|
import bz2 |
|
import datetime as dt |
|
from datetime import datetime |
|
import gzip |
|
import io |
|
import os |
|
import struct |
|
import tarfile |
|
import zipfile |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
import pandas.util._test_decorators as td |
|
|
|
import pandas as pd |
|
from pandas import CategoricalDtype |
|
import pandas._testing as tm |
|
from pandas.core.frame import ( |
|
DataFrame, |
|
Series, |
|
) |
|
|
|
from pandas.io.parsers import read_csv |
|
from pandas.io.stata import ( |
|
CategoricalConversionWarning, |
|
InvalidColumnName, |
|
PossiblePrecisionLoss, |
|
StataMissingValue, |
|
StataReader, |
|
StataWriter, |
|
StataWriterUTF8, |
|
ValueLabelTypeMismatch, |
|
read_stata, |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def mixed_frame(): |
|
return DataFrame( |
|
{ |
|
"a": [1, 2, 3, 4], |
|
"b": [1.0, 3.0, 27.0, 81.0], |
|
"c": ["Atlanta", "Birmingham", "Cincinnati", "Detroit"], |
|
} |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def parsed_114(datapath): |
|
dta14_114 = datapath("io", "data", "stata", "stata5_114.dta") |
|
parsed_114 = read_stata(dta14_114, convert_dates=True) |
|
parsed_114.index.name = "index" |
|
return parsed_114 |
|
|
|
|
|
class TestStata: |
|
def read_dta(self, file): |
|
|
|
return read_stata(file, convert_dates=True) |
|
|
|
def read_csv(self, file): |
|
return read_csv(file, parse_dates=True) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_read_empty_dta(self, version): |
|
empty_ds = DataFrame(columns=["unit"]) |
|
|
|
with tm.ensure_clean() as path: |
|
empty_ds.to_stata(path, write_index=False, version=version) |
|
empty_ds2 = read_stata(path) |
|
tm.assert_frame_equal(empty_ds, empty_ds2) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_read_empty_dta_with_dtypes(self, version): |
|
|
|
|
|
|
|
empty_df_typed = DataFrame( |
|
{ |
|
"i8": np.array([0], dtype=np.int8), |
|
"i16": np.array([0], dtype=np.int16), |
|
"i32": np.array([0], dtype=np.int32), |
|
"i64": np.array([0], dtype=np.int64), |
|
"u8": np.array([0], dtype=np.uint8), |
|
"u16": np.array([0], dtype=np.uint16), |
|
"u32": np.array([0], dtype=np.uint32), |
|
"u64": np.array([0], dtype=np.uint64), |
|
"f32": np.array([0], dtype=np.float32), |
|
"f64": np.array([0], dtype=np.float64), |
|
} |
|
) |
|
expected = empty_df_typed.copy() |
|
|
|
expected["u8"] = expected["u8"].astype(np.int8) |
|
expected["u16"] = expected["u16"].astype(np.int16) |
|
expected["u32"] = expected["u32"].astype(np.int32) |
|
|
|
expected["u64"] = expected["u64"].astype(np.int32) |
|
expected["i64"] = expected["i64"].astype(np.int32) |
|
|
|
|
|
with tm.ensure_clean() as path: |
|
empty_df_typed.to_stata(path, write_index=False, version=version) |
|
empty_reread = read_stata(path) |
|
tm.assert_frame_equal(expected, empty_reread) |
|
tm.assert_series_equal(expected.dtypes, empty_reread.dtypes) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_read_index_col_none(self, version): |
|
df = DataFrame({"a": range(5), "b": ["b1", "b2", "b3", "b4", "b5"]}) |
|
|
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, write_index=False, version=version) |
|
read_df = read_stata(path) |
|
|
|
assert isinstance(read_df.index, pd.RangeIndex) |
|
expected = df.copy() |
|
expected["a"] = expected["a"].astype(np.int32) |
|
tm.assert_frame_equal(read_df, expected, check_index_type=True) |
|
|
|
@pytest.mark.parametrize("file", ["stata1_114", "stata1_117"]) |
|
def test_read_dta1(self, file, datapath): |
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = self.read_dta(file) |
|
|
|
|
|
|
|
expected = DataFrame( |
|
[(np.nan, np.nan, np.nan, np.nan, np.nan)], |
|
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], |
|
) |
|
|
|
|
|
|
|
expected["float_miss"] = expected["float_miss"].astype(np.float32) |
|
|
|
tm.assert_frame_equal(parsed, expected) |
|
|
|
def test_read_dta2(self, datapath): |
|
expected = DataFrame.from_records( |
|
[ |
|
( |
|
datetime(2006, 11, 19, 23, 13, 20), |
|
1479596223000, |
|
datetime(2010, 1, 20), |
|
datetime(2010, 1, 8), |
|
datetime(2010, 1, 1), |
|
datetime(1974, 7, 1), |
|
datetime(2010, 1, 1), |
|
datetime(2010, 1, 1), |
|
), |
|
( |
|
datetime(1959, 12, 31, 20, 3, 20), |
|
-1479590, |
|
datetime(1953, 10, 2), |
|
datetime(1948, 6, 10), |
|
datetime(1955, 1, 1), |
|
datetime(1955, 7, 1), |
|
datetime(1955, 1, 1), |
|
datetime(2, 1, 1), |
|
), |
|
(pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT), |
|
], |
|
columns=[ |
|
"datetime_c", |
|
"datetime_big_c", |
|
"date", |
|
"weekly_date", |
|
"monthly_date", |
|
"quarterly_date", |
|
"half_yearly_date", |
|
"yearly_date", |
|
], |
|
) |
|
expected["yearly_date"] = expected["yearly_date"].astype("O") |
|
|
|
path1 = datapath("io", "data", "stata", "stata2_114.dta") |
|
path2 = datapath("io", "data", "stata", "stata2_115.dta") |
|
path3 = datapath("io", "data", "stata", "stata2_117.dta") |
|
|
|
with tm.assert_produces_warning(UserWarning): |
|
parsed_114 = self.read_dta(path1) |
|
with tm.assert_produces_warning(UserWarning): |
|
parsed_115 = self.read_dta(path2) |
|
with tm.assert_produces_warning(UserWarning): |
|
parsed_117 = self.read_dta(path3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True) |
|
tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True) |
|
tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True) |
|
|
|
@pytest.mark.parametrize( |
|
"file", ["stata3_113", "stata3_114", "stata3_115", "stata3_117"] |
|
) |
|
def test_read_dta3(self, file, datapath): |
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = self.read_dta(file) |
|
|
|
|
|
expected = self.read_csv(datapath("io", "data", "stata", "stata3.csv")) |
|
expected = expected.astype(np.float32) |
|
expected["year"] = expected["year"].astype(np.int16) |
|
expected["quarter"] = expected["quarter"].astype(np.int8) |
|
|
|
tm.assert_frame_equal(parsed, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"file", ["stata4_113", "stata4_114", "stata4_115", "stata4_117"] |
|
) |
|
def test_read_dta4(self, file, datapath): |
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = self.read_dta(file) |
|
|
|
expected = DataFrame.from_records( |
|
[ |
|
["one", "ten", "one", "one", "one"], |
|
["two", "nine", "two", "two", "two"], |
|
["three", "eight", "three", "three", "three"], |
|
["four", "seven", 4, "four", "four"], |
|
["five", "six", 5, np.nan, "five"], |
|
["six", "five", 6, np.nan, "six"], |
|
["seven", "four", 7, np.nan, "seven"], |
|
["eight", "three", 8, np.nan, "eight"], |
|
["nine", "two", 9, np.nan, "nine"], |
|
["ten", "one", "ten", np.nan, "ten"], |
|
], |
|
columns=[ |
|
"fully_labeled", |
|
"fully_labeled2", |
|
"incompletely_labeled", |
|
"labeled_with_missings", |
|
"float_labelled", |
|
], |
|
) |
|
|
|
|
|
for col in expected: |
|
orig = expected[col].copy() |
|
|
|
categories = np.asarray(expected["fully_labeled"][orig.notna()]) |
|
if col == "incompletely_labeled": |
|
categories = orig |
|
|
|
cat = orig.astype("category")._values |
|
cat = cat.set_categories(categories, ordered=True) |
|
cat.categories.rename(None, inplace=True) |
|
|
|
expected[col] = cat |
|
|
|
|
|
tm.assert_frame_equal(parsed, expected) |
|
|
|
|
|
def test_read_dta12(self, datapath): |
|
parsed_117 = self.read_dta(datapath("io", "data", "stata", "stata12_117.dta")) |
|
expected = DataFrame.from_records( |
|
[ |
|
[1, "abc", "abcdefghi"], |
|
[3, "cba", "qwertywertyqwerty"], |
|
[93, "", "strl"], |
|
], |
|
columns=["x", "y", "z"], |
|
) |
|
|
|
tm.assert_frame_equal(parsed_117, expected, check_dtype=False) |
|
|
|
def test_read_dta18(self, datapath): |
|
parsed_118 = self.read_dta(datapath("io", "data", "stata", "stata14_118.dta")) |
|
parsed_118["Bytes"] = parsed_118["Bytes"].astype("O") |
|
expected = DataFrame.from_records( |
|
[ |
|
["Cat", "Bogota", "Bogotá", 1, 1.0, "option b Ünicode", 1.0], |
|
["Dog", "Boston", "Uzunköprü", np.nan, np.nan, np.nan, np.nan], |
|
["Plane", "Rome", "Tromsø", 0, 0.0, "option a", 0.0], |
|
["Potato", "Tokyo", "Elâzığ", -4, 4.0, 4, 4], |
|
["", "", "", 0, 0.3332999, "option a", 1 / 3.0], |
|
], |
|
columns=[ |
|
"Things", |
|
"Cities", |
|
"Unicode_Cities_Strl", |
|
"Ints", |
|
"Floats", |
|
"Bytes", |
|
"Longs", |
|
], |
|
) |
|
expected["Floats"] = expected["Floats"].astype(np.float32) |
|
for col in parsed_118.columns: |
|
tm.assert_almost_equal(parsed_118[col], expected[col]) |
|
|
|
with StataReader(datapath("io", "data", "stata", "stata14_118.dta")) as rdr: |
|
vl = rdr.variable_labels() |
|
vl_expected = { |
|
"Unicode_Cities_Strl": "Here are some strls with Ünicode chars", |
|
"Longs": "long data", |
|
"Things": "Here are some things", |
|
"Bytes": "byte data", |
|
"Ints": "int data", |
|
"Cities": "Here are some cities", |
|
"Floats": "float data", |
|
} |
|
tm.assert_dict_equal(vl, vl_expected) |
|
|
|
assert rdr.data_label == "This is a Ünicode data label" |
|
|
|
def test_read_write_dta5(self): |
|
original = DataFrame( |
|
[(np.nan, np.nan, np.nan, np.nan, np.nan)], |
|
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], |
|
) |
|
original.index.name = "index" |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, convert_dates=None) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = original.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
