|
import sys |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas._config import using_pyarrow_string_dtype |
|
|
|
from pandas.compat import PYPY |
|
|
|
from pandas.core.dtypes.common import ( |
|
is_dtype_equal, |
|
is_object_dtype, |
|
) |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
Index, |
|
Series, |
|
) |
|
import pandas._testing as tm |
|
|
|
|
|
def test_isnull_notnull_docstrings(): |
|
|
|
doc = pd.DataFrame.notnull.__doc__ |
|
assert doc.startswith("\nDataFrame.notnull is an alias for DataFrame.notna.\n") |
|
doc = pd.DataFrame.isnull.__doc__ |
|
assert doc.startswith("\nDataFrame.isnull is an alias for DataFrame.isna.\n") |
|
|
|
doc = Series.notnull.__doc__ |
|
assert doc.startswith("\nSeries.notnull is an alias for Series.notna.\n") |
|
doc = Series.isnull.__doc__ |
|
assert doc.startswith("\nSeries.isnull is an alias for Series.isna.\n") |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"op_name, op", |
|
[ |
|
("add", "+"), |
|
("sub", "-"), |
|
("mul", "*"), |
|
("mod", "%"), |
|
("pow", "**"), |
|
("truediv", "/"), |
|
("floordiv", "//"), |
|
], |
|
) |
|
def test_binary_ops_docstring(frame_or_series, op_name, op): |
|
|
|
|
|
klass = frame_or_series |
|
|
|
operand1 = klass.__name__.lower() |
|
operand2 = "other" |
|
expected_str = " ".join([operand1, op, operand2]) |
|
assert expected_str in getattr(klass, op_name).__doc__ |
|
|
|
|
|
expected_str = " ".join([operand2, op, operand1]) |
|
assert expected_str in getattr(klass, "r" + op_name).__doc__ |
|
|
|
|
|
def test_ndarray_compat_properties(index_or_series_obj): |
|
obj = index_or_series_obj |
|
|
|
|
|
for p in ["shape", "dtype", "T", "nbytes"]: |
|
assert getattr(obj, p, None) is not None |
|
|
|
|
|
for p in ["strides", "itemsize", "base", "data"]: |
|
assert not hasattr(obj, p) |
|
|
|
msg = "can only convert an array of size 1 to a Python scalar" |
|
with pytest.raises(ValueError, match=msg): |
|
obj.item() |
|
|
|
assert obj.ndim == 1 |
|
assert obj.size == len(obj) |
|
|
|
assert Index([1]).item() == 1 |
|
assert Series([1]).item() == 1 |
|
|
|
|
|
@pytest.mark.skipif( |
|
PYPY or using_pyarrow_string_dtype(), |
|
reason="not relevant for PyPy doesn't work properly for arrow strings", |
|
) |
|
def test_memory_usage(index_or_series_memory_obj): |
|
obj = index_or_series_memory_obj |
|
|
|
if isinstance(obj, Series): |
|
is_ser = True |
|
obj.index._engine.clear_mapping() |
|
else: |
|
is_ser = False |
|
obj._engine.clear_mapping() |
|
|
|
res = obj.memory_usage() |
|
res_deep = obj.memory_usage(deep=True) |
|
|
|
is_object = is_object_dtype(obj) or (is_ser and is_object_dtype(obj.index)) |
|
is_categorical = isinstance(obj.dtype, pd.CategoricalDtype) or ( |
|
is_ser and isinstance(obj.index.dtype, pd.CategoricalDtype) |
|
) |
|
is_object_string = is_dtype_equal(obj, "string[python]") or ( |
|
is_ser and is_dtype_equal(obj.index.dtype, "string[python]") |
|
) |
|
|
|
if len(obj) == 0: |
|
expected = 0 |
|
assert res_deep == res == expected |
|
elif is_object or is_categorical or is_object_string: |
|
|
|
assert res_deep > res |
|
else: |
|
assert res == res_deep |
|
|
|
|
|
|
|
diff = res_deep - sys.getsizeof(obj) |
|
assert abs(diff) < 100 |
|
|
|
|
|
def test_memory_usage_components_series(series_with_simple_index): |
|
series = series_with_simple_index |
|
total_usage = series.memory_usage(index=True) |
|
non_index_usage = series.memory_usage(index=False) |
|
index_usage = series.index.memory_usage() |
|
assert total_usage == non_index_usage + index_usage |
|
|
|
|
|
@pytest.mark.parametrize("dtype", tm.NARROW_NP_DTYPES) |
|
def test_memory_usage_components_narrow_series(dtype): |
|
series = Series(range(5), dtype=dtype, index=[f"i-{i}" for i in range(5)], name="a") |
|
total_usage = series.memory_usage(index=True) |
|
non_index_usage = series.memory_usage(index=False) |
|
index_usage = series.index.memory_usage() |
|
assert total_usage == non_index_usage + index_usage |
|
|
|
|
|
def test_searchsorted(request, index_or_series_obj): |
|
|
|
|
|
obj = index_or_series_obj |
|
|
|
if isinstance(obj, pd.MultiIndex): |
|
|
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason="np.searchsorted doesn't work on pd.MultiIndex: GH 14833" |
|
) |
|
) |
|
elif obj.dtype.kind == "c" and isinstance(obj, Index): |
|
|
|
|
|
mark = pytest.mark.xfail(reason="complex objects are not comparable") |
|
request.applymarker(mark) |
|
|
|
max_obj = max(obj, default=0) |
|
index = np.searchsorted(obj, max_obj) |
|
assert 0 <= index <= len(obj) |
|
|
|
index = np.searchsorted(obj, max_obj, sorter=range(len(obj))) |
|
assert 0 <= index <= len(obj) |
|
|
|
|
|
def test_access_by_position(index_flat): |
|
index = index_flat |
|
|
|
if len(index) == 0: |
|
pytest.skip("Test doesn't make sense on empty data") |
|
|
|
series = Series(index) |
|
assert index[0] == series.iloc[0] |
|
assert index[5] == series.iloc[5] |
|
assert index[-1] == series.iloc[-1] |
|
|
|
size = len(index) |
|
assert index[-1] == index[size - 1] |
|
|
|
msg = f"index {size} is out of bounds for axis 0 with size {size}" |
|
if is_dtype_equal(index.dtype, "string[pyarrow]") or is_dtype_equal( |
|
index.dtype, "string[pyarrow_numpy]" |
|
): |
|
msg = "index out of bounds" |
|
with pytest.raises(IndexError, match=msg): |
|
index[size] |
|
msg = "single positional indexer is out-of-bounds" |
|
with pytest.raises(IndexError, match=msg): |
|
series.iloc[size] |
|
|