File size: 108,183 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
"""Functions to validate input and parameters within scikit-learn estimators."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numbers
import operator
import sys
import warnings
from collections.abc import Sequence
from contextlib import suppress
from functools import reduce, wraps
from inspect import Parameter, isclass, signature

import joblib
import numpy as np
import scipy.sparse as sp

from .. import get_config as _get_config
from ..exceptions import DataConversionWarning, NotFittedError, PositiveSpectrumWarning
from ..utils._array_api import _asarray_with_order, _is_numpy_namespace, get_namespace
from ..utils.deprecation import _deprecate_force_all_finite
from ..utils.fixes import ComplexWarning, _preserve_dia_indices_dtype
from ._isfinite import FiniteStatus, cy_isfinite
from ._tags import get_tags
from .fixes import _object_dtype_isnan

FLOAT_DTYPES = (np.float64, np.float32, np.float16)


# This function is not used anymore at this moment in the code base but we keep it in
# case that we merge a new public function without kwarg only by mistake, which would
# require a deprecation cycle to fix.
def _deprecate_positional_args(func=None, *, version="1.3"):
    """Decorator for methods that issues warnings for positional arguments.

    Using the keyword-only argument syntax in pep 3102, arguments after the
    * will issue a warning when passed as a positional argument.

    Parameters
    ----------
    func : callable, default=None
        Function to check arguments on.
    version : callable, default="1.3"
        The version when positional arguments will result in error.
    """

    def _inner_deprecate_positional_args(f):
        sig = signature(f)
        kwonly_args = []
        all_args = []

        for name, param in sig.parameters.items():
            if param.kind == Parameter.POSITIONAL_OR_KEYWORD:
                all_args.append(name)
            elif param.kind == Parameter.KEYWORD_ONLY:
                kwonly_args.append(name)

        @wraps(f)
        def inner_f(*args, **kwargs):
            extra_args = len(args) - len(all_args)
            if extra_args <= 0:
                return f(*args, **kwargs)

            # extra_args > 0
            args_msg = [
                "{}={}".format(name, arg)
                for name, arg in zip(kwonly_args[:extra_args], args[-extra_args:])
            ]
            args_msg = ", ".join(args_msg)
            warnings.warn(
                (
                    f"Pass {args_msg} as keyword args. From version "
                    f"{version} passing these as positional arguments "
                    "will result in an error"
                ),
                FutureWarning,
            )
            kwargs.update(zip(sig.parameters, args))
            return f(**kwargs)

        return inner_f

    if func is not None:
        return _inner_deprecate_positional_args(func)

    return _inner_deprecate_positional_args


def _assert_all_finite(
    X, allow_nan=False, msg_dtype=None, estimator_name=None, input_name=""
):
    """Like assert_all_finite, but only for ndarray."""

    xp, is_array_api = get_namespace(X)

    if _get_config()["assume_finite"]:
        return

    X = xp.asarray(X)

    # for object dtype data, we only check for NaNs (GH-13254)
    if not is_array_api and X.dtype == np.dtype("object") and not allow_nan:
        if _object_dtype_isnan(X).any():
            raise ValueError("Input contains NaN")

    # We need only consider float arrays, hence can early return for all else.
    if not xp.isdtype(X.dtype, ("real floating", "complex floating")):
        return

    # First try an O(n) time, O(1) space solution for the common case that
    # everything is finite; fall back to O(n) space `np.isinf/isnan` or custom
    # Cython implementation to prevent false positives and provide a detailed
    # error message.
    with np.errstate(over="ignore"):
        first_pass_isfinite = xp.isfinite(xp.sum(X))
    if first_pass_isfinite:
        return

    _assert_all_finite_element_wise(
        X,
        xp=xp,
        allow_nan=allow_nan,
        msg_dtype=msg_dtype,
        estimator_name=estimator_name,
        input_name=input_name,
    )


def _assert_all_finite_element_wise(
    X, *, xp, allow_nan, msg_dtype=None, estimator_name=None, input_name=""
):
    # Cython implementation doesn't support FP16 or complex numbers
    use_cython = (
        xp is np and X.data.contiguous and X.dtype.type in {np.float32, np.float64}
    )
    if use_cython:
        out = cy_isfinite(X.reshape(-1), allow_nan=allow_nan)
        has_nan_error = False if allow_nan else out == FiniteStatus.has_nan
        has_inf = out == FiniteStatus.has_infinite
    else:
        has_inf = xp.any(xp.isinf(X))
        has_nan_error = False if allow_nan else xp.any(xp.isnan(X))
    if has_inf or has_nan_error:
        if has_nan_error:
            type_err = "NaN"
        else:
            msg_dtype = msg_dtype if msg_dtype is not None else X.dtype
            type_err = f"infinity or a value too large for {msg_dtype!r}"
        padded_input_name = input_name + " " if input_name else ""
        msg_err = f"Input {padded_input_name}contains {type_err}."
        if estimator_name and input_name == "X" and has_nan_error:
            # Improve the error message on how to handle missing values in
            # scikit-learn.
            msg_err += (
                f"\n{estimator_name} does not accept missing values"
                " encoded as NaN natively. For supervised learning, you might want"
                " to consider sklearn.ensemble.HistGradientBoostingClassifier and"
                " Regressor which accept missing values encoded as NaNs natively."
                " Alternatively, it is possible to preprocess the data, for"
                " instance by using an imputer transformer in a pipeline or drop"
                " samples with missing values. See"
                " https://scikit-learn.org/stable/modules/impute.html"
                " You can find a list of all estimators that handle NaN values"
                " at the following page:"
                " https://scikit-learn.org/stable/modules/impute.html"
                "#estimators-that-handle-nan-values"
            )
        raise ValueError(msg_err)


def assert_all_finite(
    X,
    *,
    allow_nan=False,
    estimator_name=None,
    input_name="",
):
    """Throw a ValueError if X contains NaN or infinity.

    Parameters
    ----------
    X : {ndarray, sparse matrix}
        The input data.

    allow_nan : bool, default=False
        If True, do not throw error when `X` contains NaN.

    estimator_name : str, default=None
        The estimator name, used to construct the error message.

    input_name : str, default=""
        The data name used to construct the error message. In particular
        if `input_name` is "X" and the data has NaN values and
        allow_nan is False, the error message will link to the imputer
        documentation.

    Examples
    --------
    >>> from sklearn.utils import assert_all_finite
    >>> import numpy as np
    >>> array = np.array([1, np.inf, np.nan, 4])
    >>> try:
    ...     assert_all_finite(array)
    ...     print("Test passed: Array contains only finite values.")
    ... except ValueError:
    ...     print("Test failed: Array contains non-finite values.")
    Test failed: Array contains non-finite values.
    """
    _assert_all_finite(
        X.data if sp.issparse(X) else X,
        allow_nan=allow_nan,
        estimator_name=estimator_name,
        input_name=input_name,
    )


def as_float_array(
    X, *, copy=True, force_all_finite="deprecated", ensure_all_finite=None
):
    """Convert an array-like to an array of floats.

    The new dtype will be np.float32 or np.float64, depending on the original
    type. The function can create a copy or modify the argument depending
    on the argument copy.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        The input data.

    copy : bool, default=True
        If True, a copy of X will be created. If False, a copy may still be
        returned if X's dtype is not a floating point type.

    force_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in X. The
        possibilities are:

        - True: Force all values of X to be finite.
        - False: accepts np.inf, np.nan, pd.NA in X.
        - 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot
          be infinite.

        .. versionadded:: 0.20
           ``force_all_finite`` accepts the string ``'allow-nan'``.

        .. versionchanged:: 0.23
           Accepts `pd.NA` and converts it into `np.nan`

        .. deprecated:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite` and will be removed
           in 1.8.

    ensure_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in X. The
        possibilities are:

        - True: Force all values of X to be finite.
        - False: accepts np.inf, np.nan, pd.NA in X.
        - 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot
          be infinite.

        .. versionadded:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite`.

    Returns
    -------
    XT : {ndarray, sparse matrix}
        An array of type float.

    Examples
    --------
    >>> from sklearn.utils import as_float_array
    >>> import numpy as np
    >>> array = np.array([0, 0, 1, 2, 2], dtype=np.int64)
    >>> as_float_array(array)
    array([0., 0., 1., 2., 2.])
    """
    ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite)

    if isinstance(X, np.matrix) or (
        not isinstance(X, np.ndarray) and not sp.issparse(X)
    ):
        return check_array(
            X,
            accept_sparse=["csr", "csc", "coo"],
            dtype=np.float64,
            copy=copy,
            ensure_all_finite=ensure_all_finite,
            ensure_2d=False,
        )
    elif sp.issparse(X) and X.dtype in [np.float32, np.float64]:
        return X.copy() if copy else X
    elif X.dtype in [np.float32, np.float64]:  # is numpy array
        return X.copy("F" if X.flags["F_CONTIGUOUS"] else "C") if copy else X
    else:
        if X.dtype.kind in "uib" and X.dtype.itemsize <= 4:
            return_dtype = np.float32
        else:
            return_dtype = np.float64
        return X.astype(return_dtype)


def _is_arraylike(x):
    """Returns whether the input is array-like."""
    if sp.issparse(x):
        return False

    return hasattr(x, "__len__") or hasattr(x, "shape") or hasattr(x, "__array__")


def _is_arraylike_not_scalar(array):
    """Return True if array is array-like and not a scalar"""
    return _is_arraylike(array) and not np.isscalar(array)


def _use_interchange_protocol(X):
    """Use interchange protocol for non-pandas dataframes that follow the protocol.

    Note: at this point we chose not to use the interchange API on pandas dataframe
    to ensure strict behavioral backward compatibility with older versions of
    scikit-learn.
    """
    return not _is_pandas_df(X) and hasattr(X, "__dataframe__")


def _num_features(X):
    """Return the number of features in an array-like X.

    This helper function tries hard to avoid to materialize an array version
    of X unless necessary. For instance, if X is a list of lists,
    this function will return the length of the first element, assuming
    that subsequent elements are all lists of the same length without
    checking.
    Parameters
    ----------
    X : array-like
        array-like to get the number of features.

    Returns
    -------
    features : int
        Number of features
    """
    type_ = type(X)
    if type_.__module__ == "builtins":
        type_name = type_.__qualname__
    else:
        type_name = f"{type_.__module__}.{type_.__qualname__}"
    message = f"Unable to find the number of features from X of type {type_name}"
    if not hasattr(X, "__len__") and not hasattr(X, "shape"):
        if not hasattr(X, "__array__"):
            raise TypeError(message)
        # Only convert X to a numpy array if there is no cheaper, heuristic
        # option.
        X = np.asarray(X)

    if hasattr(X, "shape"):
        if not hasattr(X.shape, "__len__") or len(X.shape) <= 1:
            message += f" with shape {X.shape}"
            raise TypeError(message)
        return X.shape[1]

    first_sample = X[0]

    # Do not consider an array-like of strings or dicts to be a 2D array
    if isinstance(first_sample, (str, bytes, dict)):
        message += f" where the samples are of type {type(first_sample).__qualname__}"
        raise TypeError(message)

    try:
        # If X is a list of lists, for instance, we assume that all nested
        # lists have the same length without checking or converting to
        # a numpy array to keep this function call as cheap as possible.
        return len(first_sample)
    except Exception as err:
        raise TypeError(message) from err


def _num_samples(x):
    """Return number of samples in array-like x."""
    message = "Expected sequence or array-like, got %s" % type(x)
    if hasattr(x, "fit") and callable(x.fit):
        # Don't get num_samples from an ensembles length!
        raise TypeError(message)

    if _use_interchange_protocol(x):
        return x.__dataframe__().num_rows()

    if not hasattr(x, "__len__") and not hasattr(x, "shape"):
        if hasattr(x, "__array__"):
            x = np.asarray(x)
        else:
            raise TypeError(message)

    if hasattr(x, "shape") and x.shape is not None:
        if len(x.shape) == 0:
            raise TypeError(
                "Input should have at least 1 dimension i.e. satisfy "
                f"`len(x.shape) > 0`, got scalar `{x!r}` instead."
            )
        # Check that shape is returning an integer or default to len
        # Dask dataframes may not return numeric shape[0] value
        if isinstance(x.shape[0], numbers.Integral):
            return x.shape[0]

    try:
        return len(x)
    except TypeError as type_error:
        raise TypeError(message) from type_error


def check_memory(memory):
    """Check that ``memory`` is joblib.Memory-like.

    joblib.Memory-like means that ``memory`` can be converted into a
    joblib.Memory instance (typically a str denoting the ``location``)
    or has the same interface (has a ``cache`` method).