def test_write_dta6(self, datapath): |
|
original = self.read_csv(datapath("io", "data", "stata", "stata3.csv")) |
|
original.index.name = "index" |
|
original.index = original.index.astype(np.int32) |
|
original["year"] = original["year"].astype(np.int32) |
|
original["quarter"] = original["quarter"].astype(np.int32) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, convert_dates=None) |
|
written_and_read_again = self.read_dta(path) |
|
tm.assert_frame_equal( |
|
written_and_read_again.set_index("index"), |
|
original, |
|
check_index_type=False, |
|
) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_read_write_dta10(self, version): |
|
original = DataFrame( |
|
data=[["string", "object", 1, 1.1, np.datetime64("2003-12-25")]], |
|
columns=["string", "object", "integer", "floating", "datetime"], |
|
) |
|
original["object"] = Series(original["object"], dtype=object) |
|
original.index.name = "index" |
|
original.index = original.index.astype(np.int32) |
|
original["integer"] = original["integer"].astype(np.int32) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, convert_dates={"datetime": "tc"}, version=version) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
tm.assert_frame_equal( |
|
written_and_read_again.set_index("index"), |
|
original, |
|
check_index_type=False, |
|
) |
|
|
|
def test_stata_doc_examples(self): |
|
with tm.ensure_clean() as path: |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB") |
|
) |
|
df.to_stata(path) |
|
|
|
def test_write_preserves_original(self): |
|
|
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((5, 4)), columns=list("abcd") |
|
) |
|
df.loc[2, "a":"c"] = np.nan |
|
df_copy = df.copy() |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, write_index=False) |
|
tm.assert_frame_equal(df, df_copy) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_encoding(self, version, datapath): |
|
|
|
raw = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta")) |
|
encoded = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta")) |
|
result = encoded.kreis1849[0] |
|
|
|
expected = raw.kreis1849[0] |
|
assert result == expected |
|
assert isinstance(result, str) |
|
|
|
with tm.ensure_clean() as path: |
|
encoded.to_stata(path, write_index=False, version=version) |
|
reread_encoded = read_stata(path) |
|
tm.assert_frame_equal(encoded, reread_encoded) |
|
|
|
def test_read_write_dta11(self): |
|
original = DataFrame( |
|
[(1, 2, 3, 4)], |
|
columns=[ |
|
"good", |
|
"b\u00E4d", |
|
"8number", |
|
"astringwithmorethan32characters______", |
|
], |
|
) |
|
formatted = DataFrame( |
|
[(1, 2, 3, 4)], |
|
columns=["good", "b_d", "_8number", "astringwithmorethan32characters_"], |
|
) |
|
formatted.index.name = "index" |
|
formatted = formatted.astype(np.int32) |
|
|
|
with tm.ensure_clean() as path: |
|
with tm.assert_produces_warning(InvalidColumnName): |
|
original.to_stata(path, convert_dates=None) |
|
|
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = formatted.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_read_write_dta12(self, version): |
|
original = DataFrame( |
|
[(1, 2, 3, 4, 5, 6)], |
|
columns=[ |
|
"astringwithmorethan32characters_1", |
|
"astringwithmorethan32characters_2", |
|
"+", |
|
"-", |
|
"short", |
|
"delete", |
|
], |
|
) |
|
formatted = DataFrame( |
|
[(1, 2, 3, 4, 5, 6)], |
|
columns=[ |
|
"astringwithmorethan32characters_", |
|
"_0astringwithmorethan32character", |
|
"_", |
|
"_1_", |
|
"_short", |
|
"_delete", |
|
], |
|
) |
|
formatted.index.name = "index" |
|
formatted = formatted.astype(np.int32) |
|
|
|
with tm.ensure_clean() as path: |
|
with tm.assert_produces_warning(InvalidColumnName): |
|
original.to_stata(path, convert_dates=None, version=version) |
|
|
|
|
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = formatted.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
def test_read_write_dta13(self): |
|
s1 = Series(2**9, dtype=np.int16) |
|
s2 = Series(2**17, dtype=np.int32) |
|
s3 = Series(2**33, dtype=np.int64) |
|
original = DataFrame({"int16": s1, "int32": s2, "int64": s3}) |
|
original.index.name = "index" |
|
|
|
formatted = original |
|
formatted["int64"] = formatted["int64"].astype(np.float64) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = formatted.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
@pytest.mark.parametrize( |
|
"file", ["stata5_113", "stata5_114", "stata5_115", "stata5_117"] |
|
) |
|
def test_read_write_reread_dta14(self, file, parsed_114, version, datapath): |
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = self.read_dta(file) |
|
parsed.index.name = "index" |
|
|
|
tm.assert_frame_equal(parsed_114, parsed) |
|
|
|
with tm.ensure_clean() as path: |
|
parsed_114.to_stata(path, convert_dates={"date_td": "td"}, version=version) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = parsed_114.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
@pytest.mark.parametrize( |
|
"file", ["stata6_113", "stata6_114", "stata6_115", "stata6_117"] |
|
) |
|
def test_read_write_reread_dta15(self, file, datapath): |
|
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) |
|
expected["byte_"] = expected["byte_"].astype(np.int8) |
|
expected["int_"] = expected["int_"].astype(np.int16) |
|
expected["long_"] = expected["long_"].astype(np.int32) |
|
expected["float_"] = expected["float_"].astype(np.float32) |
|
expected["double_"] = expected["double_"].astype(np.float64) |
|
expected["date_td"] = expected["date_td"].apply( |
|
datetime.strptime, args=("%Y-%m-%d",) |
|
) |
|
|
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = self.read_dta(file) |
|
|
|
tm.assert_frame_equal(expected, parsed) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_timestamp_and_label(self, version): |
|
original = DataFrame([(1,)], columns=["variable"]) |
|
time_stamp = datetime(2000, 2, 29, 14, 21) |
|
data_label = "This is a data file." |
|
with tm.ensure_clean() as path: |
|
original.to_stata( |
|
path, time_stamp=time_stamp, data_label=data_label, version=version |
|
) |
|
|
|
with StataReader(path) as reader: |
|
assert reader.time_stamp == "29 Feb 2000 14:21" |
|
assert reader.data_label == data_label |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_invalid_timestamp(self, version): |
|
original = DataFrame([(1,)], columns=["variable"]) |
|
time_stamp = "01 Jan 2000, 00:00:00" |
|
with tm.ensure_clean() as path: |
|
msg = "time_stamp should be datetime type" |
|
with pytest.raises(ValueError, match=msg): |
|
original.to_stata(path, time_stamp=time_stamp, version=version) |
|
assert not os.path.isfile(path) |
|
|
|
def test_numeric_column_names(self): |
|
original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) |
|
original.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
|
|
with tm.assert_produces_warning(InvalidColumnName): |
|
original.to_stata(path) |
|
|
|
written_and_read_again = self.read_dta(path) |
|
|
|
written_and_read_again = written_and_read_again.set_index("index") |
|
columns = list(written_and_read_again.columns) |
|
convert_col_name = lambda x: int(x[1]) |
|
written_and_read_again.columns = map(convert_col_name, columns) |
|
|
|
expected = original.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(expected, written_and_read_again) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_nan_to_missing_value(self, version): |
|
s1 = Series(np.arange(4.0), dtype=np.float32) |
|
s2 = Series(np.arange(4.0), dtype=np.float64) |
|
s1[::2] = np.nan |
|
s2[1::2] = np.nan |
|
original = DataFrame({"s1": s1, "s2": s2}) |
|
original.index.name = "index" |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, version=version) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
written_and_read_again = written_and_read_again.set_index("index") |
|
expected = original.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again, expected) |
|
|
|
def test_no_index(self): |
|
columns = ["x", "y"] |
|
original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) |
|
original.index.name = "index_not_written" |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, write_index=False) |
|
written_and_read_again = self.read_dta(path) |
|
with pytest.raises(KeyError, match=original.index.name): |
|
written_and_read_again["index_not_written"] |
|
|
|
def test_string_no_dates(self): |
|
s1 = Series(["a", "A longer string"]) |
|
s2 = Series([1.0, 2.0], dtype=np.float64) |
|
original = DataFrame({"s1": s1, "s2": s2}) |
|
original.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = original.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
def test_large_value_conversion(self): |
|
s0 = Series([1, 99], dtype=np.int8) |
|
s1 = Series([1, 127], dtype=np.int8) |
|
s2 = Series([1, 2**15 - 1], dtype=np.int16) |
|
s3 = Series([1, 2**63 - 1], dtype=np.int64) |
|
original = DataFrame({"s0": s0, "s1": s1, "s2": s2, "s3": s3}) |
|
original.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
with tm.assert_produces_warning(PossiblePrecisionLoss): |
|
original.to_stata(path) |
|
|
|
written_and_read_again = self.read_dta(path) |
|
|
|
modified = original.copy() |
|
modified["s1"] = Series(modified["s1"], dtype=np.int16) |
