
    while m.jac_mag >= gtol:

        # Solve the sub-problem.
        # This gives us the proposed step relative to the current position
        # and it tells us whether the proposed step
        # has reached the trust region boundary or not.
        try:
            p, hits_boundary = m.solve(trust_radius)
        except np.linalg.LinAlgError:
            warnflag = 3
            break

        # calculate the predicted value at the proposed point
        predicted_value = m(p)

        # define the local approximation at the proposed point
        x_proposed = x + p
        m_proposed = subproblem(x_proposed, fun, jac, hess, hessp)

        # evaluate the ratio defined in equation (4.4)
        actual_reduction = m.fun - m_proposed.fun
        predicted_reduction = m.fun - predicted_value
        if predicted_reduction <= 0:
            warnflag = 2
            break
        rho = actual_reduction / predicted_reduction

        # update the trust radius according to the actual/predicted ratio
        if rho < 0.25:
            trust_radius *= 0.25
        elif rho > 0.75 and hits_boundary:
            trust_radius = min(2*trust_radius, max_trust_radius)

        # if the ratio is high enough then accept the proposed step
        if rho > eta:
            x = x_proposed
            m = m_proposed

        # append the best guess, call back, increment the iteration count
        if return_all:
            allvecs.append(np.copy(x))
        k += 1

        intermediate_result = OptimizeResult(x=x, fun=m.fun)
        if _call_callback_maybe_halt(callback, intermediate_result):
            break

        # check if the gradient is small enough to stop
        if m.jac_mag < gtol:
            warnflag = 0
            break

        # check if we have looked at enough iterations
        if k >= maxiter:
            warnflag = 1
            break

    # print some stuff if requested
    status_messages = (
            _status_message['success'],
            _status_message['maxiter'],
            'A bad approximation caused failure to predict improvement.',
            'A linalg error occurred, such as a non-psd Hessian.',
            )
    if disp:
        if warnflag == 0:
            print(status_messages[warnflag])
        else:
            warnings.warn(status_messages[warnflag], RuntimeWarning, stacklevel=3)
        print(f"         Current function value: {m.fun:f}")
        print("         Iterations: %d" % k)
        print("         Function evaluations: %d" % sf.nfev)
        print("         Gradient evaluations: %d" % sf.ngev)
        print("         Hessian evaluations: %d" % (sf.nhev + nhessp[0]))

    result = OptimizeResult(x=x, success=(warnflag == 0), status=warnflag,
                            fun=m.fun, jac=m.jac, nfev=sf.nfev, njev=sf.ngev,
                            nhev=sf.nhev + nhessp[0], nit=k,
                            message=status_messages[warnflag])

    if hess is not None:
        result['hess'] = m.hess

    if return_all:
        result['allvecs'] = allvecs

    return result