File size: 84,615 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
"""Utilities to build a composite estimator as a chain of transforms and estimators."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings
from collections import Counter, defaultdict
from contextlib import contextmanager
from copy import deepcopy
from itertools import chain, islice

import numpy as np
from scipy import sparse

from .base import TransformerMixin, _fit_context, clone
from .exceptions import NotFittedError
from .preprocessing import FunctionTransformer
from .utils import Bunch
from .utils._estimator_html_repr import _VisualBlock
from .utils._metadata_requests import METHODS
from .utils._param_validation import HasMethods, Hidden
from .utils._set_output import (
    _get_container_adapter,
    _safe_set_output,
)
from .utils._tags import get_tags
from .utils._user_interface import _print_elapsed_time
from .utils.deprecation import _deprecate_Xt_in_inverse_transform
from .utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    _raise_for_params,
    _routing_enabled,
    get_routing_for_object,
    process_routing,
)
from .utils.metaestimators import _BaseComposition, available_if
from .utils.parallel import Parallel, delayed
from .utils.validation import check_is_fitted, check_memory

__all__ = ["Pipeline", "FeatureUnion", "make_pipeline", "make_union"]


@contextmanager
def _raise_or_warn_if_not_fitted(estimator):
    """A context manager to make sure a NotFittedError is raised, if a sub-estimator
    raises the error.

    Otherwise, we raise a warning if the pipeline is not fitted, with the deprecation.

    TODO(1.8): remove this context manager and replace with check_is_fitted.
    """
    try:
        yield
    except NotFittedError as exc:
        raise NotFittedError("Pipeline is not fitted yet.") from exc

    # we only get here if the above didn't raise
    try:
        check_is_fitted(estimator)
    except NotFittedError:
        warnings.warn(
            "This Pipeline instance is not fitted yet. Call 'fit' with "
            "appropriate arguments before using other methods such as transform, "
            "predict, etc. This will raise an error in 1.8 instead of the current "
            "warning.",
            FutureWarning,
        )


def _final_estimator_has(attr):
    """Check that final_estimator has `attr`.

    Used together with `available_if` in `Pipeline`."""

    def check(self):
        # raise original `AttributeError` if `attr` does not exist
        getattr(self._final_estimator, attr)
        return True

    return check


def _cached_transform(
    sub_pipeline, *, cache, param_name, param_value, transform_params
):
    """Transform a parameter value using a sub-pipeline and cache the result.

    Parameters
    ----------
    sub_pipeline : Pipeline
        The sub-pipeline to be used for transformation.
    cache : dict
        The cache dictionary to store the transformed values.
    param_name : str
        The name of the parameter to be transformed.
    param_value : object
        The value of the parameter to be transformed.
    transform_params : dict
        The metadata to be used for transformation. This passed to the
        `transform` method of the sub-pipeline.

    Returns
    -------
    transformed_value : object
        The transformed value of the parameter.
    """
    if param_name not in cache:
        # If the parameter is a tuple, transform each element of the
        # tuple. This is needed to support the pattern present in
        # `lightgbm` and `xgboost` where users can pass multiple
        # validation sets.
        if isinstance(param_value, tuple):
            cache[param_name] = tuple(
                sub_pipeline.transform(element, **transform_params)
                for element in param_value
            )
        else:
            cache[param_name] = sub_pipeline.transform(param_value, **transform_params)

    return cache[param_name]


class Pipeline(_BaseComposition):
    """
    A sequence of data transformers with an optional final predictor.

    `Pipeline` allows you to sequentially apply a list of transformers to
    preprocess the data and, if desired, conclude the sequence with a final
    :term:`predictor` for predictive modeling.

    Intermediate steps of the pipeline must be transformers, that is, they
    must implement `fit` and `transform` methods.
    The final :term:`estimator` only needs to implement `fit`.
    The transformers in the pipeline can be cached using ``memory`` argument.

    The purpose of the pipeline is to assemble several steps that can be
    cross-validated together while setting different parameters. For this, it
    enables setting parameters of the various steps using their names and the
    parameter name separated by a `'__'`, as in the example below. A step's
    estimator may be replaced entirely by setting the parameter with its name
    to another estimator, or a transformer removed by setting it to
    `'passthrough'` or `None`.

    For an example use case of `Pipeline` combined with
    :class:`~sklearn.model_selection.GridSearchCV`, refer to
    :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py`. The
    example :ref:`sphx_glr_auto_examples_compose_plot_digits_pipe.py` shows how
    to grid search on a pipeline using `'__'` as a separator in the parameter names.

    Read more in the :ref:`User Guide <pipeline>`.

    .. versionadded:: 0.5

    Parameters
    ----------
    steps : list of tuples
        List of (name of step, estimator) tuples that are to be chained in
        sequential order. To be compatible with the scikit-learn API, all steps
        must define `fit`. All non-last steps must also define `transform`. See
        :ref:`Combining Estimators <combining_estimators>` for more details.

    transform_input : list of str, default=None
        The names of the :term:`metadata` parameters that should be transformed by the
        pipeline before passing it to the step consuming it.

        This enables transforming some input arguments to ``fit`` (other than ``X``)
        to be transformed by the steps of the pipeline up to the step which requires
        them. Requirement is defined via :ref:`metadata routing <metadata_routing>`.
        For instance, this can be used to pass a validation set through the pipeline.

        You can only set this if metadata routing is enabled, which you
        can enable using ``sklearn.set_config(enable_metadata_routing=True)``.

        .. versionadded:: 1.6

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the fitted transformers of the pipeline. The last step
        will never be cached, even if it is a transformer. By default, no
        caching is performed. If a string is given, it is the path to the
        caching directory. Enabling caching triggers a clone of the transformers
        before fitting. Therefore, the transformer instance given to the
        pipeline cannot be inspected directly. Use the attribute ``named_steps``
        or ``steps`` to inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming. See
        :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py`
        for an example on how to enable caching.

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    Attributes
    ----------
    named_steps : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        Read-only attribute to access any step parameter by user given name.
        Keys are step names and values are steps parameters.

    classes_ : ndarray of shape (n_classes,)
        The classes labels. Only exist if the last step of the pipeline is a
        classifier.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying first estimator in `steps` exposes such an attribute
        when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

        .. versionadded:: 1.0

    See Also
    --------
    make_pipeline : Convenience function for simplified pipeline construction.

    Examples
    --------
    >>> from sklearn.svm import SVC
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.pipeline import Pipeline
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
    ...                                                     random_state=0)
    >>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
    >>> # The pipeline can be used as any other estimator
    >>> # and avoids leaking the test set into the train set
    >>> pipe.fit(X_train, y_train).score(X_test, y_test)
    0.88
    >>> # An estimator's parameter can be set using '__' syntax
    >>> pipe.set_params(svc__C=10).fit(X_train, y_train).score(X_test, y_test)
    0.76
    """

    # BaseEstimator interface
    _parameter_constraints: dict = {
        "steps": [list, Hidden(tuple)],
        "transform_input": [list, None],
        "memory": [None, str, HasMethods(["cache"])],
        "verbose": ["boolean"],
    }

    def __init__(self, steps, *, transform_input=None, memory=None, verbose=False):
        self.steps = steps
        self.transform_input = transform_input
        self.memory = memory
        self.verbose = verbose

    def set_output(self, *, transform=None):
        """Set the output container when `"transform"` and `"fit_transform"` are called.