    Parameters
    ----------
    memory : None, str or object with the joblib.Memory interface
        - If string, the location where to create the `joblib.Memory` interface.
        - If None, no caching is done and the Memory object is completely transparent.

    Returns
    -------
    memory : object with the joblib.Memory interface
        A correct joblib.Memory object.

    Raises
    ------
    ValueError
        If ``memory`` is not joblib.Memory-like.

    Examples
    --------
    >>> from sklearn.utils.validation import check_memory
    >>> check_memory("caching_dir")
    Memory(location=caching_dir/joblib)
    """
    if memory is None or isinstance(memory, str):
        memory = joblib.Memory(location=memory, verbose=0)
    elif not hasattr(memory, "cache"):
        raise ValueError(
            "'memory' should be None, a string or have the same"
            " interface as joblib.Memory."
            " Got memory='{}' instead.".format(memory)
        )
    return memory


def check_consistent_length(*arrays):
    """Check that all arrays have consistent first dimensions.

    Checks whether all objects in arrays have the same shape or length.

    Parameters
    ----------
    *arrays : list or tuple of input objects.
        Objects that will be checked for consistent length.

    Examples
    --------
    >>> from sklearn.utils.validation import check_consistent_length
    >>> a = [1, 2, 3]
    >>> b = [2, 3, 4]
    >>> check_consistent_length(a, b)
    """

    lengths = [_num_samples(X) for X in arrays if X is not None]
    uniques = np.unique(lengths)
    if len(uniques) > 1:
        raise ValueError(
            "Found input variables with inconsistent numbers of samples: %r"
            % [int(l) for l in lengths]
        )


def _make_indexable(iterable):
    """Ensure iterable supports indexing or convert to an indexable variant.

    Convert sparse matrices to csr and other non-indexable iterable to arrays.
    Let `None` and indexable objects (e.g. pandas dataframes) pass unchanged.

    Parameters
    ----------
    iterable : {list, dataframe, ndarray, sparse matrix} or None
        Object to be converted to an indexable iterable.
    """
    if sp.issparse(iterable):
        return iterable.tocsr()
    elif hasattr(iterable, "__getitem__") or hasattr(iterable, "iloc"):
        return iterable
    elif iterable is None:
        return iterable
    return np.array(iterable)


def indexable(*iterables):
    """Make arrays indexable for cross-validation.

    Checks consistent length, passes through None, and ensures that everything
    can be indexed by converting sparse matrices to csr and converting
    non-iterable objects to arrays.

    Parameters
    ----------
    *iterables : {lists, dataframes, ndarrays, sparse matrices}
        List of objects to ensure sliceability.

    Returns
    -------
    result : list of {ndarray, sparse matrix, dataframe} or None
        Returns a list containing indexable arrays (i.e. NumPy array,
        sparse matrix, or dataframe) or `None`.

    Examples
    --------
    >>> from sklearn.utils import indexable
    >>> from scipy.sparse import csr_matrix
    >>> import numpy as np
    >>> iterables = [
    ...     [1, 2, 3], np.array([2, 3, 4]), None, csr_matrix([[5], [6], [7]])
    ... ]
    >>> indexable(*iterables)
    [[1, 2, 3], array([2, 3, 4]), None, <...Sparse...dtype 'int64'...shape (3, 1)>]
    """

    result = [_make_indexable(X) for X in iterables]
    check_consistent_length(*result)
    return result


def _ensure_sparse_format(
    sparse_container,
    accept_sparse,
    dtype,
    copy,
    ensure_all_finite,
    accept_large_sparse,
    estimator_name=None,
    input_name="",
):
    """Convert a sparse container to a given format.

    Checks the sparse format of `sparse_container` and converts if necessary.

    Parameters
    ----------
    sparse_container : sparse matrix or array
        Input to validate and convert.

    accept_sparse : str, bool or list/tuple of str
        String[s] representing allowed sparse matrix formats ('csc',
        'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). If the input is sparse but
        not in the allowed format, it will be converted to the first listed
        format. True allows the input to be any format. False means
        that a sparse matrix input will raise an error.

    dtype : str, type or None
        Data type of result. If None, the dtype of the input is preserved.

    copy : bool
        Whether a forced copy will be triggered. If copy=False, a copy might
        be triggered by a conversion.

    ensure_all_finite : bool or 'allow-nan'
        Whether to raise an error on np.inf, np.nan, pd.NA in X. The
        possibilities are:

        - True: Force all values of X to be finite.
        - False: accepts np.inf, np.nan, pd.NA in X.
        - 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot
          be infinite.

        .. versionadded:: 0.20
           ``ensure_all_finite`` accepts the string ``'allow-nan'``.

        .. versionchanged:: 0.23
           Accepts `pd.NA` and converts it into `np.nan`


    estimator_name : str, default=None
        The estimator name, used to construct the error message.

    input_name : str, default=""
        The data name used to construct the error message. In particular
        if `input_name` is "X" and the data has NaN values and
        allow_nan is False, the error message will link to the imputer
        documentation.

    Returns
    -------
    sparse_container_converted : sparse matrix or array
        Sparse container (matrix/array) that is ensured to have an allowed type.
    """
    if dtype is None:
        dtype = sparse_container.dtype

    changed_format = False
    sparse_container_type_name = type(sparse_container).__name__

    if isinstance(accept_sparse, str):
        accept_sparse = [accept_sparse]

    # Indices dtype validation
    _check_large_sparse(sparse_container, accept_large_sparse)

    if accept_sparse is False:
        padded_input = " for " + input_name if input_name else ""
        raise TypeError(
            f"Sparse data was passed{padded_input}, but dense data is required. "
            "Use '.toarray()' to convert to a dense numpy array."
        )
    elif isinstance(accept_sparse, (list, tuple)):
        if len(accept_sparse) == 0:
            raise ValueError(
                "When providing 'accept_sparse' as a tuple or list, it must contain at "
                "least one string value."
            )
        # ensure correct sparse format
        if sparse_container.format not in accept_sparse:
            # create new with correct sparse
            sparse_container = sparse_container.asformat(accept_sparse[0])
            changed_format = True
    elif accept_sparse is not True:
        # any other type
        raise ValueError(
            "Parameter 'accept_sparse' should be a string, boolean or list of strings."
            f" You provided 'accept_sparse={accept_sparse}'."
        )

    if dtype != sparse_container.dtype:
        # convert dtype
        sparse_container = sparse_container.astype(dtype)
    elif copy and not changed_format:
        # force copy
        sparse_container = sparse_container.copy()

    if ensure_all_finite:
        if not hasattr(sparse_container, "data"):
            warnings.warn(
                f"Can't check {sparse_container.format} sparse matrix for nan or inf.",
                stacklevel=2,
            )
        else:
            _assert_all_finite(
                sparse_container.data,
                allow_nan=ensure_all_finite == "allow-nan",
                estimator_name=estimator_name,
                input_name=input_name,
            )

    # TODO: Remove when the minimum version of SciPy supported is 1.12
    # With SciPy sparse arrays, conversion from DIA format to COO, CSR, or BSR
    # triggers the use of `np.int64` indices even if the data is such that it could
    # be more efficiently represented with `np.int32` indices.
    # https://github.com/scipy/scipy/issues/19245 Since not all scikit-learn
    # algorithms support large indices, the following code downcasts to `np.int32`
    # indices when it's safe to do so.
    if changed_format:
        # accept_sparse is specified to a specific format and a conversion occurred
        requested_sparse_format = accept_sparse[0]
        _preserve_dia_indices_dtype(
            sparse_container, sparse_container_type_name, requested_sparse_format
        )

    return sparse_container


def _ensure_no_complex_data(array):
    if (
        hasattr(array, "dtype")
        and array.dtype is not None
        and hasattr(array.dtype, "kind")
        and array.dtype.kind == "c"
    ):
        raise ValueError("Complex data not supported\n{}\n".format(array))


def _check_estimator_name(estimator):
    if estimator is not None:
        if isinstance(estimator, str):
            return estimator
        else:
            return estimator.__class__.__name__
    return None


def _pandas_dtype_needs_early_conversion(pd_dtype):
    """Return True if pandas extension pd_dtype need to be converted early."""
    # Check these early for pandas versions without extension dtypes
    from pandas import SparseDtype
    from pandas.api.types import (
        is_bool_dtype,
        is_float_dtype,
        is_integer_dtype,
    )

    if is_bool_dtype(pd_dtype):
        # bool and extension booleans need early conversion because __array__
        # converts mixed dtype dataframes into object dtypes
        return True

    if isinstance(pd_dtype, SparseDtype):
        # Sparse arrays will be converted later in `check_array`
        return False

    try:
        from pandas.api.types import is_extension_array_dtype
    except ImportError:
        return False

    if isinstance(pd_dtype, SparseDtype) or not is_extension_array_dtype(pd_dtype):
        # Sparse arrays will be converted later in `check_array`
        # Only handle extension arrays for integer and floats
        return False
    elif is_float_dtype(pd_dtype):
        # Float ndarrays can normally support nans. They need to be converted
        # first to map pd.NA to np.nan
        return True
    elif is_integer_dtype(pd_dtype):
        # XXX: Warn when converting from a high integer to a float
        return True

    return False


def _is_extension_array_dtype(array):
    # Pandas extension arrays have a dtype with an na_value
    return hasattr(array, "dtype") and hasattr(array.dtype, "na_value")


def check_array(
    array,
    accept_sparse=False,
    *,
    accept_large_sparse=True,
    dtype="numeric",
    order=None,
    copy=False,
    force_writeable=False,
    force_all_finite="deprecated",
    ensure_all_finite=None,
    ensure_non_negative=False,
    ensure_2d=True,
    allow_nd=False,
    ensure_min_samples=1,
    ensure_min_features=1,
    estimator=None,
    input_name="",
):
    """Input validation on an array, list, sparse matrix or similar.

    By default, the input is checked to be a non-empty 2D array containing
    only finite values. If the dtype of the array is object, attempt
    converting to float, raising on failure.