|
modified["s2"] = Series(modified["s2"], dtype=np.int32) |
|
modified["s3"] = Series(modified["s3"], dtype=np.float64) |
|
modified.index = original.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) |
|
|
|
def test_dates_invalid_column(self): |
|
original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) |
|
original.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
with tm.assert_produces_warning(InvalidColumnName): |
|
original.to_stata(path, convert_dates={0: "tc"}) |
|
|
|
written_and_read_again = self.read_dta(path) |
|
|
|
modified = original.copy() |
|
modified.columns = ["_0"] |
|
modified.index = original.index.astype(np.int32) |
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) |
|
|
|
def test_105(self, datapath): |
|
|
|
|
|
dpath = datapath("io", "data", "stata", "S4_EDUC1.dta") |
|
df = read_stata(dpath) |
|
df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]] |
|
df0 = DataFrame(df0) |
|
df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"] |
|
df0["clustnum"] = df0["clustnum"].astype(np.int16) |
|
df0["pri_schl"] = df0["pri_schl"].astype(np.int8) |
|
df0["psch_num"] = df0["psch_num"].astype(np.int8) |
|
df0["psch_dis"] = df0["psch_dis"].astype(np.float32) |
|
tm.assert_frame_equal(df.head(3), df0) |
|
|
|
def test_value_labels_old_format(self, datapath): |
|
|
|
|
|
|
|
|
|
dpath = datapath("io", "data", "stata", "S4_EDUC1.dta") |
|
with StataReader(dpath) as reader: |
|
assert reader.value_labels() == {} |
|
|
|
def test_date_export_formats(self): |
|
columns = ["tc", "td", "tw", "tm", "tq", "th", "ty"] |
|
conversions = {c: c for c in columns} |
|
data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) |
|
original = DataFrame([data], columns=columns) |
|
original.index.name = "index" |
|
expected_values = [ |
|
datetime(2006, 11, 20, 23, 13, 20), |
|
datetime(2006, 11, 20), |
|
datetime(2006, 11, 19), |
|
datetime(2006, 11, 1), |
|
datetime(2006, 10, 1), |
|
datetime(2006, 7, 1), |
|
datetime(2006, 1, 1), |
|
] |
|
|
|
expected = DataFrame( |
|
[expected_values], |
|
index=pd.Index([0], dtype=np.int32, name="index"), |
|
columns=columns, |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, convert_dates=conversions) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
def test_write_missing_strings(self): |
|
original = DataFrame([["1"], [None]], columns=["foo"]) |
|
|
|
expected = DataFrame( |
|
[["1"], [""]], |
|
index=pd.Index([0, 1], dtype=np.int32, name="index"), |
|
columns=["foo"], |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
@pytest.mark.parametrize("byteorder", [">", "<"]) |
|
def test_bool_uint(self, byteorder, version): |
|
s0 = Series([0, 1, True], dtype=np.bool_) |
|
s1 = Series([0, 1, 100], dtype=np.uint8) |
|
s2 = Series([0, 1, 255], dtype=np.uint8) |
|
s3 = Series([0, 1, 2**15 - 100], dtype=np.uint16) |
|
s4 = Series([0, 1, 2**16 - 1], dtype=np.uint16) |
|
s5 = Series([0, 1, 2**31 - 100], dtype=np.uint32) |
|
s6 = Series([0, 1, 2**32 - 1], dtype=np.uint32) |
|
|
|
original = DataFrame( |
|
{"s0": s0, "s1": s1, "s2": s2, "s3": s3, "s4": s4, "s5": s5, "s6": s6} |
|
) |
|
original.index.name = "index" |
|
expected = original.copy() |
|
expected.index = original.index.astype(np.int32) |
|
expected_types = ( |
|
np.int8, |
|
np.int8, |
|
np.int16, |
|
np.int16, |
|
np.int32, |
|
np.int32, |
|
np.float64, |
|
) |
|
for c, t in zip(expected.columns, expected_types): |
|
expected[c] = expected[c].astype(t) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, byteorder=byteorder, version=version) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
written_and_read_again = written_and_read_again.set_index("index") |
|
tm.assert_frame_equal(written_and_read_again, expected) |
|
|
|
def test_variable_labels(self, datapath): |
|
with StataReader(datapath("io", "data", "stata", "stata7_115.dta")) as rdr: |
|
sr_115 = rdr.variable_labels() |
|
with StataReader(datapath("io", "data", "stata", "stata7_117.dta")) as rdr: |
|
sr_117 = rdr.variable_labels() |
|
keys = ("var1", "var2", "var3") |
|
labels = ("label1", "label2", "label3") |
|
for k, v in sr_115.items(): |
|
assert k in sr_117 |
|
assert v == sr_117[k] |
|
assert k in keys |
|
assert v in labels |
|
|
|
def test_minimal_size_col(self): |
|
str_lens = (1, 100, 244) |
|
s = {} |
|
for str_len in str_lens: |
|
s["s" + str(str_len)] = Series( |
|
["a" * str_len, "b" * str_len, "c" * str_len] |
|
) |
|
original = DataFrame(s) |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, write_index=False) |
|
|
|
with StataReader(path) as sr: |
|
sr._ensure_open() |
|
for variable, fmt, typ in zip(sr._varlist, sr._fmtlist, sr._typlist): |
|
assert int(variable[1:]) == int(fmt[1:-1]) |
|
assert int(variable[1:]) == typ |
|
|
|
def test_excessively_long_string(self): |
|
str_lens = (1, 244, 500) |
|
s = {} |
|
for str_len in str_lens: |
|
s["s" + str(str_len)] = Series( |
|
["a" * str_len, "b" * str_len, "c" * str_len] |
|
) |
|
original = DataFrame(s) |
|
msg = ( |
|
r"Fixed width strings in Stata \.dta files are limited to 244 " |
|
r"\(or fewer\)\ncharacters\. Column 's500' does not satisfy " |
|
r"this restriction\. Use the\n'version=117' parameter to write " |
|
r"the newer \(Stata 13 and later\) format\." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
|
|
def test_missing_value_generator(self): |
|
types = ("b", "h", "l") |
|
df = DataFrame([[0.0]], columns=["float_"]) |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path) |
|
with StataReader(path) as rdr: |
|
valid_range = rdr.VALID_RANGE |
|
expected_values = ["." + chr(97 + i) for i in range(26)] |
|
expected_values.insert(0, ".") |
|
for t in types: |
|
offset = valid_range[t][1] |
|
for i in range(27): |
|
val = StataMissingValue(offset + 1 + i) |
|
assert val.string == expected_values[i] |
|
|
|
|
|
val = StataMissingValue(struct.unpack("<f", b"\x00\x00\x00\x7f")[0]) |
|
assert val.string == "." |
|
val = StataMissingValue(struct.unpack("<f", b"\x00\xd0\x00\x7f")[0]) |
|
assert val.string == ".z" |
|
|
|
|
|
val = StataMissingValue( |
|
struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] |
|
) |
|
assert val.string == "." |
|
val = StataMissingValue( |
|
struct.unpack("<d", b"\x00\x00\x00\x00\x00\x1a\xe0\x7f")[0] |
|
) |
|
assert val.string == ".z" |
|
|
|
@pytest.mark.parametrize("file", ["stata8_113", "stata8_115", "stata8_117"]) |
|
def test_missing_value_conversion(self, file, datapath): |
|
columns = ["int8_", "int16_", "int32_", "float32_", "float64_"] |
|
smv = StataMissingValue(101) |
|
keys = sorted(smv.MISSING_VALUES.keys()) |
|
data = [] |
|
for i in range(27): |
|
row = [StataMissingValue(keys[i + (j * 27)]) for j in range(5)] |
|
data.append(row) |
|
expected = DataFrame(data, columns=columns) |
|
|
|
parsed = read_stata( |
|
datapath("io", "data", "stata", f"{file}.dta"), convert_missing=True |
|
) |
|
tm.assert_frame_equal(parsed, expected) |
|
|
|
def test_big_dates(self, datapath): |
|
yr = [1960, 2000, 9999, 100, 2262, 1677] |
|
mo = [1, 1, 12, 1, 4, 9] |
|
dd = [1, 1, 31, 1, 22, 23] |
|
hr = [0, 0, 23, 0, 0, 0] |
|
mm = [0, 0, 59, 0, 0, 0] |
|
ss = [0, 0, 59, 0, 0, 0] |
|
expected = [] |
|
for year, month, day, hour, minute, second in zip(yr, mo, dd, hr, mm, ss): |
|
row = [] |
|
for j in range(7): |
|
if j == 0: |
|
row.append(datetime(year, month, day, hour, minute, second)) |
|
elif j == 6: |
|
row.append(datetime(year, 1, 1)) |
|
else: |
|
row.append(datetime(year, month, day)) |
|
expected.append(row) |
|
expected.append([pd.NaT] * 7) |
|
columns = [ |
|
"date_tc", |
|
"date_td", |
|
"date_tw", |
|
"date_tm", |
|
"date_tq", |
|
"date_th", |
|
"date_ty", |
|
] |
|
|
|
|
|
expected[2][2] = datetime(9999, 12, 24) |
|
expected[2][3] = datetime(9999, 12, 1) |
|
expected[2][4] = datetime(9999, 10, 1) |
|
expected[2][5] = datetime(9999, 7, 1) |
|
expected[4][2] = datetime(2262, 4, 16) |
|
expected[4][3] = expected[4][4] = datetime(2262, 4, 1) |
|
expected[4][5] = expected[4][6] = datetime(2262, 1, 1) |
|
expected[5][2] = expected[5][3] = expected[5][4] = datetime(1677, 10, 1) |
|
expected[5][5] = expected[5][6] = datetime(1678, 1, 1) |
|
|
|
expected = DataFrame(expected, columns=columns, dtype=object) |
|
parsed_115 = read_stata(datapath("io", "data", "stata", "stata9_115.dta")) |
|
parsed_117 = read_stata(datapath("io", "data", "stata", "stata9_117.dta")) |
|
tm.assert_frame_equal(expected, parsed_115, check_datetimelike_compat=True) |
|
tm.assert_frame_equal(expected, parsed_117, check_datetimelike_compat=True) |
|
|
|
date_conversion = {c: c[-2:] for c in columns} |
|
|
|
with tm.ensure_clean() as path: |
|
expected.index.name = "index" |
|
expected.to_stata(path, convert_dates=date_conversion) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
tm.assert_frame_equal( |
|
written_and_read_again.set_index("index"), |
|
expected.set_index(expected.index.astype(np.int32)), |
|
check_datetimelike_compat=True, |
|
) |
|
|
|
def test_dtype_conversion(self, datapath): |
|
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) |
|
expected["byte_"] = expected["byte_"].astype(np.int8) |
|
expected["int_"] = expected["int_"].astype(np.int16) |
|
expected["long_"] = expected["long_"].astype(np.int32) |