        Calling `set_output` will set the output of all estimators in `steps`.

        Parameters
        ----------
        transform : {"default", "pandas", "polars"}, default=None
            Configure output of `transform` and `fit_transform`.

            - `"default"`: Default output format of a transformer
            - `"pandas"`: DataFrame output
            - `"polars"`: Polars output
            - `None`: Transform configuration is unchanged

            .. versionadded:: 1.4
                `"polars"` option was added.

        Returns
        -------
        self : estimator instance
            Estimator instance.
        """
        for _, _, step in self._iter():
            _safe_set_output(step, transform=transform)
        return self

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `steps` of the `Pipeline`.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        return self._get_params("steps", deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``. Note that
        you can directly set the parameters of the estimators contained in
        `steps`.

        Parameters
        ----------
        **kwargs : dict
            Parameters of this estimator or parameters of estimators contained
            in `steps`. Parameters of the steps may be set using its name and
            the parameter name separated by a '__'.

        Returns
        -------
        self : object
            Pipeline class instance.
        """
        self._set_params("steps", **kwargs)
        return self

    def _validate_steps(self):
        names, estimators = zip(*self.steps)

        # validate names
        self._validate_names(names)

        # validate estimators
        transformers = estimators[:-1]
        estimator = estimators[-1]

        for t in transformers:
            if t is None or t == "passthrough":
                continue
            if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
                t, "transform"
            ):
                raise TypeError(
                    "All intermediate steps should be "
                    "transformers and implement fit and transform "
                    "or be the string 'passthrough' "
                    "'%s' (type %s) doesn't" % (t, type(t))
                )

        # We allow last estimator to be None as an identity transformation
        if (
            estimator is not None
            and estimator != "passthrough"
            and not hasattr(estimator, "fit")
        ):
            raise TypeError(
                "Last step of Pipeline should implement fit "
                "or be the string 'passthrough'. "
                "'%s' (type %s) doesn't" % (estimator, type(estimator))
            )

    def _iter(self, with_final=True, filter_passthrough=True):
        """
        Generate (idx, (name, trans)) tuples from self.steps

        When filter_passthrough is True, 'passthrough' and None transformers
        are filtered out.
        """
        stop = len(self.steps)
        if not with_final:
            stop -= 1

        for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)):
            if not filter_passthrough:
                yield idx, name, trans
            elif trans is not None and trans != "passthrough":
                yield idx, name, trans

    def __len__(self):
        """
        Returns the length of the Pipeline
        """
        return len(self.steps)

    def __getitem__(self, ind):
        """Returns a sub-pipeline or a single estimator in the pipeline

        Indexing with an integer will return an estimator; using a slice
        returns another Pipeline instance which copies a slice of this
        Pipeline. This copy is shallow: modifying (or fitting) estimators in
        the sub-pipeline will affect the larger pipeline and vice-versa.
        However, replacing a value in `step` will not affect a copy.

        See
        :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py`
        for an example of how to use slicing to inspect part of a pipeline.
        """
        if isinstance(ind, slice):
            if ind.step not in (1, None):
                raise ValueError("Pipeline slicing only supports a step of 1")
            return self.__class__(
                self.steps[ind], memory=self.memory, verbose=self.verbose
            )
        try:
            name, est = self.steps[ind]
        except TypeError:
            # Not an int, try get step by name
            return self.named_steps[ind]
        return est

    # TODO(1.8): Remove this property
    @property
    def _estimator_type(self):
        """Return the estimator type of the last step in the pipeline."""

        if not self.steps:
            return None

        return self.steps[-1][1]._estimator_type

    @property
    def named_steps(self):
        """Access the steps by name.

        Read-only attribute to access any step by given name.
        Keys are steps names and values are the steps objects."""
        # Use Bunch object to improve autocomplete
        return Bunch(**dict(self.steps))

    @property
    def _final_estimator(self):
        try:
            estimator = self.steps[-1][1]
            return "passthrough" if estimator is None else estimator
        except (ValueError, AttributeError, TypeError):
            # This condition happens when a call to a method is first calling
            # `_available_if` and `fit` did not validate `steps` yet. We
            # return `None` and an `InvalidParameterError` will be raised
            # right after.
            return None

    def _log_message(self, step_idx):
        if not self.verbose:
            return None
        name, _ = self.steps[step_idx]

        return "(step %d of %d) Processing %s" % (step_idx + 1, len(self.steps), name)

    def _check_method_params(self, method, props, **kwargs):
        if _routing_enabled():
            routed_params = process_routing(self, method, **props, **kwargs)
            return routed_params
        else:
            fit_params_steps = Bunch(
                **{
                    name: Bunch(**{method: {} for method in METHODS})
                    for name, step in self.steps
                    if step is not None
                }
            )
            for pname, pval in props.items():
                if "__" not in pname:
                    raise ValueError(
                        "Pipeline.fit does not accept the {} parameter. "
                        "You can pass parameters to specific steps of your "
                        "pipeline using the stepname__parameter format, e.g. "
                        "`Pipeline.fit(X, y, logisticregression__sample_weight"
                        "=sample_weight)`.".format(pname)
                    )
                step, param = pname.split("__", 1)
                fit_params_steps[step]["fit"][param] = pval
                # without metadata routing, fit_transform and fit_predict
                # get all the same params and pass it to the last fit.
                fit_params_steps[step]["fit_transform"][param] = pval
                fit_params_steps[step]["fit_predict"][param] = pval
            return fit_params_steps

    def _get_metadata_for_step(self, *, step_idx, step_params, all_params):
        """Get params (metadata) for step `name`.

        This transforms the metadata up to this step if required, which is
        indicated by the `transform_input` parameter.

        If a param in `step_params` is included in the `transform_input` list,
        it will be transformed.

        Parameters
        ----------
        step_idx : int
            Index of the step in the pipeline.

        step_params : dict
            Parameters specific to the step. These are routed parameters, e.g.
            `routed_params[name]`. If a parameter name here is included in the
            `pipeline.transform_input`, then it will be transformed. Note that
            these parameters are *after* routing, so the aliases are already
            resolved.

        all_params : dict
            All parameters passed by the user. Here this is used to call
            `transform` on the slice of the pipeline itself.