    Parameters
    ----------
    array : object
        Input object to check / convert.

    accept_sparse : str, bool or list/tuple of str, default=False
        String[s] representing allowed sparse matrix formats, such as 'csc',
        'csr', etc. If the input is sparse but not in the allowed format,
        it will be converted to the first listed format. True allows the input
        to be any format. False means that a sparse matrix input will
        raise an error.

    accept_large_sparse : bool, default=True
        If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by
        accept_sparse, accept_large_sparse=False will cause it to be accepted
        only if its indices are stored with a 32-bit dtype.

        .. versionadded:: 0.20

    dtype : 'numeric', type, list of type or None, default='numeric'
        Data type of result. If None, the dtype of the input is preserved.
        If "numeric", dtype is preserved unless array.dtype is object.
        If dtype is a list of types, conversion on the first type is only
        performed if the dtype of the input is not in the list.

    order : {'F', 'C'} or None, default=None
        Whether an array will be forced to be fortran or c-style.
        When order is None (default), then if copy=False, nothing is ensured
        about the memory layout of the output array; otherwise (copy=True)
        the memory layout of the returned array is kept as close as possible
        to the original array.

    copy : bool, default=False
        Whether a forced copy will be triggered. If copy=False, a copy might
        be triggered by a conversion.

    force_writeable : bool, default=False
        Whether to force the output array to be writeable. If True, the returned array
        is guaranteed to be writeable, which may require a copy. Otherwise the
        writeability of the input array is preserved.

        .. versionadded:: 1.6

    force_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.

        .. versionadded:: 0.20
           ``force_all_finite`` accepts the string ``'allow-nan'``.

        .. versionchanged:: 0.23
           Accepts `pd.NA` and converts it into `np.nan`

        .. deprecated:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite` and will be removed
           in 1.8.

    ensure_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.

        .. versionadded:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite`.

    ensure_non_negative : bool, default=False
        Make sure the array has only non-negative values. If True, an array that
        contains negative values will raise a ValueError.

        .. versionadded:: 1.6

    ensure_2d : bool, default=True
        Whether to raise a value error if array is not 2D.

    allow_nd : bool, default=False
        Whether to allow array.ndim > 2.

    ensure_min_samples : int, default=1
        Make sure that the array has a minimum number of samples in its first
        axis (rows for a 2D array). Setting to 0 disables this check.

    ensure_min_features : int, default=1
        Make sure that the 2D array has some minimum number of features
        (columns). The default value of 1 rejects empty datasets.
        This check is only enforced when the input data has effectively 2
        dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0
        disables this check.

    estimator : str or estimator instance, default=None
        If passed, include the name of the estimator in warning messages.

    input_name : str, default=""
        The data name used to construct the error message. In particular
        if `input_name` is "X" and the data has NaN values and
        allow_nan is False, the error message will link to the imputer
        documentation.

        .. versionadded:: 1.1.0

    Returns
    -------
    array_converted : object
        The converted and validated array.

    Examples
    --------
    >>> from sklearn.utils.validation import check_array
    >>> X = [[1, 2, 3], [4, 5, 6]]
    >>> X_checked = check_array(X)
    >>> X_checked
    array([[1, 2, 3], [4, 5, 6]])
    """
    ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite)

    if isinstance(array, np.matrix):
        raise TypeError(
            "np.matrix is not supported. Please convert to a numpy array with "
            "np.asarray. For more information see: "
            "https://numpy.org/doc/stable/reference/generated/numpy.matrix.html"
        )

    xp, is_array_api_compliant = get_namespace(array)

    # store reference to original array to check if copy is needed when
    # function returns
    array_orig = array

    # store whether originally we wanted numeric dtype
    dtype_numeric = isinstance(dtype, str) and dtype == "numeric"

    dtype_orig = getattr(array, "dtype", None)
    if not is_array_api_compliant and not hasattr(dtype_orig, "kind"):
        # not a data type (e.g. a column named dtype in a pandas DataFrame)
        dtype_orig = None

    # check if the object contains several dtypes (typically a pandas
    # DataFrame), and store them. If not, store None.
    dtypes_orig = None
    pandas_requires_conversion = False
    # track if we have a Series-like object to raise a better error message
    type_if_series = None
    if hasattr(array, "dtypes") and hasattr(array.dtypes, "__array__"):
        # throw warning if columns are sparse. If all columns are sparse, then
        # array.sparse exists and sparsity will be preserved (later).
        with suppress(ImportError):
            from pandas import SparseDtype

            def is_sparse(dtype):
                return isinstance(dtype, SparseDtype)

            if not hasattr(array, "sparse") and array.dtypes.apply(is_sparse).any():
                warnings.warn(
                    "pandas.DataFrame with sparse columns found."
                    "It will be converted to a dense numpy array."
                )

        dtypes_orig = list(array.dtypes)
        pandas_requires_conversion = any(
            _pandas_dtype_needs_early_conversion(i) for i in dtypes_orig
        )
        if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig):
            dtype_orig = np.result_type(*dtypes_orig)
        elif pandas_requires_conversion and any(d == object for d in dtypes_orig):
            # Force object if any of the dtypes is an object
            dtype_orig = object

    elif (_is_extension_array_dtype(array) or hasattr(array, "iloc")) and hasattr(
        array, "dtype"
    ):
        # array is a pandas series
        type_if_series = type(array)
        pandas_requires_conversion = _pandas_dtype_needs_early_conversion(array.dtype)
        if isinstance(array.dtype, np.dtype):
            dtype_orig = array.dtype
        else:
            # Set to None to let array.astype work out the best dtype
            dtype_orig = None

    if dtype_numeric:
        if (
            dtype_orig is not None
            and hasattr(dtype_orig, "kind")
            and dtype_orig.kind == "O"
        ):
            # if input is object, convert to float.
            dtype = xp.float64
        else:
            dtype = None

    if isinstance(dtype, (list, tuple)):
        if dtype_orig is not None and dtype_orig in dtype:
            # no dtype conversion required
            dtype = None
        else:
            # dtype conversion required. Let's select the first element of the
            # list of accepted types.
            dtype = dtype[0]

    if pandas_requires_conversion:
        # pandas dataframe requires conversion earlier to handle extension dtypes with
        # nans
        # Use the original dtype for conversion if dtype is None
        new_dtype = dtype_orig if dtype is None else dtype
        array = array.astype(new_dtype)
        # Since we converted here, we do not need to convert again later
        dtype = None

    if ensure_all_finite not in (True, False, "allow-nan"):
        raise ValueError(
            "ensure_all_finite should be a bool or 'allow-nan'. Got "
            f"{ensure_all_finite!r} instead."
        )

    if dtype is not None and _is_numpy_namespace(xp):
        # convert to dtype object to conform to Array API to be use `xp.isdtype` later
        dtype = np.dtype(dtype)

    estimator_name = _check_estimator_name(estimator)
    context = " by %s" % estimator_name if estimator is not None else ""

    # When all dataframe columns are sparse, convert to a sparse array
    if hasattr(array, "sparse") and array.ndim > 1:
        with suppress(ImportError):
            from pandas import SparseDtype  # noqa: F811

            def is_sparse(dtype):
                return isinstance(dtype, SparseDtype)

            if array.dtypes.apply(is_sparse).all():
                # DataFrame.sparse only supports `to_coo`
                array = array.sparse.to_coo()
                if array.dtype == np.dtype("object"):
                    unique_dtypes = set([dt.subtype.name for dt in array_orig.dtypes])
                    if len(unique_dtypes) > 1:
                        raise ValueError(
                            "Pandas DataFrame with mixed sparse extension arrays "
                            "generated a sparse matrix with object dtype which "
                            "can not be converted to a scipy sparse matrix."
                            "Sparse extension arrays should all have the same "
                            "numeric type."
                        )

    if sp.issparse(array):
        _ensure_no_complex_data(array)
        array = _ensure_sparse_format(
            array,
            accept_sparse=accept_sparse,
            dtype=dtype,
            copy=copy,
            ensure_all_finite=ensure_all_finite,
            accept_large_sparse=accept_large_sparse,
            estimator_name=estimator_name,
            input_name=input_name,
        )
        if ensure_2d and array.ndim < 2:
            raise ValueError(
                f"Expected 2D input, got input with shape {array.shape}.\n"
                "Reshape your data either using array.reshape(-1, 1) if "
                "your data has a single feature or array.reshape(1, -1) "
                "if it contains a single sample."
            )
    else:
        # If np.array(..) gives ComplexWarning, then we convert the warning
        # to an error. This is needed because specifying a non complex
        # dtype to the function converts complex to real dtype,
        # thereby passing the test made in the lines following the scope
        # of warnings context manager.
        with warnings.catch_warnings():
            try:
                warnings.simplefilter("error", ComplexWarning)
                if dtype is not None and xp.isdtype(dtype, "integral"):
                    # Conversion float -> int should not contain NaN or
                    # inf (numpy#14412). We cannot use casting='safe' because
                    # then conversion float -> int would be disallowed.
                    array = _asarray_with_order(array, order=order, xp=xp)
                    if xp.isdtype(array.dtype, ("real floating", "complex floating")):
                        _assert_all_finite(
                            array,
                            allow_nan=False,
                            msg_dtype=dtype,
                            estimator_name=estimator_name,
                            input_name=input_name,
                        )
                    array = xp.astype(array, dtype, copy=False)
                else:
                    array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp)
            except ComplexWarning as complex_warning:
                raise ValueError(
                    "Complex data not supported\n{}\n".format(array)
                ) from complex_warning

        # It is possible that the np.array(..) gave no warning. This happens
        # when no dtype conversion happened, for example dtype = None. The
        # result is that np.array(..) produces an array of complex dtype
        # and we need to catch and raise exception for such cases.
        _ensure_no_complex_data(array)

        if ensure_2d:
            # If input is scalar raise error
            if array.ndim == 0:
                raise ValueError(
                    "Expected 2D array, got scalar array instead:\narray={}.\n"
                    "Reshape your data either using array.reshape(-1, 1) if "
                    "your data has a single feature or array.reshape(1, -1) "
                    "if it contains a single sample.".format(array)
                )
            # If input is 1D raise error
            if array.ndim == 1:
                # If input is a Series-like object (eg. pandas Series or polars Series)
                if type_if_series is not None:
                    msg = (
                        f"Expected a 2-dimensional container but got {type_if_series} "
                        "instead. Pass a DataFrame containing a single row (i.e. "
                        "single sample) or a single column (i.e. single feature) "
                        "instead."
                    )
                else:
                    msg = (
                        f"Expected 2D array, got 1D array instead:\narray={array}.\n"
                        "Reshape your data either using array.reshape(-1, 1) if "
                        "your data has a single feature or array.reshape(1, -1) "
                        "if it contains a single sample."
                    )
                raise ValueError(msg)

        if dtype_numeric and hasattr(array.dtype, "kind") and array.dtype.kind in "USV":
            raise ValueError(
                "dtype='numeric' is not compatible with arrays of bytes/strings."
                "Convert your data to numeric values explicitly instead."
            )
        if not allow_nd and array.ndim >= 3:
            raise ValueError(
                "Found array with dim %d. %s expected <= 2."
                % (array.ndim, estimator_name)
            )

        if ensure_all_finite:
            _assert_all_finite(
                array,
                input_name=input_name,
                estimator_name=estimator_name,
                allow_nan=ensure_all_finite == "allow-nan",
            )

        if copy:
            if _is_numpy_namespace(xp):
                # only make a copy if `array` and `array_orig` may share memory`
                if np.may_share_memory(array, array_orig):
                    array = _asarray_with_order(
                        array, dtype=dtype, order=order, copy=True, xp=xp
                    )
            else:
                # always make a copy for non-numpy arrays
                array = _asarray_with_order(
                    array, dtype=dtype, order=order, copy=True, xp=xp
                )

    if ensure_min_samples > 0:
        n_samples = _num_samples(array)
        if n_samples < ensure_min_samples:
            raise ValueError(
                "Found array with %d sample(s) (shape=%s) while a"
                " minimum of %d is required%s."
                % (n_samples, array.shape, ensure_min_samples, context)
            )

    if ensure_min_features > 0 and array.ndim == 2:
        n_features = array.shape[1]
        if n_features < ensure_min_features:
            raise ValueError(
                "Found array with %d feature(s) (shape=%s) while"
                " a minimum of %d is required%s."
                % (n_features, array.shape, ensure_min_features, context)
            )

    if ensure_non_negative:
        whom = input_name
        if estimator_name:
            whom += f" in {estimator_name}"
        check_non_negative(array, whom)

    if force_writeable:
        # By default, array.copy() creates a C-ordered copy. We set order=K to
        # preserve the order of the array.
        copy_params = {"order": "K"} if not sp.issparse(array) else {}

        array_data = array.data if sp.issparse(array) else array
        flags = getattr(array_data, "flags", None)
        if not getattr(flags, "writeable", True):
            # This situation can only happen when copy=False, the array is read-only and
            # a writeable output is requested. This is an ambiguous setting so we chose
            # to always (except for one specific setting, see below) make a copy to
            # ensure that the output is writeable, even if avoidable, to not overwrite
            # the user's data by surprise.