|
expected["float_"] = expected["float_"].astype(np.float32) |
|
expected["double_"] = expected["double_"].astype(np.float64) |
|
expected["date_td"] = expected["date_td"].apply( |
|
datetime.strptime, args=("%Y-%m-%d",) |
|
) |
|
|
|
no_conversion = read_stata( |
|
datapath("io", "data", "stata", "stata6_117.dta"), convert_dates=True |
|
) |
|
tm.assert_frame_equal(expected, no_conversion) |
|
|
|
conversion = read_stata( |
|
datapath("io", "data", "stata", "stata6_117.dta"), |
|
convert_dates=True, |
|
preserve_dtypes=False, |
|
) |
|
|
|
|
|
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) |
|
expected["date_td"] = expected["date_td"].apply( |
|
datetime.strptime, args=("%Y-%m-%d",) |
|
) |
|
|
|
tm.assert_frame_equal(expected, conversion) |
|
|
|
def test_drop_column(self, datapath): |
|
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) |
|
expected["byte_"] = expected["byte_"].astype(np.int8) |
|
expected["int_"] = expected["int_"].astype(np.int16) |
|
expected["long_"] = expected["long_"].astype(np.int32) |
|
expected["float_"] = expected["float_"].astype(np.float32) |
|
expected["double_"] = expected["double_"].astype(np.float64) |
|
expected["date_td"] = expected["date_td"].apply( |
|
datetime.strptime, args=("%Y-%m-%d",) |
|
) |
|
|
|
columns = ["byte_", "int_", "long_"] |
|
expected = expected[columns] |
|
dropped = read_stata( |
|
datapath("io", "data", "stata", "stata6_117.dta"), |
|
convert_dates=True, |
|
columns=columns, |
|
) |
|
|
|
tm.assert_frame_equal(expected, dropped) |
|
|
|
|
|
columns = ["int_", "long_", "byte_"] |
|
expected = expected[columns] |
|
reordered = read_stata( |
|
datapath("io", "data", "stata", "stata6_117.dta"), |
|
convert_dates=True, |
|
columns=columns, |
|
) |
|
tm.assert_frame_equal(expected, reordered) |
|
|
|
msg = "columns contains duplicate entries" |
|
with pytest.raises(ValueError, match=msg): |
|
columns = ["byte_", "byte_"] |
|
read_stata( |
|
datapath("io", "data", "stata", "stata6_117.dta"), |
|
convert_dates=True, |
|
columns=columns, |
|
) |
|
|
|
msg = "The following columns were not found in the Stata data set: not_found" |
|
with pytest.raises(ValueError, match=msg): |
|
columns = ["byte_", "int_", "long_", "not_found"] |
|
read_stata( |
|
datapath("io", "data", "stata", "stata6_117.dta"), |
|
convert_dates=True, |
|
columns=columns, |
|
) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
@pytest.mark.filterwarnings( |
|
"ignore:\\nStata value:pandas.io.stata.ValueLabelTypeMismatch" |
|
) |
|
def test_categorical_writing(self, version): |
|
original = DataFrame.from_records( |
|
[ |
|
["one", "ten", "one", "one", "one", 1], |
|
["two", "nine", "two", "two", "two", 2], |
|
["three", "eight", "three", "three", "three", 3], |
|
["four", "seven", 4, "four", "four", 4], |
|
["five", "six", 5, np.nan, "five", 5], |
|
["six", "five", 6, np.nan, "six", 6], |
|
["seven", "four", 7, np.nan, "seven", 7], |
|
["eight", "three", 8, np.nan, "eight", 8], |
|
["nine", "two", 9, np.nan, "nine", 9], |
|
["ten", "one", "ten", np.nan, "ten", 10], |
|
], |
|
columns=[ |
|
"fully_labeled", |
|
"fully_labeled2", |
|
"incompletely_labeled", |
|
"labeled_with_missings", |
|
"float_labelled", |
|
"unlabeled", |
|
], |
|
) |
|
expected = original.copy() |
|
|
|
|
|
original = pd.concat( |
|
[original[col].astype("category") for col in original], axis=1 |
|
) |
|
expected.index = expected.index.set_names("index").astype(np.int32) |
|
|
|
expected["incompletely_labeled"] = expected["incompletely_labeled"].apply(str) |
|
expected["unlabeled"] = expected["unlabeled"].apply(str) |
|
for col in expected: |
|
orig = expected[col].copy() |
|
|
|
cat = orig.astype("category")._values |
|
cat = cat.as_ordered() |
|
if col == "unlabeled": |
|
cat = cat.set_categories(orig, ordered=True) |
|
|
|
cat.categories.rename(None, inplace=True) |
|
|
|
expected[col] = cat |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, version=version) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
res = written_and_read_again.set_index("index") |
|
tm.assert_frame_equal(res, expected) |
|
|
|
def test_categorical_warnings_and_errors(self): |
|
|
|
|
|
original = DataFrame.from_records( |
|
[["a" * 10000], ["b" * 10000], ["c" * 10000], ["d" * 10000]], |
|
columns=["Too_long"], |
|
) |
|
|
|
original = pd.concat( |
|
[original[col].astype("category") for col in original], axis=1 |
|
) |
|
with tm.ensure_clean() as path: |
|
msg = ( |
|
"Stata value labels for a single variable must have " |
|
r"a combined length less than 32,000 characters\." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
original.to_stata(path) |
|
|
|
original = DataFrame.from_records( |
|
[["a"], ["b"], ["c"], ["d"], [1]], columns=["Too_long"] |
|
) |
|
original = pd.concat( |
|
[original[col].astype("category") for col in original], axis=1 |
|
) |
|
|
|
with tm.assert_produces_warning(ValueLabelTypeMismatch): |
|
original.to_stata(path) |
|
|
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_categorical_with_stata_missing_values(self, version): |
|
values = [["a" + str(i)] for i in range(120)] |
|
values.append([np.nan]) |
|
original = DataFrame.from_records(values, columns=["many_labels"]) |
|
original = pd.concat( |
|
[original[col].astype("category") for col in original], axis=1 |
|
) |
|
original.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, version=version) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
res = written_and_read_again.set_index("index") |
|
|
|
expected = original.copy() |
|
for col in expected: |
|
cat = expected[col]._values |
|
new_cats = cat.remove_unused_categories().categories |
|
cat = cat.set_categories(new_cats, ordered=True) |
|
expected[col] = cat |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(res, expected) |
|
|
|
@pytest.mark.parametrize("file", ["stata10_115", "stata10_117"]) |
|
def test_categorical_order(self, file, datapath): |
|
|
|
|
|
expected = [ |
|
(True, "ordered", ["a", "b", "c", "d", "e"], np.arange(5)), |
|
(True, "reverse", ["a", "b", "c", "d", "e"], np.arange(5)[::-1]), |
|
(True, "noorder", ["a", "b", "c", "d", "e"], np.array([2, 1, 4, 0, 3])), |
|
(True, "floating", ["a", "b", "c", "d", "e"], np.arange(0, 5)), |
|
(True, "float_missing", ["a", "d", "e"], np.array([0, 1, 2, -1, -1])), |
|
(False, "nolabel", [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)), |
|
(True, "int32_mixed", ["d", 2, "e", "b", "a"], np.arange(5)), |
|
] |
|
cols = [] |
|
for is_cat, col, labels, codes in expected: |
|
if is_cat: |
|
cols.append( |
|
(col, pd.Categorical.from_codes(codes, labels, ordered=True)) |
|
) |
|
else: |
|
cols.append((col, Series(labels, dtype=np.float32))) |
|
expected = DataFrame.from_dict(dict(cols)) |
|
|
|
|
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = read_stata(file) |
|
tm.assert_frame_equal(expected, parsed) |
|
|
|
|
|
for col in expected: |
|
if isinstance(expected[col].dtype, CategoricalDtype): |
|
tm.assert_series_equal(expected[col].cat.codes, parsed[col].cat.codes) |
|
tm.assert_index_equal( |
|
expected[col].cat.categories, parsed[col].cat.categories |
|
) |
|
|
|
@pytest.mark.parametrize("file", ["stata11_115", "stata11_117"]) |
|
def test_categorical_sorting(self, file, datapath): |
|
parsed = read_stata(datapath("io", "data", "stata", f"{file}.dta")) |
|
|
|
|
|
parsed = parsed.sort_values("srh", na_position="first") |
|
|
|
|
|
parsed.index = pd.RangeIndex(len(parsed)) |
|
codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4] |
|
categories = ["Poor", "Fair", "Good", "Very good", "Excellent"] |
|
cat = pd.Categorical.from_codes( |
|
codes=codes, categories=categories, ordered=True |
|
) |
|
expected = Series(cat, name="srh") |
|
tm.assert_series_equal(expected, parsed["srh"]) |
|
|
|
@pytest.mark.parametrize("file", ["stata10_115", "stata10_117"]) |
|
def test_categorical_ordering(self, file, datapath): |
|
file = datapath("io", "data", "stata", f"{file}.dta") |
|
parsed = read_stata(file) |
|
|
|
parsed_unordered = read_stata(file, order_categoricals=False) |
|
for col in parsed: |
|
if not isinstance(parsed[col].dtype, CategoricalDtype): |
|
continue |
|
assert parsed[col].cat.ordered |
|
assert not parsed_unordered[col].cat.ordered |
|
|
|
@pytest.mark.filterwarnings("ignore::UserWarning") |
|
@pytest.mark.parametrize( |
|
"file", |
|
[ |
|
"stata1_117", |
|
"stata2_117", |
|
"stata3_117", |
|
"stata4_117", |
|
"stata5_117", |
|
"stata6_117", |
|
"stata7_117", |
|
"stata8_117", |
|
"stata9_117", |
|
"stata10_117", |
|
"stata11_117", |
|
], |
|
) |
|
@pytest.mark.parametrize("chunksize", [1, 2]) |
|
@pytest.mark.parametrize("convert_categoricals", [False, True]) |
|
@pytest.mark.parametrize("convert_dates", [False, True]) |
|
def test_read_chunks_117( |
|
self, file, chunksize, convert_categoricals, convert_dates, datapath |
|
): |
|
fname = datapath("io", "data", "stata", f"{file}.dta") |
|
|
|
parsed = read_stata( |
|
fname, |
|
convert_categoricals=convert_categoricals, |
|
convert_dates=convert_dates, |
|
) |
|
with read_stata( |
|
fname, |
|
iterator=True, |
|
convert_categoricals=convert_categoricals, |
|
convert_dates=convert_dates, |
|
) as itr: |
|
pos = 0 |
|