        Returns
        -------
        dict
            Parameters to be passed to the step. The ones which should be
            transformed are transformed.
        """
        if (
            self.transform_input is None
            or not all_params
            or not step_params
            or step_idx == 0
        ):
            # we only need to process step_params if transform_input is set
            # and metadata is given by the user.
            return step_params

        sub_pipeline = self[:step_idx]
        sub_metadata_routing = get_routing_for_object(sub_pipeline)
        # here we get the metadata required by sub_pipeline.transform
        transform_params = {
            key: value
            for key, value in all_params.items()
            if key
            in sub_metadata_routing.consumes(
                method="transform", params=all_params.keys()
            )
        }
        transformed_params = dict()  # this is to be returned
        transformed_cache = dict()  # used to transform each param once
        # `step_params` is the output of `process_routing`, so it has a dict for each
        # method (e.g. fit, transform, predict), which are the args to be passed to
        # those methods. We need to transform the parameters which are in the
        # `transform_input`, before returning these dicts.
        for method, method_params in step_params.items():
            transformed_params[method] = Bunch()
            for param_name, param_value in method_params.items():
                # An example of `(param_name, param_value)` is
                # `('sample_weight', array([0.5, 0.5, ...]))`
                if param_name in self.transform_input:
                    # This parameter now needs to be transformed by the sub_pipeline, to
                    # this step. We cache these computations to avoid repeating them.
                    transformed_params[method][param_name] = _cached_transform(
                        sub_pipeline,
                        cache=transformed_cache,
                        param_name=param_name,
                        param_value=param_value,
                        transform_params=transform_params,
                    )
                else:
                    transformed_params[method][param_name] = param_value
        return transformed_params

    # Estimator interface

    def _fit(self, X, y=None, routed_params=None, raw_params=None):
        """Fit the pipeline except the last step.

        routed_params is the output of `process_routing`
        raw_params is the parameters passed by the user, used when `transform_input`
            is set by the user, to transform metadata using a sub-pipeline.
        """
        # shallow copy of steps - this should really be steps_
        self.steps = list(self.steps)
        self._validate_steps()
        # Setup the memory
        memory = check_memory(self.memory)

        fit_transform_one_cached = memory.cache(_fit_transform_one)

        for step_idx, name, transformer in self._iter(
            with_final=False, filter_passthrough=False
        ):
            if transformer is None or transformer == "passthrough":
                with _print_elapsed_time("Pipeline", self._log_message(step_idx)):
                    continue

            if hasattr(memory, "location") and memory.location is None:
                # we do not clone when caching is disabled to
                # preserve backward compatibility
                cloned_transformer = transformer
            else:
                cloned_transformer = clone(transformer)
            # Fit or load from cache the current transformer
            step_params = self._get_metadata_for_step(
                step_idx=step_idx,
                step_params=routed_params[name],
                all_params=raw_params,
            )

            X, fitted_transformer = fit_transform_one_cached(
                cloned_transformer,
                X,
                y,
                weight=None,
                message_clsname="Pipeline",
                message=self._log_message(step_idx),
                params=step_params,
            )
            # Replace the transformer of the step with the fitted
            # transformer. This is necessary when loading the transformer
            # from the cache.
            self.steps[step_idx] = (name, fitted_transformer)
        return X

    @_fit_context(
        # estimators in Pipeline.steps are not validated yet
        prefer_skip_nested_validation=False
    )
    def fit(self, X, y=None, **params):
        """Fit the model.

        Fit all the transformers one after the other and sequentially transform the
        data. Finally, fit the transformed data using the final estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters passed to the
              ``fit`` method of each step, where each parameter name is prefixed such
              that parameter ``p`` for step ``s`` has key ``s__p``.

            - If `enable_metadata_routing=True`: Parameters requested and accepted by
              steps. Each step must have requested certain metadata for these parameters
              to be forwarded to them.

            .. versionchanged:: 1.4
                Parameters are now passed to the ``transform`` method of the
                intermediate steps as well, if requested, and if
                `enable_metadata_routing=True` is set via
                :func:`~sklearn.set_config`.

            See :ref:`Metadata Routing User Guide <metadata_routing>` for more
            details.

        Returns
        -------
        self : object
            Pipeline with fitted steps.
        """
        if not _routing_enabled() and self.transform_input is not None:
            raise ValueError(
                "The `transform_input` parameter can only be set if metadata "
                "routing is enabled. You can enable metadata routing using "
                "`sklearn.set_config(enable_metadata_routing=True)`."
            )

        routed_params = self._check_method_params(method="fit", props=params)
        Xt = self._fit(X, y, routed_params, raw_params=params)
        with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
            if self._final_estimator != "passthrough":
                last_step_params = self._get_metadata_for_step(
                    step_idx=len(self) - 1,
                    step_params=routed_params[self.steps[-1][0]],
                    all_params=params,
                )
                self._final_estimator.fit(Xt, y, **last_step_params["fit"])

        return self

    def _can_fit_transform(self):
        return (
            self._final_estimator == "passthrough"
            or hasattr(self._final_estimator, "transform")
            or hasattr(self._final_estimator, "fit_transform")
        )

    @available_if(_can_fit_transform)
    @_fit_context(
        # estimators in Pipeline.steps are not validated yet
        prefer_skip_nested_validation=False
    )
    def fit_transform(self, X, y=None, **params):
        """Fit the model and transform with the final estimator.

        Fit all the transformers one after the other and sequentially transform
        the data. Only valid if the final estimator either implements
        `fit_transform` or `fit` and `transform`.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters passed to the
              ``fit`` method of each step, where each parameter name is prefixed such
              that parameter ``p`` for step ``s`` has key ``s__p``.

            - If `enable_metadata_routing=True`: Parameters requested and accepted by
              steps. Each step must have requested certain metadata for these parameters
              to be forwarded to them.

            .. versionchanged:: 1.4
                Parameters are now passed to the ``transform`` method of the
                intermediate steps as well, if requested, and if
                `enable_metadata_routing=True`.

            See :ref:`Metadata Routing User Guide <metadata_routing>` for more
            details.

        Returns
        -------
        Xt : ndarray of shape (n_samples, n_transformed_features)
            Transformed samples.
        """
        routed_params = self._check_method_params(method="fit_transform", props=params)
        Xt = self._fit(X, y, routed_params)

        last_step = self._final_estimator
        with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
            if last_step == "passthrough":
                return Xt
            last_step_params = self._get_metadata_for_step(
                step_idx=len(self) - 1,
                step_params=routed_params[self.steps[-1][0]],
                all_params=params,
            )
            if hasattr(last_step, "fit_transform"):
                return last_step.fit_transform(
                    Xt, y, **last_step_params["fit_transform"]
                )
            else:
                return last_step.fit(Xt, y, **last_step_params["fit"]).transform(
                    Xt, **last_step_params["transform"]
                )

    @available_if(_final_estimator_has("predict"))
    def predict(self, X, **params):
        """Transform the data, and apply `predict` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls `predict`
        method. Only valid if the final estimator implements `predict`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters to the
              ``predict`` called at the end of all transformations in the pipeline.

            - If `enable_metadata_routing=True`: Parameters requested and accepted by
              steps. Each step must have requested certain metadata for these parameters
              to be forwarded to them.

            .. versionadded:: 0.20

            .. versionchanged:: 1.4
                Parameters are now passed to the ``transform`` method of the
                intermediate steps as well, if requested, and if
                `enable_metadata_routing=True` is set via
                :func:`~sklearn.set_config`.

            See :ref:`Metadata Routing User Guide <metadata_routing>` for more
            details.

            Note that while this may be used to return uncertainties from some
            models with ``return_std`` or ``return_cov``, uncertainties that are
            generated by the transformations in the pipeline are not propagated
            to the final estimator.