            if _is_pandas_df_or_series(array_orig):
                try:
                    # In pandas >= 3, np.asarray(df), called earlier in check_array,
                    # returns a read-only intermediate array. It can be made writeable
                    # safely without copy because if the original DataFrame was backed
                    # by a read-only array, trying to change the flag would raise an
                    # error, in which case we make a copy.
                    array_data.flags.writeable = True
                except ValueError:
                    array = array.copy(**copy_params)
            else:
                array = array.copy(**copy_params)

    return array


def _check_large_sparse(X, accept_large_sparse=False):
    """Raise a ValueError if X has 64bit indices and accept_large_sparse=False"""
    if not accept_large_sparse:
        supported_indices = ["int32"]
        if X.format == "coo":
            index_keys = ["col", "row"]
        elif X.format in ["csr", "csc", "bsr"]:
            index_keys = ["indices", "indptr"]
        else:
            return
        for key in index_keys:
            indices_datatype = getattr(X, key).dtype
            if indices_datatype not in supported_indices:
                raise ValueError(
                    "Only sparse matrices with 32-bit integer indices are accepted."
                    f" Got {indices_datatype} indices. Please do report a minimal"
                    " reproducer on scikit-learn issue tracker so that support for"
                    " your use-case can be studied by maintainers. See:"
                    " https://scikit-learn.org/dev/developers/minimal_reproducer.html"
                )


def check_X_y(
    X,
    y,
    accept_sparse=False,
    *,
    accept_large_sparse=True,
    dtype="numeric",
    order=None,
    copy=False,
    force_writeable=False,
    force_all_finite="deprecated",
    ensure_all_finite=None,
    ensure_2d=True,
    allow_nd=False,
    multi_output=False,
    ensure_min_samples=1,
    ensure_min_features=1,
    y_numeric=False,
    estimator=None,
):
    """Input validation for standard estimators.

    Checks X and y for consistent length, enforces X to be 2D and y 1D. By
    default, X is checked to be non-empty and containing only finite values.
    Standard input checks are also applied to y, such as checking that y
    does not have np.nan or np.inf targets. For multi-label y, set
    multi_output=True to allow 2D and sparse y. If the dtype of X is
    object, attempt converting to float, raising on failure.

    Parameters
    ----------
    X : {ndarray, list, sparse matrix}
        Input data.

    y : {ndarray, list, sparse matrix}
        Labels.

    accept_sparse : str, bool or list of str, default=False
        String[s] representing allowed sparse matrix formats, such as 'csc',
        'csr', etc. If the input is sparse but not in the allowed format,
        it will be converted to the first listed format. True allows the input
        to be any format. False means that a sparse matrix input will
        raise an error.

    accept_large_sparse : bool, default=True
        If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by
        accept_sparse, accept_large_sparse will cause it to be accepted only
        if its indices are stored with a 32-bit dtype.

        .. versionadded:: 0.20

    dtype : 'numeric', type, list of type or None, default='numeric'
        Data type of result. If None, the dtype of the input is preserved.
        If "numeric", dtype is preserved unless array.dtype is object.
        If dtype is a list of types, conversion on the first type is only
        performed if the dtype of the input is not in the list.

    order : {'F', 'C'}, default=None
        Whether an array will be forced to be fortran or c-style. If
        `None`, then the input data's order is preserved when possible.

    copy : bool, default=False
        Whether a forced copy will be triggered. If copy=False, a copy might
        be triggered by a conversion.

    force_writeable : bool, default=False
        Whether to force the output array to be writeable. If True, the returned array
        is guaranteed to be writeable, which may require a copy. Otherwise the
        writeability of the input array is preserved.

        .. versionadded:: 1.6

    force_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. This parameter
        does not influence whether y can have np.inf, np.nan, pd.NA values.
        The possibilities are:

        - True: Force all values of X to be finite.
        - False: accepts np.inf, np.nan, pd.NA in X.
        - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot
          be infinite.

        .. versionadded:: 0.20
           ``force_all_finite`` accepts the string ``'allow-nan'``.

        .. versionchanged:: 0.23
           Accepts `pd.NA` and converts it into `np.nan`

        .. deprecated:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite` and will be removed
           in 1.8.

    ensure_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. This parameter
        does not influence whether y can have np.inf, np.nan, pd.NA values.
        The possibilities are:

        - True: Force all values of X to be finite.
        - False: accepts np.inf, np.nan, pd.NA in X.
        - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot
          be infinite.

        .. versionadded:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite`.

    ensure_2d : bool, default=True
        Whether to raise a value error if X is not 2D.

    allow_nd : bool, default=False
        Whether to allow X.ndim > 2.

    multi_output : bool, default=False
        Whether to allow 2D y (array or sparse matrix). If false, y will be
        validated as a vector. y cannot have np.nan or np.inf values if
        multi_output=True.

    ensure_min_samples : int, default=1
        Make sure that X has a minimum number of samples in its first
        axis (rows for a 2D array).

    ensure_min_features : int, default=1
        Make sure that the 2D array has some minimum number of features
        (columns). The default value of 1 rejects empty datasets.
        This check is only enforced when X has effectively 2 dimensions or
        is originally 1D and ``ensure_2d`` is True. Setting to 0 disables
        this check.

    y_numeric : bool, default=False
        Whether to ensure that y has a numeric type. If dtype of y is object,
        it is converted to float64. Should only be used for regression
        algorithms.

    estimator : str or estimator instance, default=None
        If passed, include the name of the estimator in warning messages.

    Returns
    -------
    X_converted : object
        The converted and validated X.

    y_converted : object
        The converted and validated y.

    Examples
    --------
    >>> from sklearn.utils.validation import check_X_y
    >>> X = [[1, 2], [3, 4], [5, 6]]
    >>> y = [1, 2, 3]
    >>> X, y = check_X_y(X, y)
    >>> X
    array([[1, 2],
          [3, 4],
          [5, 6]])
    >>> y
    array([1, 2, 3])
    """
    if y is None:
        if estimator is None:
            estimator_name = "estimator"
        else:
            estimator_name = _check_estimator_name(estimator)
        raise ValueError(
            f"{estimator_name} requires y to be passed, but the target y is None"
        )

    ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite)

    X = check_array(
        X,
        accept_sparse=accept_sparse,
        accept_large_sparse=accept_large_sparse,
        dtype=dtype,
        order=order,
        copy=copy,
        force_writeable=force_writeable,
        ensure_all_finite=ensure_all_finite,
        ensure_2d=ensure_2d,
        allow_nd=allow_nd,
        ensure_min_samples=ensure_min_samples,
        ensure_min_features=ensure_min_features,
        estimator=estimator,
        input_name="X",
    )

    y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator)

    check_consistent_length(X, y)

    return X, y


def _check_y(y, multi_output=False, y_numeric=False, estimator=None):
    """Isolated part of check_X_y dedicated to y validation"""
    if multi_output:
        y = check_array(
            y,
            accept_sparse="csr",
            ensure_all_finite=True,
            ensure_2d=False,
            dtype=None,
            input_name="y",
            estimator=estimator,
        )
    else:
        estimator_name = _check_estimator_name(estimator)
        y = column_or_1d(y, warn=True)
        _assert_all_finite(y, input_name="y", estimator_name=estimator_name)
        _ensure_no_complex_data(y)
    if y_numeric and hasattr(y.dtype, "kind") and y.dtype.kind == "O":
        y = y.astype(np.float64)

    return y


def column_or_1d(y, *, dtype=None, warn=False, device=None):
    """Ravel column or 1d numpy array, else raises an error.

    Parameters
    ----------
    y : array-like
       Input data.

    dtype : data-type, default=None
        Data type for `y`.

        .. versionadded:: 1.2

    warn : bool, default=False
       To control display of warnings.

    device : device, default=None
        `device` object.
        See the :ref:`Array API User Guide <array_api>` for more details.

        .. versionadded:: 1.6

    Returns
    -------
    y : ndarray
       Output data.

    Raises
    ------
    ValueError
        If `y` is not a 1D array or a 2D array with a single row or column.

    Examples
    --------
    >>> from sklearn.utils.validation import column_or_1d
    >>> column_or_1d([1, 1])
    array([1, 1])
    """
    xp, _ = get_namespace(y)
    y = check_array(
        y,
        ensure_2d=False,
        dtype=dtype,
        input_name="y",
        ensure_all_finite=False,
        ensure_min_samples=0,
    )

    shape = y.shape
    if len(shape) == 1:
        return _asarray_with_order(
            xp.reshape(y, (-1,)), order="C", xp=xp, device=device
        )
    if len(shape) == 2 and shape[1] == 1:
        if warn:
            warnings.warn(
                (
                    "A column-vector y was passed when a 1d array was"
                    " expected. Please change the shape of y to "
                    "(n_samples, ), for example using ravel()."
                ),
                DataConversionWarning,
                stacklevel=2,
            )
        return _asarray_with_order(
            xp.reshape(y, (-1,)), order="C", xp=xp, device=device
        )

    raise ValueError(
        "y should be a 1d array, got an array of shape {} instead.".format(shape)
    )


def check_random_state(seed):
    """Turn seed into a np.random.RandomState instance.

    Parameters
    ----------
    seed : None, int or instance of RandomState
        If seed is None, return the RandomState singleton used by np.random.
        If seed is an int, return a new RandomState instance seeded with seed.
        If seed is already a RandomState instance, return it.
        Otherwise raise ValueError.

    Returns
    -------
    :class:`numpy:numpy.random.RandomState`
        The random state object based on `seed` parameter.

    Examples
    --------
    >>> from sklearn.utils.validation import check_random_state
    >>> check_random_state(42)
    RandomState(MT19937) at 0x...
    """
    if seed is None or seed is np.random:
        return np.random.mtrand._rand
    if isinstance(seed, numbers.Integral):
        return np.random.RandomState(seed)
    if isinstance(seed, np.random.RandomState):
        return seed
    raise ValueError(
        "%r cannot be used to seed a numpy.random.RandomState instance" % seed
    )


def has_fit_parameter(estimator, parameter):
    """Check whether the estimator's fit method supports the given parameter.