for j in range(5): |
|
try: |
|
chunk = itr.read(chunksize) |
|
except StopIteration: |
|
break |
|
from_frame = parsed.iloc[pos : pos + chunksize, :].copy() |
|
from_frame = self._convert_categorical(from_frame) |
|
tm.assert_frame_equal( |
|
from_frame, chunk, check_dtype=False, check_datetimelike_compat=True |
|
) |
|
pos += chunksize |
|
|
|
@staticmethod |
|
def _convert_categorical(from_frame: DataFrame) -> DataFrame: |
|
""" |
|
Emulate the categorical casting behavior we expect from roundtripping. |
|
""" |
|
for col in from_frame: |
|
ser = from_frame[col] |
|
if isinstance(ser.dtype, CategoricalDtype): |
|
cat = ser._values.remove_unused_categories() |
|
if cat.categories.dtype == object: |
|
categories = pd.Index._with_infer(cat.categories._values) |
|
cat = cat.set_categories(categories) |
|
from_frame[col] = cat |
|
return from_frame |
|
|
|
def test_iterator(self, datapath): |
|
fname = datapath("io", "data", "stata", "stata3_117.dta") |
|
|
|
parsed = read_stata(fname) |
|
|
|
with read_stata(fname, iterator=True) as itr: |
|
chunk = itr.read(5) |
|
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) |
|
|
|
with read_stata(fname, chunksize=5) as itr: |
|
chunk = list(itr) |
|
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0]) |
|
|
|
with read_stata(fname, iterator=True) as itr: |
|
chunk = itr.get_chunk(5) |
|
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) |
|
|
|
with read_stata(fname, chunksize=5) as itr: |
|
chunk = itr.get_chunk() |
|
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) |
|
|
|
|
|
with read_stata(fname, chunksize=4) as itr: |
|
from_chunks = pd.concat(itr) |
|
tm.assert_frame_equal(parsed, from_chunks) |
|
|
|
@pytest.mark.filterwarnings("ignore::UserWarning") |
|
@pytest.mark.parametrize( |
|
"file", |
|
[ |
|
"stata2_115", |
|
"stata3_115", |
|
"stata4_115", |
|
"stata5_115", |
|
"stata6_115", |
|
"stata7_115", |
|
"stata8_115", |
|
"stata9_115", |
|
"stata10_115", |
|
"stata11_115", |
|
], |
|
) |
|
@pytest.mark.parametrize("chunksize", [1, 2]) |
|
@pytest.mark.parametrize("convert_categoricals", [False, True]) |
|
@pytest.mark.parametrize("convert_dates", [False, True]) |
|
def test_read_chunks_115( |
|
self, file, chunksize, convert_categoricals, convert_dates, datapath |
|
): |
|
fname = datapath("io", "data", "stata", f"{file}.dta") |
|
|
|
|
|
parsed = read_stata( |
|
fname, |
|
convert_categoricals=convert_categoricals, |
|
convert_dates=convert_dates, |
|
) |
|
|
|
|
|
with read_stata( |
|
fname, |
|
iterator=True, |
|
convert_dates=convert_dates, |
|
convert_categoricals=convert_categoricals, |
|
) as itr: |
|
pos = 0 |
|
for j in range(5): |
|
try: |
|
chunk = itr.read(chunksize) |
|
except StopIteration: |
|
break |
|
from_frame = parsed.iloc[pos : pos + chunksize, :].copy() |
|
from_frame = self._convert_categorical(from_frame) |
|
tm.assert_frame_equal( |
|
from_frame, chunk, check_dtype=False, check_datetimelike_compat=True |
|
) |
|
pos += chunksize |
|
|
|
def test_read_chunks_columns(self, datapath): |
|
fname = datapath("io", "data", "stata", "stata3_117.dta") |
|
columns = ["quarter", "cpi", "m1"] |
|
chunksize = 2 |
|
|
|
parsed = read_stata(fname, columns=columns) |
|
with read_stata(fname, iterator=True) as itr: |
|
pos = 0 |
|
for j in range(5): |
|
chunk = itr.read(chunksize, columns=columns) |
|
if chunk is None: |
|
break |
|
from_frame = parsed.iloc[pos : pos + chunksize, :] |
|
tm.assert_frame_equal(from_frame, chunk, check_dtype=False) |
|
pos += chunksize |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_write_variable_labels(self, version, mixed_frame): |
|
|
|
mixed_frame.index.name = "index" |
|
variable_labels = {"a": "City Rank", "b": "City Exponent", "c": "City"} |
|
with tm.ensure_clean() as path: |
|
mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) |
|
with StataReader(path) as sr: |
|
read_labels = sr.variable_labels() |
|
expected_labels = { |
|
"index": "", |
|
"a": "City Rank", |
|
"b": "City Exponent", |
|
"c": "City", |
|
} |
|
assert read_labels == expected_labels |
|
|
|
variable_labels["index"] = "The Index" |
|
with tm.ensure_clean() as path: |
|
mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) |
|
with StataReader(path) as sr: |
|
read_labels = sr.variable_labels() |
|
assert read_labels == variable_labels |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_invalid_variable_labels(self, version, mixed_frame): |
|
mixed_frame.index.name = "index" |
|
variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} |
|
with tm.ensure_clean() as path: |
|
msg = "Variable labels must be 80 characters or fewer" |
|
with pytest.raises(ValueError, match=msg): |
|
mixed_frame.to_stata( |
|
path, variable_labels=variable_labels, version=version |
|
) |
|
|
|
@pytest.mark.parametrize("version", [114, 117]) |
|
def test_invalid_variable_label_encoding(self, version, mixed_frame): |
|
mixed_frame.index.name = "index" |
|
variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} |
|
variable_labels["a"] = "invalid character Œ" |
|
with tm.ensure_clean() as path: |
|
with pytest.raises( |
|
ValueError, match="Variable labels must contain only characters" |
|
): |
|
mixed_frame.to_stata( |
|
path, variable_labels=variable_labels, version=version |
|
) |
|
|
|
def test_write_variable_label_errors(self, mixed_frame): |
|
values = ["\u03A1", "\u0391", "\u039D", "\u0394", "\u0391", "\u03A3"] |
|
|
|
variable_labels_utf8 = { |
|
"a": "City Rank", |
|
"b": "City Exponent", |
|
"c": "".join(values), |
|
} |
|
|
|
msg = ( |
|
"Variable labels must contain only characters that can be " |
|
"encoded in Latin-1" |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
with tm.ensure_clean() as path: |
|
mixed_frame.to_stata(path, variable_labels=variable_labels_utf8) |
|
|
|
variable_labels_long = { |
|
"a": "City Rank", |
|
"b": "City Exponent", |
|
"c": "A very, very, very long variable label " |
|
"that is too long for Stata which means " |
|
"that it has more than 80 characters", |
|
} |
|
|
|
msg = "Variable labels must be 80 characters or fewer" |
|
with pytest.raises(ValueError, match=msg): |
|
with tm.ensure_clean() as path: |
|
mixed_frame.to_stata(path, variable_labels=variable_labels_long) |
|
|
|
def test_default_date_conversion(self): |
|
|
|
dates = [ |
|
dt.datetime(1999, 12, 31, 12, 12, 12, 12000), |
|
dt.datetime(2012, 12, 21, 12, 21, 12, 21000), |
|
dt.datetime(1776, 7, 4, 7, 4, 7, 4000), |
|
] |
|
original = DataFrame( |
|
{ |
|
"nums": [1.0, 2.0, 3.0], |
|
"strs": ["apple", "banana", "cherry"], |
|
"dates": dates, |
|
} |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, write_index=False) |
|
reread = read_stata(path, convert_dates=True) |
|
tm.assert_frame_equal(original, reread) |
|
|
|
original.to_stata(path, write_index=False, convert_dates={"dates": "tc"}) |
|
direct = read_stata(path, convert_dates=True) |
|
tm.assert_frame_equal(reread, direct) |
|
|
|
dates_idx = original.columns.tolist().index("dates") |
|
original.to_stata(path, write_index=False, convert_dates={dates_idx: "tc"}) |
|
direct = read_stata(path, convert_dates=True) |
|
tm.assert_frame_equal(reread, direct) |
|
|
|
def test_unsupported_type(self): |
|
original = DataFrame({"a": [1 + 2j, 2 + 4j]}) |
|
|
|
msg = "Data type complex128 not supported" |
|
with pytest.raises(NotImplementedError, match=msg): |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
|
|
def test_unsupported_datetype(self): |
|
dates = [ |
|
dt.datetime(1999, 12, 31, 12, 12, 12, 12000), |
|
dt.datetime(2012, 12, 21, 12, 21, 12, 21000), |
|
dt.datetime(1776, 7, 4, 7, 4, 7, 4000), |
|
] |
|
original = DataFrame( |
|
{ |
|
"nums": [1.0, 2.0, 3.0], |
|
"strs": ["apple", "banana", "cherry"], |
|
"dates": dates, |
|
} |
|
) |
|
|
|
msg = "Format %tC not implemented" |
|
with pytest.raises(NotImplementedError, match=msg): |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, convert_dates={"dates": "tC"}) |
|
|
|
dates = pd.date_range("1-1-1990", periods=3, tz="Asia/Hong_Kong") |
|
original = DataFrame( |
|
{ |
|
"nums": [1.0, 2.0, 3.0], |
|
"strs": ["apple", "banana", "cherry"], |
|
"dates": dates, |
|
} |
|
) |
|
with pytest.raises(NotImplementedError, match="Data type datetime64"): |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
|
|
def test_repeated_column_labels(self, datapath): |
|
|
|
msg = """ |
|
Value labels for column ethnicsn are not unique. These cannot be converted to |
|
pandas categoricals. |
|
|
|
Either read the file with `convert_categoricals` set to False or use the |
|
low level interface in `StataReader` to separately read the values and the |
|
value_labels. |
|
|
|
The repeated labels are:\n-+\nwolof |
|
""" |
|
with pytest.raises(ValueError, match=msg): |
|
read_stata( |
|
datapath("io", "data", "stata", "stata15.dta"), |
|
convert_categoricals=True, |
|
) |
|
|
|
def test_stata_111(self, datapath): |
|
|
|
|
|
|
|
df = read_stata(datapath("io", "data", "stata", "stata7_111.dta")) |
|
original = DataFrame( |
|
{ |
|
"y": [1, 1, 1, 1, 1, 0, 0, np.nan, 0, 0], |
|
"x": [1, 2, 1, 3, np.nan, 4, 3, 5, 1, 6], |
|
"w": [2, np.nan, 5, 2, 4, 4, 3, 1, 2, 3], |
|
"z": ["a", "b", "c", "d", "e", "", "g", "h", "i", "j"], |
|
} |
|
) |