        Returns
        -------
        y_pred : ndarray
            Result of calling `predict` on the final estimator.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            Xt = X

            if not _routing_enabled():
                for _, name, transform in self._iter(with_final=False):
                    Xt = transform.transform(Xt)
                return self.steps[-1][1].predict(Xt, **params)

            # metadata routing enabled
            routed_params = process_routing(self, "predict", **params)
            for _, name, transform in self._iter(with_final=False):
                Xt = transform.transform(Xt, **routed_params[name].transform)
            return self.steps[-1][1].predict(
                Xt, **routed_params[self.steps[-1][0]].predict
            )

    @available_if(_final_estimator_has("fit_predict"))
    @_fit_context(
        # estimators in Pipeline.steps are not validated yet
        prefer_skip_nested_validation=False
    )
    def fit_predict(self, X, y=None, **params):
        """Transform the data, and apply `fit_predict` with the final estimator.

        Call `fit_transform` of each transformer in the pipeline. The
        transformed data are finally passed to the final estimator that calls
        `fit_predict` method. Only valid if the final estimator implements
        `fit_predict`.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of
            the pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps
            of the pipeline.

        **params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters to the
              ``predict`` called at the end of all transformations in the pipeline.

            - If `enable_metadata_routing=True`: Parameters requested and accepted by
              steps. Each step must have requested certain metadata for these parameters
              to be forwarded to them.

            .. versionadded:: 0.20

            .. versionchanged:: 1.4
                Parameters are now passed to the ``transform`` method of the
                intermediate steps as well, if requested, and if
                `enable_metadata_routing=True`.

            See :ref:`Metadata Routing User Guide <metadata_routing>` for more
            details.

            Note that while this may be used to return uncertainties from some
            models with ``return_std`` or ``return_cov``, uncertainties that are
            generated by the transformations in the pipeline are not propagated
            to the final estimator.

        Returns
        -------
        y_pred : ndarray
            Result of calling `fit_predict` on the final estimator.
        """
        routed_params = self._check_method_params(method="fit_predict", props=params)
        Xt = self._fit(X, y, routed_params)

        params_last_step = routed_params[self.steps[-1][0]]
        with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
            y_pred = self.steps[-1][1].fit_predict(
                Xt, y, **params_last_step.get("fit_predict", {})
            )
        return y_pred

    @available_if(_final_estimator_has("predict_proba"))
    def predict_proba(self, X, **params):
        """Transform the data, and apply `predict_proba` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `predict_proba` method. Only valid if the final estimator implements
        `predict_proba`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters to the
              `predict_proba` called at the end of all transformations in the pipeline.

            - If `enable_metadata_routing=True`: Parameters requested and accepted by
              steps. Each step must have requested certain metadata for these parameters
              to be forwarded to them.

            .. versionadded:: 0.20

            .. versionchanged:: 1.4
                Parameters are now passed to the ``transform`` method of the
                intermediate steps as well, if requested, and if
                `enable_metadata_routing=True`.

            See :ref:`Metadata Routing User Guide <metadata_routing>` for more
            details.

        Returns
        -------
        y_proba : ndarray of shape (n_samples, n_classes)
            Result of calling `predict_proba` on the final estimator.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            Xt = X

            if not _routing_enabled():
                for _, name, transform in self._iter(with_final=False):
                    Xt = transform.transform(Xt)
                return self.steps[-1][1].predict_proba(Xt, **params)

            # metadata routing enabled
            routed_params = process_routing(self, "predict_proba", **params)
            for _, name, transform in self._iter(with_final=False):
                Xt = transform.transform(Xt, **routed_params[name].transform)
            return self.steps[-1][1].predict_proba(
                Xt, **routed_params[self.steps[-1][0]].predict_proba
            )

    @available_if(_final_estimator_has("decision_function"))
    def decision_function(self, X, **params):
        """Transform the data, and apply `decision_function` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `decision_function` method. Only valid if the final estimator
        implements `decision_function`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **params : dict of string -> object
            Parameters requested and accepted by steps. Each step must have
            requested certain metadata for these parameters to be forwarded to
            them.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`. See
                :ref:`Metadata Routing User Guide <metadata_routing>` for more
                details.

        Returns
        -------
        y_score : ndarray of shape (n_samples, n_classes)
            Result of calling `decision_function` on the final estimator.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            _raise_for_params(params, self, "decision_function")

            # not branching here since params is only available if
            # enable_metadata_routing=True
            routed_params = process_routing(self, "decision_function", **params)

            Xt = X
            for _, name, transform in self._iter(with_final=False):
                Xt = transform.transform(
                    Xt, **routed_params.get(name, {}).get("transform", {})
                )
            return self.steps[-1][1].decision_function(
                Xt,
                **routed_params.get(self.steps[-1][0], {}).get("decision_function", {}),
            )

    @available_if(_final_estimator_has("score_samples"))
    def score_samples(self, X):
        """Transform the data, and apply `score_samples` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `score_samples` method. Only valid if the final estimator implements
        `score_samples`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_score : ndarray of shape (n_samples,)
            Result of calling `score_samples` on the final estimator.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            Xt = X
            for _, _, transformer in self._iter(with_final=False):
                Xt = transformer.transform(Xt)
            return self.steps[-1][1].score_samples(Xt)

    @available_if(_final_estimator_has("predict_log_proba"))
    def predict_log_proba(self, X, **params):
        """Transform the data, and apply `predict_log_proba` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `predict_log_proba` method. Only valid if the final estimator
        implements `predict_log_proba`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters to the
              `predict_log_proba` called at the end of all transformations in the
              pipeline.

            - If `enable_metadata_routing=True`: Parameters requested and accepted by
              steps. Each step must have requested certain metadata for these parameters
              to be forwarded to them.

            .. versionadded:: 0.20

            .. versionchanged:: 1.4
                Parameters are now passed to the ``transform`` method of the
                intermediate steps as well, if requested, and if
                `enable_metadata_routing=True`.

            See :ref:`Metadata Routing User Guide <metadata_routing>` for more
            details.

        Returns
        -------
        y_log_proba : ndarray of shape (n_samples, n_classes)
            Result of calling `predict_log_proba` on the final estimator.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            Xt = X

            if not _routing_enabled():
                for _, name, transform in self._iter(with_final=False):
                    Xt = transform.transform(Xt)
                return self.steps[-1][1].predict_log_proba(Xt, **params)

            # metadata routing enabled
            routed_params = process_routing(self, "predict_log_proba", **params)
            for _, name, transform in self._iter(with_final=False):
                Xt = transform.transform(Xt, **routed_params[name].transform)
            return self.steps[-1][1].predict_log_proba(
                Xt, **routed_params[self.steps[-1][0]].predict_log_proba
            )

    def _can_transform(self):
        return self._final_estimator == "passthrough" or hasattr(
            self._final_estimator, "transform"
        )

    @available_if(_can_transform)
    def transform(self, X, **params):
        """Transform the data, and apply `transform` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `transform` method. Only valid if the final estimator
        implements `transform`.

        This also works where final estimator is `None` in which case all prior
        transformations are applied.

        Parameters
        ----------
        X : iterable
            Data to transform. Must fulfill input requirements of first step
            of the pipeline.

        **params : dict of str -> object
            Parameters requested and accepted by steps. Each step must have
            requested certain metadata for these parameters to be forwarded to
            them.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`. See
                :ref:`Metadata Routing User Guide <metadata_routing>` for more
                details.