    Parameters
    ----------
    estimator : object
        An estimator to inspect.

    parameter : str
        The searched parameter.

    Returns
    -------
    is_parameter : bool
        Whether the parameter was found to be a named parameter of the
        estimator's fit method.

    Examples
    --------
    >>> from sklearn.svm import SVC
    >>> from sklearn.utils.validation import has_fit_parameter
    >>> has_fit_parameter(SVC(), "sample_weight")
    True
    """
    return (
        # This is used during test collection in common tests. The
        # hasattr(estimator, "fit") makes it so that we don't fail for an estimator
        # that does not have a `fit` method during collection of checks. The right
        # checks will fail later.
        hasattr(estimator, "fit")
        and parameter in signature(estimator.fit).parameters
    )


def check_symmetric(array, *, tol=1e-10, raise_warning=True, raise_exception=False):
    """Make sure that array is 2D, square and symmetric.

    If the array is not symmetric, then a symmetrized version is returned.
    Optionally, a warning or exception is raised if the matrix is not
    symmetric.

    Parameters
    ----------
    array : {ndarray, sparse matrix}
        Input object to check / convert. Must be two-dimensional and square,
        otherwise a ValueError will be raised.

    tol : float, default=1e-10
        Absolute tolerance for equivalence of arrays. Default = 1E-10.

    raise_warning : bool, default=True
        If True then raise a warning if conversion is required.

    raise_exception : bool, default=False
        If True then raise an exception if array is not symmetric.

    Returns
    -------
    array_sym : {ndarray, sparse matrix}
        Symmetrized version of the input array, i.e. the average of array
        and array.transpose(). If sparse, then duplicate entries are first
        summed and zeros are eliminated.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils.validation import check_symmetric
    >>> symmetric_array = np.array([[0, 1, 2], [1, 0, 1], [2, 1, 0]])
    >>> check_symmetric(symmetric_array)
    array([[0, 1, 2],
           [1, 0, 1],
           [2, 1, 0]])
    >>> from scipy.sparse import csr_matrix
    >>> sparse_symmetric_array = csr_matrix(symmetric_array)
    >>> check_symmetric(sparse_symmetric_array)
    <Compressed Sparse Row sparse matrix of dtype 'int64'
        with 6 stored elements and shape (3, 3)>
    """
    if (array.ndim != 2) or (array.shape[0] != array.shape[1]):
        raise ValueError(
            "array must be 2-dimensional and square. shape = {0}".format(array.shape)
        )

    if sp.issparse(array):
        diff = array - array.T
        # only csr, csc, and coo have `data` attribute
        if diff.format not in ["csr", "csc", "coo"]:
            diff = diff.tocsr()
        symmetric = np.all(abs(diff.data) < tol)
    else:
        symmetric = np.allclose(array, array.T, atol=tol)

    if not symmetric:
        if raise_exception:
            raise ValueError("Array must be symmetric")
        if raise_warning:
            warnings.warn(
                (
                    "Array is not symmetric, and will be converted "
                    "to symmetric by average with its transpose."
                ),
                stacklevel=2,
            )
        if sp.issparse(array):
            conversion = "to" + array.format
            array = getattr(0.5 * (array + array.T), conversion)()
        else:
            array = 0.5 * (array + array.T)

    return array


def _is_fitted(estimator, attributes=None, all_or_any=all):
    """Determine if an estimator is fitted

    Parameters
    ----------
    estimator : estimator instance
        Estimator instance for which the check is performed.

    attributes : str, list or tuple of str, default=None
        Attribute name(s) given as string or a list/tuple of strings
        Eg.: ``["coef_", "estimator_", ...], "coef_"``

        If `None`, `estimator` is considered fitted if there exist an
        attribute that ends with a underscore and does not start with double
        underscore.

    all_or_any : callable, {all, any}, default=all
        Specify whether all or any of the given attributes must exist.

    Returns
    -------
    fitted : bool
        Whether the estimator is fitted.
    """
    if attributes is not None:
        if not isinstance(attributes, (list, tuple)):
            attributes = [attributes]
        return all_or_any([hasattr(estimator, attr) for attr in attributes])

    if hasattr(estimator, "__sklearn_is_fitted__"):
        return estimator.__sklearn_is_fitted__()

    fitted_attrs = [
        v for v in vars(estimator) if v.endswith("_") and not v.startswith("__")
    ]
    return len(fitted_attrs) > 0


def check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=all):
    """Perform is_fitted validation for estimator.

    Checks if the estimator is fitted by verifying the presence of
    fitted attributes (ending with a trailing underscore) and otherwise
    raises a :class:`~sklearn.exceptions.NotFittedError` with the given message.

    If an estimator does not set any attributes with a trailing underscore, it
    can define a ``__sklearn_is_fitted__`` method returning a boolean to
    specify if the estimator is fitted or not. See
    :ref:`sphx_glr_auto_examples_developing_estimators_sklearn_is_fitted.py`
    for an example on how to use the API.

    If no `attributes` are passed, this fuction will pass if an estimator is stateless.
    An estimator can indicate it's stateless by setting the `requires_fit` tag. See
    :ref:`estimator_tags` for more information. Note that the `requires_fit` tag
    is ignored if `attributes` are passed.

    Parameters
    ----------
    estimator : estimator instance
        Estimator instance for which the check is performed.

    attributes : str, list or tuple of str, default=None
        Attribute name(s) given as string or a list/tuple of strings
        Eg.: ``["coef_", "estimator_", ...], "coef_"``

        If `None`, `estimator` is considered fitted if there exist an
        attribute that ends with a underscore and does not start with double
        underscore.

    msg : str, default=None
        The default error message is, "This %(name)s instance is not fitted
        yet. Call 'fit' with appropriate arguments before using this
        estimator."

        For custom messages if "%(name)s" is present in the message string,
        it is substituted for the estimator name.

        Eg. : "Estimator, %(name)s, must be fitted before sparsifying".

    all_or_any : callable, {all, any}, default=all
        Specify whether all or any of the given attributes must exist.

    Raises
    ------
    TypeError
        If the estimator is a class or not an estimator instance

    NotFittedError
        If the attributes are not found.

    Examples
    --------
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.utils.validation import check_is_fitted
    >>> from sklearn.exceptions import NotFittedError
    >>> lr = LogisticRegression()
    >>> try:
    ...     check_is_fitted(lr)
    ... except NotFittedError as exc:
    ...     print(f"Model is not fitted yet.")
    Model is not fitted yet.
    >>> lr.fit([[1, 2], [1, 3]], [1, 0])
    LogisticRegression()
    >>> check_is_fitted(lr)
    """
    if isclass(estimator):
        raise TypeError("{} is a class, not an instance.".format(estimator))
    if msg is None:
        msg = (
            "This %(name)s instance is not fitted yet. Call 'fit' with "
            "appropriate arguments before using this estimator."
        )

    if not hasattr(estimator, "fit"):
        raise TypeError("%s is not an estimator instance." % (estimator))

    tags = get_tags(estimator)

    if not tags.requires_fit and attributes is None:
        return

    if not _is_fitted(estimator, attributes, all_or_any):
        raise NotFittedError(msg % {"name": type(estimator).__name__})


def _estimator_has(attr, *, delegates=("estimator_", "estimator")):
    """Check if we can delegate a method to the underlying estimator.

    We check the `delegates` in the order they are passed. By default, we first check
    the fitted estimator if available, otherwise we check the unfitted estimator.

    Parameters
    ----------
    attr : str
        Name of the attribute the delegate might or might not have.

    delegates: tuple of str, default=("estimator_", "estimator")
        A tuple of sub-estimator(s) to check if we can delegate the `attr` method.

    Returns
    -------
    check : function
        Function to check if the delegate has the attribute.

    Raises
    ------
    ValueError
        Raised when none of the delegates are present in the object.
    """

    def check(self):
        for delegate in delegates:
            # In meta estimators with multiple sub estimators,
            # only the attribute of the first sub estimator is checked,
            # assuming uniformity across all sub estimators.
            if hasattr(self, delegate):
                delegator = getattr(self, delegate)
                if isinstance(delegator, Sequence):
                    return getattr(delegator[0], attr)
                else:
                    return getattr(delegator, attr)

        raise ValueError(f"None of the delegates {delegates} are present in the class.")

    return check


def check_non_negative(X, whom):
    """
    Check if there is any negative value in an array.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        Input data.

    whom : str
        Who passed X to this function.
    """
    xp, _ = get_namespace(X)
    # avoid X.min() on sparse matrix since it also sorts the indices
    if sp.issparse(X):
        if X.format in ["lil", "dok"]:
            X = X.tocsr()
        if X.data.size == 0:
            X_min = 0
        else:
            X_min = X.data.min()
    else:
        X_min = xp.min(X)

    if X_min < 0:
        raise ValueError(f"Negative values in data passed to {whom}.")


def check_scalar(
    x,
    name,
    target_type,
    *,
    min_val=None,
    max_val=None,
    include_boundaries="both",
):
    """Validate scalar parameters type and value.

    Parameters
    ----------
    x : object
        The scalar parameter to validate.

    name : str
        The name of the parameter to be printed in error messages.

    target_type : type or tuple
        Acceptable data types for the parameter.

    min_val : float or int, default=None
        The minimum valid value the parameter can take. If None (default) it
        is implied that the parameter does not have a lower bound.

    max_val : float or int, default=None
        The maximum valid value the parameter can take. If None (default) it
        is implied that the parameter does not have an upper bound.

    include_boundaries : {"left", "right", "both", "neither"}, default="both"
        Whether the interval defined by `min_val` and `max_val` should include
        the boundaries. Possible choices are:

        - `"left"`: only `min_val` is included in the valid interval.
          It is equivalent to the interval `[ min_val, max_val )`.
        - `"right"`: only `max_val` is included in the valid interval.
          It is equivalent to the interval `( min_val, max_val ]`.
        - `"both"`: `min_val` and `max_val` are included in the valid interval.
          It is equivalent to the interval `[ min_val, max_val ]`.
        - `"neither"`: neither `min_val` nor `max_val` are included in the
          valid interval. It is equivalent to the interval `( min_val, max_val )`.

    Returns
    -------
    x : numbers.Number
        The validated number.

    Raises
    ------
    TypeError
        If the parameter's type does not match the desired type.

    ValueError
        If the parameter's value violates the given bounds.
        If `min_val`, `max_val` and `include_boundaries` are inconsistent.