|
original = original[["y", "x", "w", "z"]] |
|
tm.assert_frame_equal(original, df) |
|
|
|
def test_out_of_range_double(self): |
|
|
|
df = DataFrame( |
|
{ |
|
"ColumnOk": [0.0, np.finfo(np.double).eps, 4.49423283715579e307], |
|
"ColumnTooBig": [0.0, np.finfo(np.double).eps, np.finfo(np.double).max], |
|
} |
|
) |
|
msg = ( |
|
r"Column ColumnTooBig has a maximum value \(.+\) outside the range " |
|
r"supported by Stata \(.+\)" |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path) |
|
|
|
def test_out_of_range_float(self): |
|
original = DataFrame( |
|
{ |
|
"ColumnOk": [ |
|
0.0, |
|
np.finfo(np.float32).eps, |
|
np.finfo(np.float32).max / 10.0, |
|
], |
|
"ColumnTooBig": [ |
|
0.0, |
|
np.finfo(np.float32).eps, |
|
np.finfo(np.float32).max, |
|
], |
|
} |
|
) |
|
original.index.name = "index" |
|
for col in original: |
|
original[col] = original[col].astype(np.float32) |
|
|
|
with tm.ensure_clean() as path: |
|
original.to_stata(path) |
|
reread = read_stata(path) |
|
|
|
original["ColumnTooBig"] = original["ColumnTooBig"].astype(np.float64) |
|
expected = original.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(reread.set_index("index"), expected) |
|
|
|
@pytest.mark.parametrize("infval", [np.inf, -np.inf]) |
|
def test_inf(self, infval): |
|
|
|
df = DataFrame({"WithoutInf": [0.0, 1.0], "WithInf": [2.0, infval]}) |
|
msg = ( |
|
"Column WithInf contains infinity or -infinity" |
|
"which is outside the range supported by Stata." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path) |
|
|
|
def test_path_pathlib(self): |
|
df = DataFrame( |
|
1.1 * np.arange(120).reshape((30, 4)), |
|
columns=pd.Index(list("ABCD"), dtype=object), |
|
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), |
|
) |
|
df.index.name = "index" |
|
reader = lambda x: read_stata(x).set_index("index") |
|
result = tm.round_trip_pathlib(df.to_stata, reader) |
|
tm.assert_frame_equal(df, result) |
|
|
|
def test_pickle_path_localpath(self): |
|
df = DataFrame( |
|
1.1 * np.arange(120).reshape((30, 4)), |
|
columns=pd.Index(list("ABCD"), dtype=object), |
|
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), |
|
) |
|
df.index.name = "index" |
|
reader = lambda x: read_stata(x).set_index("index") |
|
result = tm.round_trip_localpath(df.to_stata, reader) |
|
tm.assert_frame_equal(df, result) |
|
|
|
@pytest.mark.parametrize("write_index", [True, False]) |
|
def test_value_labels_iterator(self, write_index): |
|
|
|
d = {"A": ["B", "E", "C", "A", "E"]} |
|
df = DataFrame(data=d) |
|
df["A"] = df["A"].astype("category") |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, write_index=write_index) |
|
|
|
with read_stata(path, iterator=True) as dta_iter: |
|
value_labels = dta_iter.value_labels() |
|
assert value_labels == {"A": {0: "A", 1: "B", 2: "C", 3: "E"}} |
|
|
|
def test_set_index(self): |
|
|
|
df = DataFrame( |
|
1.1 * np.arange(120).reshape((30, 4)), |
|
columns=pd.Index(list("ABCD"), dtype=object), |
|
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), |
|
) |
|
df.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path) |
|
reread = read_stata(path, index_col="index") |
|
tm.assert_frame_equal(df, reread) |
|
|
|
@pytest.mark.parametrize( |
|
"column", ["ms", "day", "week", "month", "qtr", "half", "yr"] |
|
) |
|
def test_date_parsing_ignores_format_details(self, column, datapath): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df = read_stata(datapath("io", "data", "stata", "stata13_dates.dta")) |
|
unformatted = df.loc[0, column] |
|
formatted = df.loc[0, column + "_fmt"] |
|
assert unformatted == formatted |
|
|
|
def test_writer_117(self): |
|
original = DataFrame( |
|
data=[ |
|
[ |
|
"string", |
|
"object", |
|
1, |
|
1, |
|
1, |
|
1.1, |
|
1.1, |
|
np.datetime64("2003-12-25"), |
|
"a", |
|
"a" * 2045, |
|
"a" * 5000, |
|
"a", |
|
], |
|
[ |
|
"string-1", |
|
"object-1", |
|
1, |
|
1, |
|
1, |
|
1.1, |
|
1.1, |
|
np.datetime64("2003-12-26"), |
|
"b", |
|
"b" * 2045, |
|
"", |
|
"", |
|
], |
|
], |
|
columns=[ |
|
"string", |
|
"object", |
|
"int8", |
|
"int16", |
|
"int32", |
|
"float32", |
|
"float64", |
|
"datetime", |
|
"s1", |
|
"s2045", |
|
"srtl", |
|
"forced_strl", |
|
], |
|
) |
|
original["object"] = Series(original["object"], dtype=object) |
|
original["int8"] = Series(original["int8"], dtype=np.int8) |
|
original["int16"] = Series(original["int16"], dtype=np.int16) |
|
original["int32"] = original["int32"].astype(np.int32) |
|
original["float32"] = Series(original["float32"], dtype=np.float32) |
|
original.index.name = "index" |
|
original.index = original.index.astype(np.int32) |
|
copy = original.copy() |
|
with tm.ensure_clean() as path: |
|
original.to_stata( |
|
path, |
|
convert_dates={"datetime": "tc"}, |
|
convert_strl=["forced_strl"], |
|
version=117, |
|
) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
tm.assert_frame_equal( |
|
written_and_read_again.set_index("index"), |
|
original, |
|
check_index_type=False, |
|
) |
|
tm.assert_frame_equal(original, copy) |
|
|
|
def test_convert_strl_name_swap(self): |
|
original = DataFrame( |
|
[["a" * 3000, "A", "apple"], ["b" * 1000, "B", "banana"]], |
|
columns=["long1" * 10, "long", 1], |
|
) |
|
original.index.name = "index" |
|
|
|
with tm.assert_produces_warning(InvalidColumnName): |
|
with tm.ensure_clean() as path: |
|
original.to_stata(path, convert_strl=["long", 1], version=117) |
|
reread = self.read_dta(path) |
|
reread = reread.set_index("index") |
|
reread.columns = original.columns |
|
tm.assert_frame_equal(reread, original, check_index_type=False) |
|
|
|
def test_invalid_date_conversion(self): |
|
|
|
dates = [ |
|
dt.datetime(1999, 12, 31, 12, 12, 12, 12000), |
|
dt.datetime(2012, 12, 21, 12, 21, 12, 21000), |
|
dt.datetime(1776, 7, 4, 7, 4, 7, 4000), |
|
] |
|
original = DataFrame( |
|
{ |
|
"nums": [1.0, 2.0, 3.0], |
|
"strs": ["apple", "banana", "cherry"], |
|
"dates": dates, |
|
} |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
msg = "convert_dates key must be a column or an integer" |
|
with pytest.raises(ValueError, match=msg): |
|
original.to_stata(path, convert_dates={"wrong_name": "tc"}) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_nonfile_writing(self, version): |
|
|
|
bio = io.BytesIO() |
|
df = DataFrame( |
|
1.1 * np.arange(120).reshape((30, 4)), |
|
columns=pd.Index(list("ABCD"), dtype=object), |
|
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), |
|
) |
|
df.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
df.to_stata(bio, version=version) |
|
bio.seek(0) |
|
with open(path, "wb") as dta: |
|
dta.write(bio.read()) |
|
reread = read_stata(path, index_col="index") |
|
tm.assert_frame_equal(df, reread) |
|
|
|
def test_gzip_writing(self): |
|
|
|
df = DataFrame( |
|
1.1 * np.arange(120).reshape((30, 4)), |
|
columns=pd.Index(list("ABCD"), dtype=object), |
|
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), |
|
) |
|
df.index.name = "index" |
|
with tm.ensure_clean() as path: |
|
with gzip.GzipFile(path, "wb") as gz: |
|
df.to_stata(gz, version=114) |
|
with gzip.GzipFile(path, "rb") as gz: |
|
reread = read_stata(gz, index_col="index") |
|
tm.assert_frame_equal(df, reread) |
|
|
|
def test_unicode_dta_118(self, datapath): |
|
unicode_df = self.read_dta(datapath("io", "data", "stata", "stata16_118.dta")) |
|
|
|
columns = ["utf8", "latin1", "ascii", "utf8_strl", "ascii_strl"] |
|
values = [ |
|
["ραηδας", "PÄNDÄS", "p", "ραηδας", "p"], |
|
["ƤĀńĐąŜ", "Ö", "a", "ƤĀńĐąŜ", "a"], |
|
["ᴘᴀᴎᴅᴀS", "Ü", "n", "ᴘᴀᴎᴅᴀS", "n"], |
|
[" ", " ", "d", " ", "d"], |
|
[" ", "", "a", " ", "a"], |
|
["", "", "s", "", "s"], |
|
["", "", " ", "", " "], |
|
] |
|
expected = DataFrame(values, columns=columns) |
|
|
|
tm.assert_frame_equal(unicode_df, expected) |
|
|
|
def test_mixed_string_strl(self): |
|
|
|
output = [{"mixed": "string" * 500, "number": 0}, {"mixed": None, "number": 1}] |
|
output = DataFrame(output) |
|
output.number = output.number.astype("int32") |
|
|
|
with tm.ensure_clean() as path: |
|
output.to_stata(path, write_index=False, version=117) |
|
reread = read_stata(path) |
|
expected = output.fillna("") |
|
tm.assert_frame_equal(reread, expected) |
|
|
|
|
|
output["mixed"] = None |
|
output.to_stata( |
|
path, write_index=False, convert_strl=["mixed"], version=117 |
|
) |
|
reread = read_stata(path) |
|
expected = output.fillna("") |
|
tm.assert_frame_equal(reread, expected) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_all_none_exception(self, version): |
|
output = [{"none": "none", "number": 0}, {"none": None, "number": 1}] |
|
output = DataFrame(output) |
|
output["none"] = None |
|
with tm.ensure_clean() as path: |
|
with pytest.raises(ValueError, match="Column `none` cannot be exported"): |
|
output.to_stata(path, version=version) |
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_invalid_file_not_written(self, version): |
|
content = "Here is one __�__ Another one __·__ Another one __½__" |
|
df = DataFrame([content], columns=["invalid"]) |
|
with tm.ensure_clean() as path: |
|
msg1 = ( |
|
r"'latin-1' codec can't encode character '\\ufffd' " |
|
r"in position 14: ordinal not in range\(256\)" |
|
) |
|
msg2 = ( |
|