        Returns
        -------
        Xt : ndarray of shape (n_samples, n_transformed_features)
            Transformed data.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            _raise_for_params(params, self, "transform")

            # not branching here since params is only available if
            # enable_metadata_routing=True
            routed_params = process_routing(self, "transform", **params)
            Xt = X
            for _, name, transform in self._iter():
                Xt = transform.transform(Xt, **routed_params[name].transform)
            return Xt

    def _can_inverse_transform(self):
        return all(hasattr(t, "inverse_transform") for _, _, t in self._iter())

    @available_if(_can_inverse_transform)
    def inverse_transform(self, X=None, *, Xt=None, **params):
        """Apply `inverse_transform` for each step in a reverse order.

        All estimators in the pipeline must support `inverse_transform`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_transformed_features)
            Data samples, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features. Must fulfill
            input requirements of last step of pipeline's
            ``inverse_transform`` method.

        Xt : array-like of shape (n_samples, n_transformed_features)
            Data samples, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features. Must fulfill
            input requirements of last step of pipeline's
            ``inverse_transform`` method.

            .. deprecated:: 1.5
                `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.

        **params : dict of str -> object
            Parameters requested and accepted by steps. Each step must have
            requested certain metadata for these parameters to be forwarded to
            them.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`. See
                :ref:`Metadata Routing User Guide <metadata_routing>` for more
                details.

        Returns
        -------
        Xt : ndarray of shape (n_samples, n_features)
            Inverse transformed data, that is, data in the original feature
            space.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            _raise_for_params(params, self, "inverse_transform")

            X = _deprecate_Xt_in_inverse_transform(X, Xt)

            # we don't have to branch here, since params is only non-empty if
            # enable_metadata_routing=True.
            routed_params = process_routing(self, "inverse_transform", **params)
            reverse_iter = reversed(list(self._iter()))
            for _, name, transform in reverse_iter:
                X = transform.inverse_transform(
                    X, **routed_params[name].inverse_transform
                )
            return X

    @available_if(_final_estimator_has("score"))
    def score(self, X, y=None, sample_weight=None, **params):
        """Transform the data, and apply `score` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `score` method. Only valid if the final estimator implements `score`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        y : iterable, default=None
            Targets used for scoring. Must fulfill label requirements for all
            steps of the pipeline.

        sample_weight : array-like, default=None
            If not None, this argument is passed as ``sample_weight`` keyword
            argument to the ``score`` method of the final estimator.

        **params : dict of str -> object
            Parameters requested and accepted by steps. Each step must have
            requested certain metadata for these parameters to be forwarded to
            them.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`. See
                :ref:`Metadata Routing User Guide <metadata_routing>` for more
                details.

        Returns
        -------
        score : float
            Result of calling `score` on the final estimator.
        """
        # TODO(1.8): Remove the context manager and use check_is_fitted(self)
        with _raise_or_warn_if_not_fitted(self):
            Xt = X
            if not _routing_enabled():
                for _, name, transform in self._iter(with_final=False):
                    Xt = transform.transform(Xt)
                score_params = {}
                if sample_weight is not None:
                    score_params["sample_weight"] = sample_weight
                return self.steps[-1][1].score(Xt, y, **score_params)

            # metadata routing is enabled.
            routed_params = process_routing(
                self, "score", sample_weight=sample_weight, **params
            )

            Xt = X
            for _, name, transform in self._iter(with_final=False):
                Xt = transform.transform(Xt, **routed_params[name].transform)
            return self.steps[-1][1].score(
                Xt, y, **routed_params[self.steps[-1][0]].score
            )

    @property
    def classes_(self):
        """The classes labels. Only exist if the last step is a classifier."""
        return self.steps[-1][1].classes_

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()

        if not self.steps:
            return tags

        try:
            if self.steps[0][1] is not None and self.steps[0][1] != "passthrough":
                tags.input_tags.pairwise = get_tags(
                    self.steps[0][1]
                ).input_tags.pairwise
            # WARNING: the sparse tag can be incorrect.
            # Some Pipelines accepting sparse data are wrongly tagged sparse=False.
            # For example Pipeline([PCA(), estimator]) accepts sparse data
            # even if the estimator doesn't as PCA outputs a dense array.
            tags.input_tags.sparse = all(
                get_tags(step).input_tags.sparse
                for name, step in self.steps
                if step != "passthrough"
            )
        except (ValueError, AttributeError, TypeError):
            # This happens when the `steps` is not a list of (name, estimator)
            # tuples and `fit` is not called yet to validate the steps.
            pass

        try:
            if self.steps[-1][1] is not None and self.steps[-1][1] != "passthrough":
                last_step_tags = get_tags(self.steps[-1][1])
                tags.estimator_type = last_step_tags.estimator_type
                tags.target_tags.multi_output = last_step_tags.target_tags.multi_output
                tags.classifier_tags = deepcopy(last_step_tags.classifier_tags)
                tags.regressor_tags = deepcopy(last_step_tags.regressor_tags)
                tags.transformer_tags = deepcopy(last_step_tags.transformer_tags)
        except (ValueError, AttributeError, TypeError):
            # This happens when the `steps` is not a list of (name, estimator)
            # tuples and `fit` is not called yet to validate the steps.
            pass

        return tags

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Transform input features using the pipeline.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        """
        feature_names_out = input_features
        for _, name, transform in self._iter():
            if not hasattr(transform, "get_feature_names_out"):
                raise AttributeError(
                    "Estimator {} does not provide get_feature_names_out. "
                    "Did you mean to call pipeline[:-1].get_feature_names_out"
                    "()?".format(name)
                )
            feature_names_out = transform.get_feature_names_out(feature_names_out)
        return feature_names_out

    @property
    def n_features_in_(self):
        """Number of features seen during first step `fit` method."""
        # delegate to first step (which will call check_is_fitted)
        return self.steps[0][1].n_features_in_

    @property
    def feature_names_in_(self):
        """Names of features seen during first step `fit` method."""
        # delegate to first step (which will call check_is_fitted)
        return self.steps[0][1].feature_names_in_

    def __sklearn_is_fitted__(self):
        """Indicate whether pipeline has been fit.

        This is done by checking whether the last non-`passthrough` step of the
        pipeline is fitted.