    Examples
    --------
    >>> from sklearn.utils.validation import check_scalar
    >>> check_scalar(10, "x", int, min_val=1, max_val=20)
    10
    """

    def type_name(t):
        """Convert type into humman readable string."""
        module = t.__module__
        qualname = t.__qualname__
        if module == "builtins":
            return qualname
        elif t == numbers.Real:
            return "float"
        elif t == numbers.Integral:
            return "int"
        return f"{module}.{qualname}"

    if not isinstance(x, target_type):
        if isinstance(target_type, tuple):
            types_str = ", ".join(type_name(t) for t in target_type)
            target_type_str = f"{{{types_str}}}"
        else:
            target_type_str = type_name(target_type)

        raise TypeError(
            f"{name} must be an instance of {target_type_str}, not"
            f" {type(x).__qualname__}."
        )

    expected_include_boundaries = ("left", "right", "both", "neither")
    if include_boundaries not in expected_include_boundaries:
        raise ValueError(
            f"Unknown value for `include_boundaries`: {repr(include_boundaries)}. "
            f"Possible values are: {expected_include_boundaries}."
        )

    if max_val is None and include_boundaries == "right":
        raise ValueError(
            "`include_boundaries`='right' without specifying explicitly `max_val` "
            "is inconsistent."
        )

    if min_val is None and include_boundaries == "left":
        raise ValueError(
            "`include_boundaries`='left' without specifying explicitly `min_val` "
            "is inconsistent."
        )

    comparison_operator = (
        operator.lt if include_boundaries in ("left", "both") else operator.le
    )
    if min_val is not None and comparison_operator(x, min_val):
        raise ValueError(
            f"{name} == {x}, must be"
            f" {'>=' if include_boundaries in ('left', 'both') else '>'} {min_val}."
        )

    comparison_operator = (
        operator.gt if include_boundaries in ("right", "both") else operator.ge
    )
    if max_val is not None and comparison_operator(x, max_val):
        raise ValueError(
            f"{name} == {x}, must be"
            f" {'<=' if include_boundaries in ('right', 'both') else '<'} {max_val}."
        )

    return x


def _check_psd_eigenvalues(lambdas, enable_warnings=False):
    """Check the eigenvalues of a positive semidefinite (PSD) matrix.

    Checks the provided array of PSD matrix eigenvalues for numerical or
    conditioning issues and returns a fixed validated version. This method
    should typically be used if the PSD matrix is user-provided (e.g. a
    Gram matrix) or computed using a user-provided dissimilarity metric
    (e.g. kernel function), or if the decomposition process uses approximation
    methods (randomized SVD, etc.).

    It checks for three things:

    - that there are no significant imaginary parts in eigenvalues (more than
      1e-5 times the maximum real part). If this check fails, it raises a
      ``ValueError``. Otherwise all non-significant imaginary parts that may
      remain are set to zero. This operation is traced with a
      ``PositiveSpectrumWarning`` when ``enable_warnings=True``.

    - that eigenvalues are not all negative. If this check fails, it raises a
      ``ValueError``

    - that there are no significant negative eigenvalues with absolute value
      more than 1e-10 (1e-6) and more than 1e-5 (5e-3) times the largest
      positive eigenvalue in double (simple) precision. If this check fails,
      it raises a ``ValueError``. Otherwise all negative eigenvalues that may
      remain are set to zero. This operation is traced with a
      ``PositiveSpectrumWarning`` when ``enable_warnings=True``.

    Finally, all the positive eigenvalues that are too small (with a value
    smaller than the maximum eigenvalue multiplied by 1e-12 (2e-7)) are set to
    zero. This operation is traced with a ``PositiveSpectrumWarning`` when
    ``enable_warnings=True``.

    Parameters
    ----------
    lambdas : array-like of shape (n_eigenvalues,)
        Array of eigenvalues to check / fix.

    enable_warnings : bool, default=False
        When this is set to ``True``, a ``PositiveSpectrumWarning`` will be
        raised when there are imaginary parts, negative eigenvalues, or
        extremely small non-zero eigenvalues. Otherwise no warning will be
        raised. In both cases, imaginary parts, negative eigenvalues, and
        extremely small non-zero eigenvalues will be set to zero.

    Returns
    -------
    lambdas_fixed : ndarray of shape (n_eigenvalues,)
        A fixed validated copy of the array of eigenvalues.

    Examples
    --------
    >>> from sklearn.utils.validation import _check_psd_eigenvalues
    >>> _check_psd_eigenvalues([1, 2])      # nominal case
    array([1, 2])
    >>> _check_psd_eigenvalues([5, 5j])     # significant imag part
    Traceback (most recent call last):
        ...
    ValueError: There are significant imaginary parts in eigenvalues (1
        of the maximum real part). Either the matrix is not PSD, or there was
        an issue while computing the eigendecomposition of the matrix.
    >>> _check_psd_eigenvalues([5, 5e-5j])  # insignificant imag part
    array([5., 0.])
    >>> _check_psd_eigenvalues([-5, -1])    # all negative
    Traceback (most recent call last):
        ...
    ValueError: All eigenvalues are negative (maximum is -1). Either the
        matrix is not PSD, or there was an issue while computing the
        eigendecomposition of the matrix.
    >>> _check_psd_eigenvalues([5, -1])     # significant negative
    Traceback (most recent call last):
        ...
    ValueError: There are significant negative eigenvalues (0.2 of the
        maximum positive). Either the matrix is not PSD, or there was an issue
        while computing the eigendecomposition of the matrix.
    >>> _check_psd_eigenvalues([5, -5e-5])  # insignificant negative
    array([5., 0.])
    >>> _check_psd_eigenvalues([5, 4e-12])  # bad conditioning (too small)
    array([5., 0.])

    """

    lambdas = np.array(lambdas)
    is_double_precision = lambdas.dtype == np.float64

    # note: the minimum value available is
    #  - single-precision: np.finfo('float32').eps = 1.2e-07
    #  - double-precision: np.finfo('float64').eps = 2.2e-16

    # the various thresholds used for validation
    # we may wish to change the value according to precision.
    significant_imag_ratio = 1e-5
    significant_neg_ratio = 1e-5 if is_double_precision else 5e-3
    significant_neg_value = 1e-10 if is_double_precision else 1e-6
    small_pos_ratio = 1e-12 if is_double_precision else 2e-7

    # Check that there are no significant imaginary parts
    if not np.isreal(lambdas).all():
        max_imag_abs = np.abs(np.imag(lambdas)).max()
        max_real_abs = np.abs(np.real(lambdas)).max()
        if max_imag_abs > significant_imag_ratio * max_real_abs:
            raise ValueError(
                "There are significant imaginary parts in eigenvalues (%g "
                "of the maximum real part). Either the matrix is not PSD, or "
                "there was an issue while computing the eigendecomposition "
                "of the matrix." % (max_imag_abs / max_real_abs)
            )

        # warn about imaginary parts being removed
        if enable_warnings:
            warnings.warn(
                "There are imaginary parts in eigenvalues (%g "
                "of the maximum real part). Either the matrix is not"
                " PSD, or there was an issue while computing the "
                "eigendecomposition of the matrix. Only the real "
                "parts will be kept." % (max_imag_abs / max_real_abs),
                PositiveSpectrumWarning,
            )

    # Remove all imaginary parts (even if zero)
    lambdas = np.real(lambdas)

    # Check that there are no significant negative eigenvalues
    max_eig = lambdas.max()
    if max_eig < 0:
        raise ValueError(
            "All eigenvalues are negative (maximum is %g). "
            "Either the matrix is not PSD, or there was an "
            "issue while computing the eigendecomposition of "
            "the matrix." % max_eig
        )

    else:
        min_eig = lambdas.min()
        if (
            min_eig < -significant_neg_ratio * max_eig
            and min_eig < -significant_neg_value
        ):
            raise ValueError(
                "There are significant negative eigenvalues (%g"
                " of the maximum positive). Either the matrix is "
                "not PSD, or there was an issue while computing "
                "the eigendecomposition of the matrix." % (-min_eig / max_eig)
            )
        elif min_eig < 0:
            # Remove all negative values and warn about it
            if enable_warnings:
                warnings.warn(
                    "There are negative eigenvalues (%g of the "
                    "maximum positive). Either the matrix is not "
                    "PSD, or there was an issue while computing the"
                    " eigendecomposition of the matrix. Negative "
                    "eigenvalues will be replaced with 0." % (-min_eig / max_eig),
                    PositiveSpectrumWarning,
                )
            lambdas[lambdas < 0] = 0

    # Check for conditioning (small positive non-zeros)
    too_small_lambdas = (0 < lambdas) & (lambdas < small_pos_ratio * max_eig)
    if too_small_lambdas.any():
        if enable_warnings:
            warnings.warn(
                "Badly conditioned PSD matrix spectrum: the largest "
                "eigenvalue is more than %g times the smallest. "
                "Small eigenvalues will be replaced with 0."
                "" % (1 / small_pos_ratio),
                PositiveSpectrumWarning,
            )
        lambdas[too_small_lambdas] = 0

    return lambdas


def _check_sample_weight(
    sample_weight, X, dtype=None, copy=False, ensure_non_negative=False
):
    """Validate sample weights.

    Note that passing sample_weight=None will output an array of ones.
    Therefore, in some cases, you may want to protect the call with:
    if sample_weight is not None:
        sample_weight = _check_sample_weight(...)

    Parameters
    ----------
    sample_weight : {ndarray, Number or None}, shape (n_samples,)
        Input sample weights.

    X : {ndarray, list, sparse matrix}
        Input data.

    ensure_non_negative : bool, default=False,
        Whether or not the weights are expected to be non-negative.

        .. versionadded:: 1.0

    dtype : dtype, default=None
        dtype of the validated `sample_weight`.
        If None, and the input `sample_weight` is an array, the dtype of the
        input is preserved; otherwise an array with the default numpy dtype
        is be allocated.  If `dtype` is not one of `float32`, `float64`,
        `None`, the output will be of dtype `float64`.

    copy : bool, default=False
        If True, a copy of sample_weight will be created.

    Returns
    -------
    sample_weight : ndarray of shape (n_samples,)
        Validated sample weight. It is guaranteed to be "C" contiguous.
    """
    n_samples = _num_samples(X)

    if dtype is not None and dtype not in [np.float32, np.float64]:
        dtype = np.float64

    if sample_weight is None:
        sample_weight = np.ones(n_samples, dtype=dtype)
    elif isinstance(sample_weight, numbers.Number):
        sample_weight = np.full(n_samples, sample_weight, dtype=dtype)
    else:
        if dtype is None:
            dtype = [np.float64, np.float32]
        sample_weight = check_array(
            sample_weight,
            accept_sparse=False,
            ensure_2d=False,
            dtype=dtype,
            order="C",
            copy=copy,
            input_name="sample_weight",
        )
        if sample_weight.ndim != 1:
            raise ValueError("Sample weights must be 1D array or scalar")

        if sample_weight.shape != (n_samples,):
            raise ValueError(
                "sample_weight.shape == {}, expected {}!".format(
                    sample_weight.shape, (n_samples,)
                )
            )

    if ensure_non_negative:
        check_non_negative(sample_weight, "`sample_weight`")

    return sample_weight


def _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):
    """Check allclose for sparse and dense data.

    Both x and y need to be either sparse or dense, they
    can't be mixed.

    Parameters
    ----------
    x : {array-like, sparse matrix}
        First array to compare.

    y : {array-like, sparse matrix}
        Second array to compare.

    rtol : float, default=1e-7
        Relative tolerance; see numpy.allclose.

    atol : float, default=1e-9
        absolute tolerance; see numpy.allclose. Note that the default here is
        more tolerant than the default for numpy.testing.assert_allclose, where
        atol=0.
    """
    if sp.issparse(x) and sp.issparse(y):
        x = x.tocsr()
        y = y.tocsr()
        x.sum_duplicates()
        y.sum_duplicates()
        return (
            np.array_equal(x.indices, y.indices)
            and np.array_equal(x.indptr, y.indptr)
            and np.allclose(x.data, y.data, rtol=rtol, atol=atol)
        )
    elif not sp.issparse(x) and not sp.issparse(y):
        return np.allclose(x, y, rtol=rtol, atol=atol)
    raise ValueError(
        "Can only compare two sparse matrices, not a sparse matrix and an array"
    )


def _check_response_method(estimator, response_method):
    """Check if `response_method` is available in estimator and return it.