"'ascii' codec can't decode byte 0xef in position 14: " |
|
r"ordinal not in range\(128\)" |
|
) |
|
with pytest.raises(UnicodeEncodeError, match=f"{msg1}|{msg2}"): |
|
df.to_stata(path) |
|
|
|
def test_strl_latin1(self): |
|
|
|
output = DataFrame( |
|
[["pandas"] * 2, ["þâÑÐŧ"] * 2], columns=["var_str", "var_strl"] |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
output.to_stata(path, version=117, convert_strl=["var_strl"]) |
|
with open(path, "rb") as reread: |
|
content = reread.read() |
|
expected = "þâÑÐŧ" |
|
assert expected.encode("latin-1") in content |
|
assert expected.encode("utf-8") in content |
|
gsos = content.split(b"strls")[1][1:-2] |
|
for gso in gsos.split(b"GSO")[1:]: |
|
val = gso.split(b"\x00")[-2] |
|
size = gso[gso.find(b"\x82") + 1] |
|
assert len(val) == size - 1 |
|
|
|
def test_encoding_latin1_118(self, datapath): |
|
|
|
msg = """ |
|
One or more strings in the dta file could not be decoded using utf-8, and |
|
so the fallback encoding of latin-1 is being used. This can happen when a file |
|
has been incorrectly encoded by Stata or some other software. You should verify |
|
the string values returned are correct.""" |
|
|
|
|
|
|
|
path = datapath("io", "data", "stata", "stata1_encoding_118.dta") |
|
with tm.assert_produces_warning(UnicodeWarning, filter_level="once") as w: |
|
encoded = read_stata(path) |
|
|
|
assert len(w) == 1 |
|
assert w[0].message.args[0] == msg |
|
|
|
expected = DataFrame([["Düsseldorf"]] * 151, columns=["kreis1849"]) |
|
tm.assert_frame_equal(encoded, expected) |
|
|
|
@pytest.mark.slow |
|
def test_stata_119(self, datapath): |
|
|
|
|
|
|
|
with gzip.open( |
|
datapath("io", "data", "stata", "stata1_119.dta.gz"), "rb" |
|
) as gz: |
|
with StataReader(gz) as reader: |
|
reader._ensure_open() |
|
assert reader._nvar == 32999 |
|
|
|
@pytest.mark.parametrize("version", [118, 119, None]) |
|
def test_utf8_writer(self, version): |
|
cat = pd.Categorical(["a", "β", "ĉ"], ordered=True) |
|
data = DataFrame( |
|
[ |
|
[1.0, 1, "ᴬ", "ᴀ relatively long ŝtring"], |
|
[2.0, 2, "ᴮ", ""], |
|
[3.0, 3, "ᴰ", None], |
|
], |
|
columns=["Å", "β", "ĉ", "strls"], |
|
) |
|
data["ᴐᴬᵀ"] = cat |
|
variable_labels = { |
|
"Å": "apple", |
|
"β": "ᵈᵉᵊ", |
|
"ĉ": "ᴎტჄႲႳႴႶႺ", |
|
"strls": "Long Strings", |
|
"ᴐᴬᵀ": "", |
|
} |
|
data_label = "ᴅaᵀa-label" |
|
value_labels = {"β": {1: "label", 2: "æøå", 3: "ŋot valid latin-1"}} |
|
data["β"] = data["β"].astype(np.int32) |
|
with tm.ensure_clean() as path: |
|
writer = StataWriterUTF8( |
|
path, |
|
data, |
|
data_label=data_label, |
|
convert_strl=["strls"], |
|
variable_labels=variable_labels, |
|
write_index=False, |
|
version=version, |
|
value_labels=value_labels, |
|
) |
|
writer.write_file() |
|
reread_encoded = read_stata(path) |
|
|
|
data["strls"] = data["strls"].fillna("") |
|
|
|
data["β"] = ( |
|
data["β"].replace(value_labels["β"]).astype("category").cat.as_ordered() |
|
) |
|
tm.assert_frame_equal(data, reread_encoded) |
|
with StataReader(path) as reader: |
|
assert reader.data_label == data_label |
|
assert reader.variable_labels() == variable_labels |
|
|
|
data.to_stata(path, version=version, write_index=False) |
|
reread_to_stata = read_stata(path) |
|
tm.assert_frame_equal(data, reread_to_stata) |
|
|
|
def test_writer_118_exceptions(self): |
|
df = DataFrame(np.zeros((1, 33000), dtype=np.int8)) |
|
with tm.ensure_clean() as path: |
|
with pytest.raises(ValueError, match="version must be either 118 or 119."): |
|
StataWriterUTF8(path, df, version=117) |
|
with tm.ensure_clean() as path: |
|
with pytest.raises(ValueError, match="You must use version 119"): |
|
StataWriterUTF8(path, df, version=118) |
|
|
|
@pytest.mark.parametrize( |
|
"dtype_backend", |
|
["numpy_nullable", pytest.param("pyarrow", marks=td.skip_if_no("pyarrow"))], |
|
) |
|
def test_read_write_ea_dtypes(self, dtype_backend): |
|
df = DataFrame( |
|
{ |
|
"a": [1, 2, None], |
|
"b": ["a", "b", "c"], |
|
"c": [True, False, None], |
|
"d": [1.5, 2.5, 3.5], |
|
"e": pd.date_range("2020-12-31", periods=3, freq="D"), |
|
}, |
|
index=pd.Index([0, 1, 2], name="index"), |
|
) |
|
df = df.convert_dtypes(dtype_backend=dtype_backend) |
|
df.to_stata("test_stata.dta", version=118) |
|
|
|
with tm.ensure_clean() as path: |
|
df.to_stata(path) |
|
written_and_read_again = self.read_dta(path) |
|
|
|
expected = DataFrame( |
|
{ |
|
"a": [1, 2, np.nan], |
|
"b": ["a", "b", "c"], |
|
"c": [1.0, 0, np.nan], |
|
"d": [1.5, 2.5, 3.5], |
|
"e": pd.date_range("2020-12-31", periods=3, freq="D"), |
|
}, |
|
index=pd.Index([0, 1, 2], name="index", dtype=np.int32), |
|
) |
|
|
|
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) |
|
|
|
|
|
@pytest.mark.parametrize("version", [105, 108, 111, 113, 114]) |
|
def test_backward_compat(version, datapath): |
|
data_base = datapath("io", "data", "stata") |
|
ref = os.path.join(data_base, "stata-compat-118.dta") |
|
old = os.path.join(data_base, f"stata-compat-{version}.dta") |
|
expected = read_stata(ref) |
|
old_dta = read_stata(old) |
|
tm.assert_frame_equal(old_dta, expected, check_dtype=False) |
|
|
|
|
|
def test_direct_read(datapath, monkeypatch): |
|
file_path = datapath("io", "data", "stata", "stata-compat-118.dta") |
|
|
|
|
|
with StataReader(file_path) as reader: |
|
|
|
assert not reader.read().empty |
|
assert not isinstance(reader._path_or_buf, io.BytesIO) |
|
|
|
|
|
with open(file_path, "rb") as fp: |
|
with StataReader(fp) as reader: |
|
assert not reader.read().empty |
|
assert reader._path_or_buf is fp |
|
|
|
|
|
with open(file_path, "rb") as fp: |
|
with io.BytesIO(fp.read()) as bio: |
|
with StataReader(bio) as reader: |
|
assert not reader.read().empty |
|
assert reader._path_or_buf is bio |
|
|
|
|
|
def test_statareader_warns_when_used_without_context(datapath): |
|
file_path = datapath("io", "data", "stata", "stata-compat-118.dta") |
|
with tm.assert_produces_warning( |
|
ResourceWarning, |
|
match="without using a context manager", |
|
): |
|
sr = StataReader(file_path) |
|
sr.read() |
|
with tm.assert_produces_warning( |
|
FutureWarning, |
|
match="is not part of the public API", |
|
): |
|
sr.close() |
|
|
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
@pytest.mark.parametrize("use_dict", [True, False]) |
|
@pytest.mark.parametrize("infer", [True, False]) |
|
def test_compression(compression, version, use_dict, infer, compression_to_extension): |
|
file_name = "dta_inferred_compression.dta" |
|
if compression: |
|
if use_dict: |
|
file_ext = compression |
|
else: |
|
file_ext = compression_to_extension[compression] |
|
file_name += f".{file_ext}" |
|
compression_arg = compression |
|
if infer: |
|
compression_arg = "infer" |
|
if use_dict: |
|
compression_arg = {"method": compression} |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB") |
|
) |
|
df.index.name = "index" |
|
with tm.ensure_clean(file_name) as path: |
|
df.to_stata(path, version=version, compression=compression_arg) |
|
if compression == "gzip": |
|
with gzip.open(path, "rb") as comp: |
|
fp = io.BytesIO(comp.read()) |
|
elif compression == "zip": |
|
with zipfile.ZipFile(path, "r") as comp: |
|
fp = io.BytesIO(comp.read(comp.filelist[0])) |
|
elif compression == "tar": |
|
with tarfile.open(path) as tar: |
|
fp = io.BytesIO(tar.extractfile(tar.getnames()[0]).read()) |
|
elif compression == "bz2": |
|
with bz2.open(path, "rb") as comp: |
|
fp = io.BytesIO(comp.read()) |
|
elif compression == "zstd": |
|
zstd = pytest.importorskip("zstandard") |
|
with zstd.open(path, "rb") as comp: |
|
fp = io.BytesIO(comp.read()) |
|
elif compression == "xz": |
|
lzma = pytest.importorskip("lzma") |
|
with lzma.open(path, "rb") as comp: |
|
fp = io.BytesIO(comp.read()) |
|
elif compression is None: |
|
fp = path |
|
reread = read_stata(fp, index_col="index") |
|
|
|
expected = df.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(reread, expected) |
|
|
|
|
|
@pytest.mark.parametrize("method", ["zip", "infer"]) |
|
@pytest.mark.parametrize("file_ext", [None, "dta", "zip"]) |
|
def test_compression_dict(method, file_ext): |
|
file_name = f"test.{file_ext}" |
|
archive_name = "test.dta" |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB") |
|
) |
|
df.index.name = "index" |
|
with tm.ensure_clean(file_name) as path: |
|
compression = {"method": method, "archive_name": archive_name} |
|
df.to_stata(path, compression=compression) |
|
if method == "zip" or file_ext == "zip": |
|
with zipfile.ZipFile(path, "r") as zp: |
|
assert len(zp.filelist) == 1 |
|
assert zp.filelist[0].filename == archive_name |
|
fp = io.BytesIO(zp.read(zp.filelist[0])) |
|
else: |
|
fp = path |
|
reread = read_stata(fp, index_col="index") |
|
|
|
expected = df.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
tm.assert_frame_equal(reread, expected) |
|
|
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
def test_chunked_categorical(version): |
|
df = DataFrame({"cats": Series(["a", "b", "a", "b", "c"], dtype="category")}) |
|
df.index.name = "index" |
|
|
|
expected = df.copy() |
|
expected.index = expected.index.astype(np.int32) |
|
|
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, version=version) |
|
with StataReader(path, chunksize=2, order_categoricals=False) as reader: |