        An empty pipeline is considered fitted.
        """

        # First find the last step that is not 'passthrough'
        last_step = None
        for _, estimator in reversed(self.steps):
            if estimator != "passthrough":
                last_step = estimator
                break

        if last_step is None:
            # All steps are 'passthrough', so the pipeline is considered fitted
            return True

        try:
            # check if the last step of the pipeline is fitted
            # we only check the last step since if the last step is fit, it
            # means the previous steps should also be fit. This is faster than
            # checking if every step of the pipeline is fit.
            check_is_fitted(last_step)
            return True
        except NotFittedError:
            return False

    def _sk_visual_block_(self):
        _, estimators = zip(*self.steps)

        def _get_name(name, est):
            if est is None or est == "passthrough":
                return f"{name}: passthrough"
            # Is an estimator
            return f"{name}: {est.__class__.__name__}"

        names = [_get_name(name, est) for name, est in self.steps]
        name_details = [str(est) for est in estimators]
        return _VisualBlock(
            "serial",
            estimators,
            names=names,
            name_details=name_details,
            dash_wrapped=False,
        )

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = MetadataRouter(owner=self.__class__.__name__)

        # first we add all steps except the last one
        for _, name, trans in self._iter(with_final=False, filter_passthrough=True):
            method_mapping = MethodMapping()
            # fit, fit_predict, and fit_transform call fit_transform if it
            # exists, or else fit and transform
            if hasattr(trans, "fit_transform"):
                (
                    method_mapping.add(caller="fit", callee="fit_transform")
                    .add(caller="fit_transform", callee="fit_transform")
                    .add(caller="fit_predict", callee="fit_transform")
                )
            else:
                (
                    method_mapping.add(caller="fit", callee="fit")
                    .add(caller="fit", callee="transform")
                    .add(caller="fit_transform", callee="fit")
                    .add(caller="fit_transform", callee="transform")
                    .add(caller="fit_predict", callee="fit")
                    .add(caller="fit_predict", callee="transform")
                )

            (
                method_mapping.add(caller="predict", callee="transform")
                .add(caller="predict", callee="transform")
                .add(caller="predict_proba", callee="transform")
                .add(caller="decision_function", callee="transform")
                .add(caller="predict_log_proba", callee="transform")
                .add(caller="transform", callee="transform")
                .add(caller="inverse_transform", callee="inverse_transform")
                .add(caller="score", callee="transform")
            )

            router.add(method_mapping=method_mapping, **{name: trans})

        final_name, final_est = self.steps[-1]
        if final_est is None or final_est == "passthrough":
            return router

        # then we add the last step
        method_mapping = MethodMapping()
        if hasattr(final_est, "fit_transform"):
            method_mapping.add(caller="fit_transform", callee="fit_transform")
        else:
            method_mapping.add(caller="fit", callee="fit").add(
                caller="fit", callee="transform"
            )
        (
            method_mapping.add(caller="fit", callee="fit")
            .add(caller="predict", callee="predict")
            .add(caller="fit_predict", callee="fit_predict")
            .add(caller="predict_proba", callee="predict_proba")
            .add(caller="decision_function", callee="decision_function")
            .add(caller="predict_log_proba", callee="predict_log_proba")
            .add(caller="transform", callee="transform")
            .add(caller="inverse_transform", callee="inverse_transform")
            .add(caller="score", callee="score")
        )

        router.add(method_mapping=method_mapping, **{final_name: final_est})
        return router


def _name_estimators(estimators):
    """Generate names for estimators."""

    names = [
        estimator if isinstance(estimator, str) else type(estimator).__name__.lower()
        for estimator in estimators
    ]
    namecount = defaultdict(int)
    for est, name in zip(estimators, names):
        namecount[name] += 1

    for k, v in list(namecount.items()):
        if v == 1:
            del namecount[k]

    for i in reversed(range(len(estimators))):
        name = names[i]
        if name in namecount:
            names[i] += "-%d" % namecount[name]
            namecount[name] -= 1

    return list(zip(names, estimators))


def make_pipeline(*steps, memory=None, transform_input=None, verbose=False):
    """Construct a :class:`Pipeline` from the given estimators.

    This is a shorthand for the :class:`Pipeline` constructor; it does not
    require, and does not permit, naming the estimators. Instead, their names
    will be set to the lowercase of their types automatically.

    Parameters
    ----------
    *steps : list of Estimator objects
        List of the scikit-learn estimators that are chained together.

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the fitted transformers of the pipeline. The last step
        will never be cached, even if it is a transformer. By default, no
        caching is performed. If a string is given, it is the path to the
        caching directory. Enabling caching triggers a clone of the transformers
        before fitting. Therefore, the transformer instance given to the
        pipeline cannot be inspected directly. Use the attribute ``named_steps``
        or ``steps`` to inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming.

    transform_input : list of str, default=None
        This enables transforming some input arguments to ``fit`` (other than ``X``)
        to be transformed by the steps of the pipeline up to the step which requires
        them. Requirement is defined via :ref:`metadata routing <metadata_routing>`.
        This can be used to pass a validation set through the pipeline for instance.

        You can only set this if metadata routing is enabled, which you
        can enable using ``sklearn.set_config(enable_metadata_routing=True)``.

        .. versionadded:: 1.6

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    Returns
    -------
    p : Pipeline
        Returns a scikit-learn :class:`Pipeline` object.

    See Also
    --------
    Pipeline : Class for creating a pipeline of transforms with a final
        estimator.

    Examples
    --------
    >>> from sklearn.naive_bayes import GaussianNB
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.pipeline import make_pipeline
    >>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('gaussiannb', GaussianNB())])
    """
    return Pipeline(
        _name_estimators(steps),
        transform_input=transform_input,
        memory=memory,
        verbose=verbose,
    )


def _transform_one(transformer, X, y, weight, params=None):
    """Call transform and apply weight to output.

    Parameters
    ----------
    transformer : estimator
        Estimator to be used for transformation.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input data to be transformed.

    y : ndarray of shape (n_samples,)
        Ignored.

    weight : float
        Weight to be applied to the output of the transformation.

    params : dict
        Parameters to be passed to the transformer's ``transform`` method.

        This should be of the form ``process_routing()["step_name"]``.
    """
    res = transformer.transform(X, **params.transform)
    # if we have a weight for this transformer, multiply output
    if weight is None:
        return res
    return res * weight


def _fit_transform_one(
    transformer, X, y, weight, message_clsname="", message=None, params=None
):
    """
    Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned
    with the fitted transformer. If ``weight`` is not ``None``, the result will
    be multiplied by ``weight``.

    ``params`` needs to be of the form ``process_routing()["step_name"]``.
    """
    params = params or {}
    with _print_elapsed_time(message_clsname, message):
        if hasattr(transformer, "fit_transform"):
            res = transformer.fit_transform(X, y, **params.get("fit_transform", {}))
        else:
            res = transformer.fit(X, y, **params.get("fit", {})).transform(
                X, **params.get("transform", {})
            )

    if weight is None:
        return res, transformer
    return res * weight, transformer


def _fit_one(transformer, X, y, weight, message_clsname="", message=None, params=None):
    """
    Fits ``transformer`` to ``X`` and ``y``.
    """
    with _print_elapsed_time(message_clsname, message):
        return transformer.fit(X, y, **params["fit"])


class FeatureUnion(TransformerMixin, _BaseComposition):
    """Concatenates results of multiple transformer objects.

    This estimator applies a list of transformer objects in parallel to the
    input data, then concatenates the results. This is useful to combine
    several feature extraction mechanisms into a single transformer.

    Parameters of the transformers may be set using its name and the parameter
    name separated by a '__'. A transformer may be replaced entirely by
    setting the parameter with its name to another transformer, removed by
    setting to 'drop' or disabled by setting to 'passthrough' (features are
    passed without transformation).

    Read more in the :ref:`User Guide <feature_union>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    transformer_list : list of (str, transformer) tuples
        List of transformer objects to be applied to the data. The first
        half of each tuple is the name of the transformer. The transformer can
        be 'drop' for it to be ignored or can be 'passthrough' for features to
        be passed unchanged.

        .. versionadded:: 1.1
           Added the option `"passthrough"`.