    .. versionadded:: 1.3

    Parameters
    ----------
    estimator : estimator instance
        Classifier or regressor to check.

    response_method : {"predict_proba", "predict_log_proba", "decision_function",
            "predict"} or list of such str
        Specifies the response method to use get prediction from an estimator
        (i.e. :term:`predict_proba`, :term:`predict_log_proba`,
        :term:`decision_function` or :term:`predict`). Possible choices are:
        - if `str`, it corresponds to the name to the method to return;
        - if a list of `str`, it provides the method names in order of
          preference. The method returned corresponds to the first method in
          the list and which is implemented by `estimator`.

    Returns
    -------
    prediction_method : callable
        Prediction method of estimator.

    Raises
    ------
    AttributeError
        If `response_method` is not available in `estimator`.
    """
    if isinstance(response_method, str):
        list_methods = [response_method]
    else:
        list_methods = response_method

    prediction_method = [getattr(estimator, method, None) for method in list_methods]
    prediction_method = reduce(lambda x, y: x or y, prediction_method)
    if prediction_method is None:
        raise AttributeError(
            f"{estimator.__class__.__name__} has none of the following attributes: "
            f"{', '.join(list_methods)}."
        )

    return prediction_method


def _check_method_params(X, params, indices=None):
    """Check and validate the parameters passed to a specific
    method like `fit`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data array.

    params : dict
        Dictionary containing the parameters passed to the method.

    indices : array-like of shape (n_samples,), default=None
        Indices to be selected if the parameter has the same size as `X`.

    Returns
    -------
    method_params_validated : dict
        Validated parameters. We ensure that the values support indexing.
    """
    from . import _safe_indexing

    method_params_validated = {}
    for param_key, param_value in params.items():
        if (
            not _is_arraylike(param_value)
            and not sp.issparse(param_value)
            or _num_samples(param_value) != _num_samples(X)
        ):
            # Non-indexable pass-through (for now for backward-compatibility).
            # https://github.com/scikit-learn/scikit-learn/issues/15805
            method_params_validated[param_key] = param_value
        else:
            # Any other method_params should support indexing
            # (e.g. for cross-validation).
            method_params_validated[param_key] = _make_indexable(param_value)
            method_params_validated[param_key] = _safe_indexing(
                method_params_validated[param_key], indices
            )

    return method_params_validated


def _is_pandas_df_or_series(X):
    """Return True if the X is a pandas dataframe or series."""
    try:
        pd = sys.modules["pandas"]
    except KeyError:
        return False
    return isinstance(X, (pd.DataFrame, pd.Series))


def _is_pandas_df(X):
    """Return True if the X is a pandas dataframe."""
    try:
        pd = sys.modules["pandas"]
    except KeyError:
        return False
    return isinstance(X, pd.DataFrame)


def _is_polars_df_or_series(X):
    """Return True if the X is a polars dataframe or series."""
    try:
        pl = sys.modules["polars"]
    except KeyError:
        return False
    return isinstance(X, (pl.DataFrame, pl.Series))


def _is_polars_df(X):
    """Return True if the X is a polars dataframe."""
    try:
        pl = sys.modules["polars"]
    except KeyError:
        return False
    return isinstance(X, pl.DataFrame)


def _get_feature_names(X):
    """Get feature names from X.

    Support for other array containers should place its implementation here.

    Parameters
    ----------
    X : {ndarray, dataframe} of shape (n_samples, n_features)
        Array container to extract feature names.

        - pandas dataframe : The columns will be considered to be feature
          names. If the dataframe contains non-string feature names, `None` is
          returned.
        - All other array containers will return `None`.

    Returns
    -------
    names: ndarray or None
        Feature names of `X`. Unrecognized array containers will return `None`.
    """
    feature_names = None

    # extract feature names for support array containers
    if _is_pandas_df(X):
        # Make sure we can inspect columns names from pandas, even with
        # versions too old to expose a working implementation of
        # __dataframe__.column_names() and avoid introducing any
        # additional copy.
        # TODO: remove the pandas-specific branch once the minimum supported
        # version of pandas has a working implementation of
        # __dataframe__.column_names() that is guaranteed to not introduce any
        # additional copy of the data without having to impose allow_copy=False
        # that could fail with other libraries. Note: in the longer term, we
        # could decide to instead rely on the __dataframe_namespace__ API once
        # adopted by our minimally supported pandas version.
        feature_names = np.asarray(X.columns, dtype=object)
    elif hasattr(X, "__dataframe__"):
        df_protocol = X.__dataframe__()
        feature_names = np.asarray(list(df_protocol.column_names()), dtype=object)

    if feature_names is None or len(feature_names) == 0:
        return

    types = sorted(t.__qualname__ for t in set(type(v) for v in feature_names))

    # mixed type of string and non-string is not supported
    if len(types) > 1 and "str" in types:
        raise TypeError(
            "Feature names are only supported if all input features have string names, "
            f"but your input has {types} as feature name / column name types. "
            "If you want feature names to be stored and validated, you must convert "
            "them all to strings, by using X.columns = X.columns.astype(str) for "
            "example. Otherwise you can remove feature / column names from your input "
            "data, or convert them all to a non-string data type."
        )

    # Only feature names of all strings are supported
    if len(types) == 1 and types[0] == "str":
        return feature_names


def _check_feature_names_in(estimator, input_features=None, *, generate_names=True):
    """Check `input_features` and generate names if needed.

    Commonly used in :term:`get_feature_names_out`.

    Parameters
    ----------
    input_features : array-like of str or None, default=None
        Input features.

        - If `input_features` is `None`, then `feature_names_in_` is
          used as feature names in. If `feature_names_in_` is not defined,
          then the following input feature names are generated:
          `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
        - If `input_features` is an array-like, then `input_features` must
          match `feature_names_in_` if `feature_names_in_` is defined.

    generate_names : bool, default=True
        Whether to generate names when `input_features` is `None` and
        `estimator.feature_names_in_` is not defined. This is useful for transformers
        that validates `input_features` but do not require them in
        :term:`get_feature_names_out` e.g. `PCA`.

    Returns
    -------
    feature_names_in : ndarray of str or `None`
        Feature names in.
    """

    feature_names_in_ = getattr(estimator, "feature_names_in_", None)
    n_features_in_ = getattr(estimator, "n_features_in_", None)

    if input_features is not None:
        input_features = np.asarray(input_features, dtype=object)
        if feature_names_in_ is not None and not np.array_equal(
            feature_names_in_, input_features
        ):
            raise ValueError("input_features is not equal to feature_names_in_")

        if n_features_in_ is not None and len(input_features) != n_features_in_:
            raise ValueError(
                "input_features should have length equal to number of "
                f"features ({n_features_in_}), got {len(input_features)}"
            )
        return input_features

    if feature_names_in_ is not None:
        return feature_names_in_

    if not generate_names:
        return

    # Generates feature names if `n_features_in_` is defined
    if n_features_in_ is None:
        raise ValueError("Unable to generate feature names without n_features_in_")

    return np.asarray([f"x{i}" for i in range(n_features_in_)], dtype=object)


def _generate_get_feature_names_out(estimator, n_features_out, input_features=None):
    """Generate feature names out for estimator using the estimator name as the prefix.

    The input_feature names are validated but not used. This function is useful
    for estimators that generate their own names based on `n_features_out`, i.e. PCA.

    Parameters
    ----------
    estimator : estimator instance
        Estimator producing output feature names.

    n_feature_out : int
        Number of feature names out.

    input_features : array-like of str or None, default=None
        Only used to validate feature names with `estimator.feature_names_in_`.

    Returns
    -------
    feature_names_in : ndarray of str or `None`
        Feature names in.
    """
    _check_feature_names_in(estimator, input_features, generate_names=False)
    estimator_name = estimator.__class__.__name__.lower()
    return np.asarray(
        [f"{estimator_name}{i}" for i in range(n_features_out)], dtype=object
    )


def _check_monotonic_cst(estimator, monotonic_cst=None):
    """Check the monotonic constraints and return the corresponding array.

    This helper function should be used in the `fit` method of an estimator
    that supports monotonic constraints and called after the estimator has
    introspected input data to set the `n_features_in_` and optionally the
    `feature_names_in_` attributes.

    .. versionadded:: 1.2

    Parameters
    ----------
    estimator : estimator instance

    monotonic_cst : array-like of int, dict of str or None, default=None
        Monotonic constraints for the features.

        - If array-like, then it should contain only -1, 0 or 1. Each value
            will be checked to be in [-1, 0, 1]. If a value is -1, then the
            corresponding feature is required to be monotonically decreasing.
        - If dict, then it the keys should be the feature names occurring in
            `estimator.feature_names_in_` and the values should be -1, 0 or 1.
        - If None, then an array of 0s will be allocated.

    Returns
    -------
    monotonic_cst : ndarray of int
        Monotonic constraints for each feature.
    """
    original_monotonic_cst = monotonic_cst
    if monotonic_cst is None or isinstance(monotonic_cst, dict):
        monotonic_cst = np.full(
            shape=estimator.n_features_in_,
            fill_value=0,
            dtype=np.int8,
        )
        if isinstance(original_monotonic_cst, dict):
            if not hasattr(estimator, "feature_names_in_"):
                raise ValueError(
                    f"{estimator.__class__.__name__} was not fitted on data "
                    "with feature names. Pass monotonic_cst as an integer "
                    "array instead."
                )
            unexpected_feature_names = list(
                set(original_monotonic_cst) - set(estimator.feature_names_in_)
            )
            unexpected_feature_names.sort()  # deterministic error message
            n_unexpeced = len(unexpected_feature_names)
            if unexpected_feature_names:
                if len(unexpected_feature_names) > 5:
                    unexpected_feature_names = unexpected_feature_names[:5]
                    unexpected_feature_names.append("...")
                raise ValueError(
                    f"monotonic_cst contains {n_unexpeced} unexpected feature "
                    f"names: {unexpected_feature_names}."
                )
            for feature_idx, feature_name in enumerate(estimator.feature_names_in_):
                if feature_name in original_monotonic_cst:
                    cst = original_monotonic_cst[feature_name]
                    if cst not in [-1, 0, 1]:
                        raise ValueError(
                            f"monotonic_cst['{feature_name}'] must be either "
                            f"-1, 0 or 1. Got {cst!r}."
                        )
                    monotonic_cst[feature_idx] = cst
    else:
        unexpected_cst = np.setdiff1d(monotonic_cst, [-1, 0, 1])
        if unexpected_cst.shape[0]:
            raise ValueError(
                "monotonic_cst must be an array-like of -1, 0 or 1. Observed "
                f"values: {unexpected_cst.tolist()}."
            )

        monotonic_cst = np.asarray(monotonic_cst, dtype=np.int8)
        if monotonic_cst.shape[0] != estimator.n_features_in_:
            raise ValueError(
                f"monotonic_cst has shape {monotonic_cst.shape} but the input data "
                f"X has {estimator.n_features_in_} features."
            )
    return monotonic_cst


def _check_pos_label_consistency(pos_label, y_true):
    """Check if `pos_label` need to be specified or not.

    In binary classification, we fix `pos_label=1` if the labels are in the set
    {-1, 1} or {0, 1}. Otherwise, we raise an error asking to specify the
    `pos_label` parameters.

    Parameters
    ----------
    pos_label : int, float, bool, str or None
        The positive label.
    y_true : ndarray of shape (n_samples,)
        The target vector.