|
for i, block in enumerate(reader): |
|
block = block.set_index("index") |
|
assert "cats" in block |
|
tm.assert_series_equal( |
|
block.cats, expected.cats.iloc[2 * i : 2 * (i + 1)] |
|
) |
|
|
|
|
|
def test_chunked_categorical_partial(datapath): |
|
dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta") |
|
values = ["a", "b", "a", "b", 3.0] |
|
with StataReader(dta_file, chunksize=2) as reader: |
|
with tm.assert_produces_warning(CategoricalConversionWarning): |
|
for i, block in enumerate(reader): |
|
assert list(block.cats) == values[2 * i : 2 * (i + 1)] |
|
if i < 2: |
|
idx = pd.Index(["a", "b"]) |
|
else: |
|
idx = pd.Index([3.0], dtype="float64") |
|
tm.assert_index_equal(block.cats.cat.categories, idx) |
|
with tm.assert_produces_warning(CategoricalConversionWarning): |
|
with StataReader(dta_file, chunksize=5) as reader: |
|
large_chunk = reader.__next__() |
|
direct = read_stata(dta_file) |
|
tm.assert_frame_equal(direct, large_chunk) |
|
|
|
|
|
@pytest.mark.parametrize("chunksize", (-1, 0, "apple")) |
|
def test_iterator_errors(datapath, chunksize): |
|
dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta") |
|
with pytest.raises(ValueError, match="chunksize must be a positive"): |
|
with StataReader(dta_file, chunksize=chunksize): |
|
pass |
|
|
|
|
|
def test_iterator_value_labels(): |
|
|
|
values = ["c_label", "b_label"] + ["a_label"] * 500 |
|
df = DataFrame({f"col{k}": pd.Categorical(values, ordered=True) for k in range(2)}) |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, write_index=False) |
|
expected = pd.Index(["a_label", "b_label", "c_label"], dtype="object") |
|
with read_stata(path, chunksize=100) as reader: |
|
for j, chunk in enumerate(reader): |
|
for i in range(2): |
|
tm.assert_index_equal(chunk.dtypes.iloc[i].categories, expected) |
|
tm.assert_frame_equal(chunk, df.iloc[j * 100 : (j + 1) * 100]) |
|
|
|
|
|
def test_precision_loss(): |
|
df = DataFrame( |
|
[[sum(2**i for i in range(60)), sum(2**i for i in range(52))]], |
|
columns=["big", "little"], |
|
) |
|
with tm.ensure_clean() as path: |
|
with tm.assert_produces_warning( |
|
PossiblePrecisionLoss, match="Column converted from int64 to float64" |
|
): |
|
df.to_stata(path, write_index=False) |
|
reread = read_stata(path) |
|
expected_dt = Series([np.float64, np.float64], index=["big", "little"]) |
|
tm.assert_series_equal(reread.dtypes, expected_dt) |
|
assert reread.loc[0, "little"] == df.loc[0, "little"] |
|
assert reread.loc[0, "big"] == float(df.loc[0, "big"]) |
|
|
|
|
|
def test_compression_roundtrip(compression): |
|
df = DataFrame( |
|
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], |
|
index=["A", "B"], |
|
columns=["X", "Y", "Z"], |
|
) |
|
df.index.name = "index" |
|
|
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, compression=compression) |
|
reread = read_stata(path, compression=compression, index_col="index") |
|
tm.assert_frame_equal(df, reread) |
|
|
|
|
|
with tm.decompress_file(path, compression) as fh: |
|
contents = io.BytesIO(fh.read()) |
|
reread = read_stata(contents, index_col="index") |
|
tm.assert_frame_equal(df, reread) |
|
|
|
|
|
@pytest.mark.parametrize("to_infer", [True, False]) |
|
@pytest.mark.parametrize("read_infer", [True, False]) |
|
def test_stata_compression( |
|
compression_only, read_infer, to_infer, compression_to_extension |
|
): |
|
compression = compression_only |
|
|
|
ext = compression_to_extension[compression] |
|
filename = f"test.{ext}" |
|
|
|
df = DataFrame( |
|
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], |
|
index=["A", "B"], |
|
columns=["X", "Y", "Z"], |
|
) |
|
df.index.name = "index" |
|
|
|
to_compression = "infer" if to_infer else compression |
|
read_compression = "infer" if read_infer else compression |
|
|
|
with tm.ensure_clean(filename) as path: |
|
df.to_stata(path, compression=to_compression) |
|
result = read_stata(path, compression=read_compression, index_col="index") |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
def test_non_categorical_value_labels(): |
|
data = DataFrame( |
|
{ |
|
"fully_labelled": [1, 2, 3, 3, 1], |
|
"partially_labelled": [1.0, 2.0, np.nan, 9.0, np.nan], |
|
"Y": [7, 7, 9, 8, 10], |
|
"Z": pd.Categorical(["j", "k", "l", "k", "j"]), |
|
} |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
value_labels = { |
|
"fully_labelled": {1: "one", 2: "two", 3: "three"}, |
|
"partially_labelled": {1.0: "one", 2.0: "two"}, |
|
} |
|
expected = {**value_labels, "Z": {0: "j", 1: "k", 2: "l"}} |
|
|
|
writer = StataWriter(path, data, value_labels=value_labels) |
|
writer.write_file() |
|
|
|
with StataReader(path) as reader: |
|
reader_value_labels = reader.value_labels() |
|
assert reader_value_labels == expected |
|
|
|
msg = "Can't create value labels for notY, it wasn't found in the dataset." |
|
with pytest.raises(KeyError, match=msg): |
|
value_labels = {"notY": {7: "label1", 8: "label2"}} |
|
StataWriter(path, data, value_labels=value_labels) |
|
|
|
msg = ( |
|
"Can't create value labels for Z, value labels " |
|
"can only be applied to numeric columns." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
value_labels = {"Z": {1: "a", 2: "k", 3: "j", 4: "i"}} |
|
StataWriter(path, data, value_labels=value_labels) |
|
|
|
|
|
def test_non_categorical_value_label_name_conversion(): |
|
|
|
data = DataFrame( |
|
{ |
|
"invalid~!": [1, 1, 2, 3, 5, 8], |
|
"6_invalid": [1, 1, 2, 3, 5, 8], |
|
"invalid_name_longer_than_32_characters": [8, 8, 9, 9, 8, 8], |
|
"aggregate": [2, 5, 5, 6, 6, 9], |
|
(1, 2): [1, 2, 3, 4, 5, 6], |
|
} |
|
) |
|
|
|
value_labels = { |
|
"invalid~!": {1: "label1", 2: "label2"}, |
|
"6_invalid": {1: "label1", 2: "label2"}, |
|
"invalid_name_longer_than_32_characters": {8: "eight", 9: "nine"}, |
|
"aggregate": {5: "five"}, |
|
(1, 2): {3: "three"}, |
|
} |
|
|
|
expected = { |
|
"invalid__": {1: "label1", 2: "label2"}, |
|
"_6_invalid": {1: "label1", 2: "label2"}, |
|
"invalid_name_longer_than_32_char": {8: "eight", 9: "nine"}, |
|
"_aggregate": {5: "five"}, |
|
"_1__2_": {3: "three"}, |
|
} |
|
|
|
with tm.ensure_clean() as path: |
|
with tm.assert_produces_warning(InvalidColumnName): |
|
data.to_stata(path, value_labels=value_labels) |
|
|
|
with StataReader(path) as reader: |
|
reader_value_labels = reader.value_labels() |
|
assert reader_value_labels == expected |
|
|
|
|
|
def test_non_categorical_value_label_convert_categoricals_error(): |
|
|
|
|
|
value_labels = { |
|
"repeated_labels": {10: "Ten", 20: "More than ten", 40: "More than ten"} |
|
} |
|
|
|
data = DataFrame( |
|
{ |
|
"repeated_labels": [10, 10, 20, 20, 40, 40], |
|
} |
|
) |
|
|
|
with tm.ensure_clean() as path: |
|
data.to_stata(path, value_labels=value_labels) |
|
|
|
with StataReader(path, convert_categoricals=False) as reader: |
|
reader_value_labels = reader.value_labels() |
|
assert reader_value_labels == value_labels |
|
|
|
col = "repeated_labels" |
|
repeats = "-" * 80 + "\n" + "\n".join(["More than ten"]) |
|
|
|
msg = f""" |
|
Value labels for column {col} are not unique. These cannot be converted to |
|
pandas categoricals. |
|
|
|
Either read the file with `convert_categoricals` set to False or use the |
|
low level interface in `StataReader` to separately read the values and the |
|
value_labels. |
|
|
|
The repeated labels are: |
|
{repeats} |
|
""" |
|
with pytest.raises(ValueError, match=msg): |
|
read_stata(path, convert_categoricals=True) |
|
|
|
|
|
@pytest.mark.parametrize("version", [114, 117, 118, 119, None]) |
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[ |
|
pd.BooleanDtype, |
|
pd.Int8Dtype, |
|
pd.Int16Dtype, |
|
pd.Int32Dtype, |
|
pd.Int64Dtype, |
|
pd.UInt8Dtype, |
|
pd.UInt16Dtype, |
|
pd.UInt32Dtype, |
|
pd.UInt64Dtype, |
|
], |
|
) |
|
def test_nullable_support(dtype, version): |
|
df = DataFrame( |
|
{ |
|
"a": Series([1.0, 2.0, 3.0]), |
|
"b": Series([1, pd.NA, pd.NA], dtype=dtype.name), |
|
"c": Series(["a", "b", None]), |
|
} |
|
) |
|
dtype_name = df.b.dtype.numpy_dtype.name |
|
|
|
dtype_name = dtype_name.replace("u", "") |
|
if dtype_name == "int64": |
|
dtype_name = "int32" |
|
elif dtype_name == "bool": |
|
dtype_name = "int8" |
|
value = StataMissingValue.BASE_MISSING_VALUES[dtype_name] |
|
smv = StataMissingValue(value) |
|
expected_b = Series([1, smv, smv], dtype=object, name="b") |
|
expected_c = Series(["a", "b", ""], name="c") |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, write_index=False, version=version) |
|
reread = read_stata(path, convert_missing=True) |
|
tm.assert_series_equal(df.a, reread.a) |
|
tm.assert_series_equal(reread.b, expected_b) |
|
tm.assert_series_equal(reread.c, expected_c) |
|
|
|
|
|
def test_empty_frame(): |
|
|
|
|
|
df = DataFrame(data={"a": range(3), "b": [1.0, 2.0, 3.0]}).head(0) |
|
with tm.ensure_clean() as path: |
|
df.to_stata(path, write_index=False, version=117) |
|
|
|
df2 = read_stata(path) |
|
assert "b" in df2 |
|
|
|
dtypes = Series({"a": np.dtype("int32"), "b": np.dtype("float64")}) |
|
tm.assert_series_equal(df2.dtypes, dtypes) |
|
|
|
df3 = read_stata(path, columns=["a"]) |
|
assert "b" not in df3 |
|
tm.assert_series_equal(df3.dtypes, dtypes.loc[["a"]]) |
|
|