        .. versionchanged:: 0.22
           Deprecated `None` as a transformer in favor of 'drop'.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    transformer_weights : dict, default=None
        Multiplicative weights for features per transformer.
        Keys are transformer names, values the weights.
        Raises ValueError if key not present in ``transformer_list``.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    verbose_feature_names_out : bool, default=True
        If True, :meth:`get_feature_names_out` will prefix all feature names
        with the name of the transformer that generated that feature.
        If False, :meth:`get_feature_names_out` will not prefix any feature
        names and will error if feature names are not unique.

        .. versionadded:: 1.5

    Attributes
    ----------
    named_transformers : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        Read-only attribute to access any transformer parameter by user
        given name. Keys are transformer names and values are
        transformer parameters.

        .. versionadded:: 1.2

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying first transformer in `transformer_list` exposes such an
        attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when
        `X` has feature names that are all strings.

        .. versionadded:: 1.3

    See Also
    --------
    make_union : Convenience function for simplified feature union
        construction.

    Examples
    --------
    >>> from sklearn.pipeline import FeatureUnion
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> union = FeatureUnion([("pca", PCA(n_components=1)),
    ...                       ("svd", TruncatedSVD(n_components=2))])
    >>> X = [[0., 1., 3], [2., 2., 5]]
    >>> union.fit_transform(X)
    array([[-1.5       ,  3.0..., -0.8...],
           [ 1.5       ,  5.7...,  0.4...]])
    >>> # An estimator's parameter can be set using '__' syntax
    >>> union.set_params(svd__n_components=1).fit_transform(X)
    array([[-1.5       ,  3.0...],
           [ 1.5       ,  5.7...]])

    For a more detailed example of usage, see
    :ref:`sphx_glr_auto_examples_compose_plot_feature_union.py`.
    """

    def __init__(
        self,
        transformer_list,
        *,
        n_jobs=None,
        transformer_weights=None,
        verbose=False,
        verbose_feature_names_out=True,
    ):
        self.transformer_list = transformer_list
        self.n_jobs = n_jobs
        self.transformer_weights = transformer_weights
        self.verbose = verbose
        self.verbose_feature_names_out = verbose_feature_names_out

    def set_output(self, *, transform=None):
        """Set the output container when `"transform"` and `"fit_transform"` are called.

        `set_output` will set the output of all estimators in `transformer_list`.

        Parameters
        ----------
        transform : {"default", "pandas", "polars"}, default=None
            Configure output of `transform` and `fit_transform`.

            - `"default"`: Default output format of a transformer
            - `"pandas"`: DataFrame output
            - `"polars"`: Polars output
            - `None`: Transform configuration is unchanged

        Returns
        -------
        self : estimator instance
            Estimator instance.
        """
        super().set_output(transform=transform)
        for _, step, _ in self._iter():
            _safe_set_output(step, transform=transform)
        return self

    @property
    def named_transformers(self):
        # Use Bunch object to improve autocomplete
        return Bunch(**dict(self.transformer_list))

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `transformer_list` of the
        `FeatureUnion`.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        return self._get_params("transformer_list", deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``. Note that
        you can directly set the parameters of the estimators contained in
        `transformer_list`.

        Parameters
        ----------
        **kwargs : dict
            Parameters of this estimator or parameters of estimators contained
            in `transform_list`. Parameters of the transformers may be set
            using its name and the parameter name separated by a '__'.

        Returns
        -------
        self : object
            FeatureUnion class instance.
        """
        self._set_params("transformer_list", **kwargs)
        return self

    def _validate_transformers(self):
        names, transformers = zip(*self.transformer_list)

        # validate names
        self._validate_names(names)

        # validate estimators
        for t in transformers:
            if t in ("drop", "passthrough"):
                continue
            if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
                t, "transform"
            ):
                raise TypeError(
                    "All estimators should implement fit and "
                    "transform. '%s' (type %s) doesn't" % (t, type(t))
                )

    def _validate_transformer_weights(self):
        if not self.transformer_weights:
            return

        transformer_names = set(name for name, _ in self.transformer_list)
        for name in self.transformer_weights:
            if name not in transformer_names:
                raise ValueError(
                    f'Attempting to weight transformer "{name}", '
                    "but it is not present in transformer_list."
                )

    def _iter(self):
        """
        Generate (name, trans, weight) tuples excluding None and
        'drop' transformers.
        """

        get_weight = (self.transformer_weights or {}).get

        for name, trans in self.transformer_list:
            if trans == "drop":
                continue
            if trans == "passthrough":
                trans = FunctionTransformer(feature_names_out="one-to-one")
            yield (name, trans, get_weight(name))

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        """
        # List of tuples (name, feature_names_out)
        transformer_with_feature_names_out = []
        for name, trans, _ in self._iter():
            if not hasattr(trans, "get_feature_names_out"):
                raise AttributeError(
                    "Transformer %s (type %s) does not provide get_feature_names_out."
                    % (str(name), type(trans).__name__)
                )
            feature_names_out = trans.get_feature_names_out(input_features)
            transformer_with_feature_names_out.append((name, feature_names_out))

        return self._add_prefix_for_feature_names_out(
            transformer_with_feature_names_out
        )

    def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):
        """Add prefix for feature names out that includes the transformer names.

        Parameters
        ----------
        transformer_with_feature_names_out : list of tuples of (str, array-like of str)
            The tuple consistent of the transformer's name and its feature names out.

        Returns
        -------
        feature_names_out : ndarray of shape (n_features,), dtype=str
            Transformed feature names.
        """
        if self.verbose_feature_names_out:
            # Prefix the feature names out with the transformers name
            names = list(
                chain.from_iterable(
                    (f"{name}__{i}" for i in feature_names_out)
                    for name, feature_names_out in transformer_with_feature_names_out
                )
            )
            return np.asarray(names, dtype=object)

        # verbose_feature_names_out is False
        # Check that names are all unique without a prefix
        feature_names_count = Counter(
            chain.from_iterable(s for _, s in transformer_with_feature_names_out)
        )
        top_6_overlap = [
            name for name, count in feature_names_count.most_common(6) if count > 1
        ]
        top_6_overlap.sort()
        if top_6_overlap:
            if len(top_6_overlap) == 6:
                # There are more than 5 overlapping names, we only show the 5
                # of the feature names
                names_repr = str(top_6_overlap[:5])[:-1] + ", ...]"
            else:
                names_repr = str(top_6_overlap)
            raise ValueError(
                f"Output feature names: {names_repr} are not unique. Please set "
                "verbose_feature_names_out=True to add prefixes to feature names"
            )

        return np.concatenate(
            [name for _, name in transformer_with_feature_names_out],
        )

    def fit(self, X, y=None, **fit_params):
        """Fit all transformers using X.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data, used to fit transformers.

        y : array-like of shape (n_samples, n_outputs), default=None
            Targets for supervised learning.

        **fit_params : dict, default=None
            - If `enable_metadata_routing=False` (default):
              Parameters directly passed to the `fit` methods of the
              sub-transformers.

            - If `enable_metadata_routing=True`:
              Parameters safely routed to the `fit` methods of the
              sub-transformers. See :ref:`Metadata Routing User Guide
              <metadata_routing>` for more details.

            .. versionchanged:: 1.5
                `**fit_params` can be routed via metadata routing API.