    Returns
    -------
    pos_label : int, float, bool or str
        If `pos_label` can be inferred, it will be returned.

    Raises
    ------
    ValueError
        In the case that `y_true` does not have label in {-1, 1} or {0, 1},
        it will raise a `ValueError`.
    """
    # ensure binary classification if pos_label is not specified
    # classes.dtype.kind in ('O', 'U', 'S') is required to avoid
    # triggering a FutureWarning by calling np.array_equal(a, b)
    # when elements in the two arrays are not comparable.
    if pos_label is None:
        # Compute classes only if pos_label is not specified:
        classes = np.unique(y_true)
        if classes.dtype.kind in "OUS" or not (
            np.array_equal(classes, [0, 1])
            or np.array_equal(classes, [-1, 1])
            or np.array_equal(classes, [0])
            or np.array_equal(classes, [-1])
            or np.array_equal(classes, [1])
        ):
            classes_repr = ", ".join([repr(c) for c in classes.tolist()])
            raise ValueError(
                f"y_true takes value in {{{classes_repr}}} and pos_label is not "
                "specified: either make y_true take value in {0, 1} or "
                "{-1, 1} or pass pos_label explicitly."
            )
        pos_label = 1

    return pos_label


def _to_object_array(sequence):
    """Convert sequence to a 1-D NumPy array of object dtype.

    numpy.array constructor has a similar use but it's output
    is ambiguous. It can be 1-D NumPy array of object dtype if
    the input is a ragged array, but if the input is a list of
    equal length arrays, then the output is a 2D numpy.array.
    _to_object_array solves this ambiguity by guarantying that
    the output is a 1-D NumPy array of objects for any input.

    Parameters
    ----------
    sequence : array-like of shape (n_elements,)
        The sequence to be converted.

    Returns
    -------
    out : ndarray of shape (n_elements,), dtype=object
        The converted sequence into a 1-D NumPy array of object dtype.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils.validation import _to_object_array
    >>> _to_object_array([np.array([0]), np.array([1])])
    array([array([0]), array([1])], dtype=object)
    >>> _to_object_array([np.array([0]), np.array([1, 2])])
    array([array([0]), array([1, 2])], dtype=object)
    >>> _to_object_array([np.array([0]), np.array([1, 2])])
    array([array([0]), array([1, 2])], dtype=object)
    """
    out = np.empty(len(sequence), dtype=object)
    out[:] = sequence
    return out


def _check_feature_names(estimator, X, *, reset):
    """Set or check the `feature_names_in_` attribute of an estimator.

    .. versionadded:: 1.0

    .. versionchanged:: 1.6
        Moved from :class:`~sklearn.base.BaseEstimator` to
        :mod:`sklearn.utils.validation`.

    Parameters
    ----------
    estimator : estimator instance
        The estimator to validate the input for.

    X : {ndarray, dataframe} of shape (n_samples, n_features)
        The input samples.

    reset : bool
        Whether to reset the `feature_names_in_` attribute.
        If False, the input will be checked for consistency with
        feature names of data provided when reset was last True.
        .. note::
           It is recommended to call `reset=True` in `fit` and in the first
           call to `partial_fit`. All other methods that validate `X`
           should set `reset=False`.
    """

    if reset:
        feature_names_in = _get_feature_names(X)
        if feature_names_in is not None:
            estimator.feature_names_in_ = feature_names_in
        elif hasattr(estimator, "feature_names_in_"):
            # Delete the attribute when the estimator is fitted on a new dataset
            # that has no feature names.
            delattr(estimator, "feature_names_in_")
        return

    fitted_feature_names = getattr(estimator, "feature_names_in_", None)
    X_feature_names = _get_feature_names(X)

    if fitted_feature_names is None and X_feature_names is None:
        # no feature names seen in fit and in X
        return

    if X_feature_names is not None and fitted_feature_names is None:
        warnings.warn(
            f"X has feature names, but {estimator.__class__.__name__} was fitted "
            "without feature names"
        )
        return

    if X_feature_names is None and fitted_feature_names is not None:
        warnings.warn(
            "X does not have valid feature names, but"
            f" {estimator.__class__.__name__} was fitted with feature names"
        )
        return

    # validate the feature names against the `feature_names_in_` attribute
    if len(fitted_feature_names) != len(X_feature_names) or np.any(
        fitted_feature_names != X_feature_names
    ):
        message = "The feature names should match those that were passed during fit.\n"
        fitted_feature_names_set = set(fitted_feature_names)
        X_feature_names_set = set(X_feature_names)

        unexpected_names = sorted(X_feature_names_set - fitted_feature_names_set)
        missing_names = sorted(fitted_feature_names_set - X_feature_names_set)

        def add_names(names):
            output = ""
            max_n_names = 5
            for i, name in enumerate(names):
                if i >= max_n_names:
                    output += "- ...\n"
                    break
                output += f"- {name}\n"
            return output

        if unexpected_names:
            message += "Feature names unseen at fit time:\n"
            message += add_names(unexpected_names)

        if missing_names:
            message += "Feature names seen at fit time, yet now missing:\n"
            message += add_names(missing_names)

        if not missing_names and not unexpected_names:
            message += "Feature names must be in the same order as they were in fit.\n"

        raise ValueError(message)


def _check_n_features(estimator, X, reset):
    """Set the `n_features_in_` attribute, or check against it on an estimator.

    .. versionchanged:: 1.6
        Moved from :class:`~sklearn.base.BaseEstimator` to
        :mod:`~sklearn.utils.validation`.

    Parameters
    ----------
    estimator : estimator instance
        The estimator to validate the input for.

    X : {ndarray, sparse matrix} of shape (n_samples, n_features)
        The input samples.

    reset : bool
        If True, the `n_features_in_` attribute is set to `X.shape[1]`.
        If False and the attribute exists, then check that it is equal to
        `X.shape[1]`. If False and the attribute does *not* exist, then
        the check is skipped.
        .. note::
           It is recommended to call reset=True in `fit` and in the first
           call to `partial_fit`. All other methods that validate `X`
           should set `reset=False`.
    """
    try:
        n_features = _num_features(X)
    except TypeError as e:
        if not reset and hasattr(estimator, "n_features_in_"):
            raise ValueError(
                "X does not contain any features, but "
                f"{estimator.__class__.__name__} is expecting "
                f"{estimator.n_features_in_} features"
            ) from e
        # If the number of features is not defined and reset=True,
        # then we skip this check
        return

    if reset:
        estimator.n_features_in_ = n_features
        return

    if not hasattr(estimator, "n_features_in_"):
        # Skip this check if the expected number of expected input features
        # was not recorded by calling fit first. This is typically the case
        # for stateless transformers.
        return

    if n_features != estimator.n_features_in_:
        raise ValueError(
            f"X has {n_features} features, but {estimator.__class__.__name__} "
            f"is expecting {estimator.n_features_in_} features as input."
        )


def validate_data(
    _estimator,
    /,
    X="no_validation",
    y="no_validation",
    reset=True,
    validate_separately=False,
    skip_check_array=False,
    **check_params,
):
    """Validate input data and set or check feature names and counts of the input.

    This helper function should be used in an estimator that requires input
    validation. This mutates the estimator and sets the `n_features_in_` and
    `feature_names_in_` attributes if `reset=True`.

    .. versionadded:: 1.6

    Parameters
    ----------
    _estimator : estimator instance
        The estimator to validate the input for.

    X : {array-like, sparse matrix, dataframe} of shape \
            (n_samples, n_features), default='no validation'
        The input samples.
        If `'no_validation'`, no validation is performed on `X`. This is
        useful for meta-estimator which can delegate input validation to
        their underlying estimator(s). In that case `y` must be passed and
        the only accepted `check_params` are `multi_output` and
        `y_numeric`.

    y : array-like of shape (n_samples,), default='no_validation'
        The targets.

        - If `None`, :func:`~sklearn.utils.check_array` is called on `X`. If
          the estimator's `requires_y` tag is True, then an error will be raised.
        - If `'no_validation'`, :func:`~sklearn.utils.check_array` is called
          on `X` and the estimator's `requires_y` tag is ignored. This is a default
          placeholder and is never meant to be explicitly set. In that case `X` must be
          passed.
        - Otherwise, only `y` with `_check_y` or both `X` and `y` are checked with
          either :func:`~sklearn.utils.check_array` or
          :func:`~sklearn.utils.check_X_y` depending on `validate_separately`.

    reset : bool, default=True
        Whether to reset the `n_features_in_` attribute.
        If False, the input will be checked for consistency with data
        provided when reset was last True.

        .. note::

           It is recommended to call `reset=True` in `fit` and in the first
           call to `partial_fit`. All other methods that validate `X`
           should set `reset=False`.

    validate_separately : False or tuple of dicts, default=False
        Only used if `y` is not `None`.
        If `False`, call :func:`~sklearn.utils.check_X_y`. Else, it must be a tuple of
        kwargs to be used for calling :func:`~sklearn.utils.check_array` on `X` and `y`
        respectively.

        `estimator=self` is automatically added to these dicts to generate
        more informative error message in case of invalid input data.

    skip_check_array : bool, default=False
        If `True`, `X` and `y` are unchanged and only `feature_names_in_` and
        `n_features_in_` are checked. Otherwise, :func:`~sklearn.utils.check_array`
        is called on `X` and `y`.

    **check_params : kwargs
        Parameters passed to :func:`~sklearn.utils.check_array` or
        :func:`~sklearn.utils.check_X_y`. Ignored if validate_separately
        is not False.

        `estimator=self` is automatically added to these params to generate
        more informative error message in case of invalid input data.

    Returns
    -------
    out : {ndarray, sparse matrix} or tuple of these
        The validated input. A tuple is returned if both `X` and `y` are
        validated.
    """
    _check_feature_names(_estimator, X, reset=reset)
    tags = get_tags(_estimator)
    if y is None and tags.target_tags.required:
        raise ValueError(
            f"This {_estimator.__class__.__name__} estimator "
            "requires y to be passed, but the target y is None."
        )

    no_val_X = isinstance(X, str) and X == "no_validation"
    no_val_y = y is None or isinstance(y, str) and y == "no_validation"

    if no_val_X and no_val_y:
        raise ValueError("Validation should be done on X, y or both.")

    default_check_params = {"estimator": _estimator}
    check_params = {**default_check_params, **check_params}

    if skip_check_array:
        if not no_val_X and no_val_y:
            out = X
        elif no_val_X and not no_val_y:
            out = y
        else:
            out = X, y
    elif not no_val_X and no_val_y:
        out = check_array(X, input_name="X", **check_params)
    elif no_val_X and not no_val_y:
        out = _check_y(y, **check_params)
    else:
        if validate_separately:
            # We need this because some estimators validate X and y
            # separately, and in general, separately calling check_array()
            # on X and y isn't equivalent to just calling check_X_y()
            # :(
            check_X_params, check_y_params = validate_separately
            if "estimator" not in check_X_params:
                check_X_params = {**default_check_params, **check_X_params}
            X = check_array(X, input_name="X", **check_X_params)
            if "estimator" not in check_y_params:
                check_y_params = {**default_check_params, **check_y_params}
            y = check_array(y, input_name="y", **check_y_params)
        else:
            X, y = check_X_y(X, y, **check_params)
        out = X, y

    if not no_val_X and check_params.get("ensure_2d", True):
        _check_n_features(_estimator, X, reset=reset)

    return out