        Returns
        -------
        self : object
            FeatureUnion class instance.
        """
        if _routing_enabled():
            routed_params = process_routing(self, "fit", **fit_params)
        else:
            # TODO(SLEP6): remove when metadata routing cannot be disabled.
            routed_params = Bunch()
            for name, _ in self.transformer_list:
                routed_params[name] = Bunch(fit={})
                routed_params[name].fit = fit_params

        transformers = self._parallel_func(X, y, _fit_one, routed_params)

        if not transformers:
            # All transformers are None
            return self

        self._update_transformer_list(transformers)
        return self

    def fit_transform(self, X, y=None, **params):
        """Fit all transformers, transform the data and concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        y : array-like of shape (n_samples, n_outputs), default=None
            Targets for supervised learning.

        **params : dict, default=None
            - If `enable_metadata_routing=False` (default):
              Parameters directly passed to the `fit` methods of the
              sub-transformers.

            - If `enable_metadata_routing=True`:
              Parameters safely routed to the `fit` methods of the
              sub-transformers. See :ref:`Metadata Routing User Guide
              <metadata_routing>` for more details.

            .. versionchanged:: 1.5
                `**params` can now be routed via metadata routing API.

        Returns
        -------
        X_t : array-like or sparse matrix of \
                shape (n_samples, sum_n_components)
            The `hstack` of results of transformers. `sum_n_components` is the
            sum of `n_components` (output dimension) over transformers.
        """
        if _routing_enabled():
            routed_params = process_routing(self, "fit_transform", **params)
        else:
            # TODO(SLEP6): remove when metadata routing cannot be disabled.
            routed_params = Bunch()
            for name, obj in self.transformer_list:
                if hasattr(obj, "fit_transform"):
                    routed_params[name] = Bunch(fit_transform={})
                    routed_params[name].fit_transform = params
                else:
                    routed_params[name] = Bunch(fit={})
                    routed_params[name] = Bunch(transform={})
                    routed_params[name].fit = params

        results = self._parallel_func(X, y, _fit_transform_one, routed_params)
        if not results:
            # All transformers are None
            return np.zeros((X.shape[0], 0))

        Xs, transformers = zip(*results)
        self._update_transformer_list(transformers)

        return self._hstack(Xs)

    def _log_message(self, name, idx, total):
        if not self.verbose:
            return None
        return "(step %d of %d) Processing %s" % (idx, total, name)

    def _parallel_func(self, X, y, func, routed_params):
        """Runs func in parallel on X and y"""
        self.transformer_list = list(self.transformer_list)
        self._validate_transformers()
        self._validate_transformer_weights()
        transformers = list(self._iter())

        return Parallel(n_jobs=self.n_jobs)(
            delayed(func)(
                transformer,
                X,
                y,
                weight,
                message_clsname="FeatureUnion",
                message=self._log_message(name, idx, len(transformers)),
                params=routed_params[name],
            )
            for idx, (name, transformer, weight) in enumerate(transformers, 1)
        )

    def transform(self, X, **params):
        """Transform X separately by each transformer, concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        **params : dict, default=None

            Parameters routed to the `transform` method of the sub-transformers via the
            metadata routing API. See :ref:`Metadata Routing User Guide
            <metadata_routing>` for more details.

            .. versionadded:: 1.5

        Returns
        -------
        X_t : array-like or sparse matrix of shape (n_samples, sum_n_components)
            The `hstack` of results of transformers. `sum_n_components` is the
            sum of `n_components` (output dimension) over transformers.
        """
        _raise_for_params(params, self, "transform")

        if _routing_enabled():
            routed_params = process_routing(self, "transform", **params)
        else:
            # TODO(SLEP6): remove when metadata routing cannot be disabled.
            routed_params = Bunch()
            for name, _ in self.transformer_list:
                routed_params[name] = Bunch(transform={})

        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(trans, X, None, weight, params=routed_params[name])
            for name, trans, weight in self._iter()
        )
        if not Xs:
            # All transformers are None
            return np.zeros((X.shape[0], 0))

        return self._hstack(Xs)

    def _hstack(self, Xs):
        adapter = _get_container_adapter("transform", self)
        if adapter and all(adapter.is_supported_container(X) for X in Xs):
            return adapter.hstack(Xs)

        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    def _update_transformer_list(self, transformers):
        transformers = iter(transformers)
        self.transformer_list[:] = [
            (name, old if old == "drop" else next(transformers))
            for name, old in self.transformer_list
        ]

    @property
    def n_features_in_(self):
        """Number of features seen during :term:`fit`."""

        # X is passed to all transformers so we just delegate to the first one
        return self.transformer_list[0][1].n_features_in_

    @property
    def feature_names_in_(self):
        """Names of features seen during :term:`fit`."""
        # X is passed to all transformers -- delegate to the first one
        return self.transformer_list[0][1].feature_names_in_

    def __sklearn_is_fitted__(self):
        # Delegate whether feature union was fitted
        for _, transformer, _ in self._iter():
            check_is_fitted(transformer)
        return True

    def _sk_visual_block_(self):
        names, transformers = zip(*self.transformer_list)
        return _VisualBlock("parallel", transformers, names=names)

    def __getitem__(self, name):
        """Return transformer with name."""
        if not isinstance(name, str):
            raise KeyError("Only string keys are supported")
        return self.named_transformers[name]

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.5

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = MetadataRouter(owner=self.__class__.__name__)

        for name, transformer in self.transformer_list:
            router.add(
                **{name: transformer},
                method_mapping=MethodMapping()
                .add(caller="fit", callee="fit")
                .add(caller="fit_transform", callee="fit_transform")
                .add(caller="fit_transform", callee="fit")
                .add(caller="fit_transform", callee="transform")
                .add(caller="transform", callee="transform"),
            )

        return router

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        try:
            tags.input_tags.sparse = all(
                get_tags(trans).input_tags.sparse
                for name, trans in self.transformer_list
                if trans not in {"passthrough", "drop"}
            )
        except Exception:
            # If `transformer_list` does not comply with our API (list of tuples)
            # then it will fail. In this case, we assume that `sparse` is False
            # but the parameter validation will raise an error during `fit`.
            pass  # pragma: no cover
        return tags


def make_union(*transformers, n_jobs=None, verbose=False):
    """Construct a :class:`FeatureUnion` from the given transformers.

    This is a shorthand for the :class:`FeatureUnion` constructor; it does not
    require, and does not permit, naming the transformers. Instead, they will
    be given names automatically based on their types. It also does not allow
    weighting.

    Parameters
    ----------
    *transformers : list of estimators
        One or more estimators.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    Returns
    -------
    f : FeatureUnion
        A :class:`FeatureUnion` object for concatenating the results of multiple
        transformer objects.

    See Also
    --------
    FeatureUnion : Class for concatenating the results of multiple transformer
        objects.

    Examples
    --------
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> from sklearn.pipeline import make_union
    >>> make_union(PCA(), TruncatedSVD())
     FeatureUnion(transformer_list=[('pca', PCA()),
                                   ('truncatedsvd', TruncatedSVD())])
    """
    return FeatureUnion(_name_estimators(transformers), n_jobs=n_jobs, verbose=verbose)