|
|
|
|
|
from numpy.testing import (assert_, assert_equal, assert_array_almost_equal, |
|
assert_array_almost_equal_nulp, assert_array_less) |
|
import pytest |
|
from pytest import raises as assert_raises |
|
from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2 |
|
|
|
from numpy import (arange, array, asarray, zeros, dot, exp, pi, |
|
swapaxes, double, cdouble) |
|
import numpy as np |
|
import numpy.fft |
|
from numpy.random import rand |
|
|
|
|
|
LARGE_COMPOSITE_SIZES = [ |
|
2**13, |
|
2**5 * 3**5, |
|
2**3 * 3**3 * 5**2, |
|
] |
|
SMALL_COMPOSITE_SIZES = [ |
|
2, |
|
2*3*5, |
|
2*2*3*3, |
|
] |
|
|
|
LARGE_PRIME_SIZES = [ |
|
2011 |
|
] |
|
SMALL_PRIME_SIZES = [ |
|
29 |
|
] |
|
|
|
|
|
def _assert_close_in_norm(x, y, rtol, size, rdt): |
|
|
|
err_msg = f"size: {size} rdt: {rdt}" |
|
assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg) |
|
|
|
|
|
def random(size): |
|
return rand(*size) |
|
|
|
|
|
def direct_dft(x): |
|
x = asarray(x) |
|
n = len(x) |
|
y = zeros(n, dtype=cdouble) |
|
w = -arange(n)*(2j*pi/n) |
|
for i in range(n): |
|
y[i] = dot(exp(i*w), x) |
|
return y |
|
|
|
|
|
def direct_idft(x): |
|
x = asarray(x) |
|
n = len(x) |
|
y = zeros(n, dtype=cdouble) |
|
w = arange(n)*(2j*pi/n) |
|
for i in range(n): |
|
y[i] = dot(exp(i*w), x)/n |
|
return y |
|
|
|
|
|
def direct_dftn(x): |
|
x = asarray(x) |
|
for axis in range(len(x.shape)): |
|
x = fft(x, axis=axis) |
|
return x |
|
|
|
|
|
def direct_idftn(x): |
|
x = asarray(x) |
|
for axis in range(len(x.shape)): |
|
x = ifft(x, axis=axis) |
|
return x |
|
|
|
|
|
def direct_rdft(x): |
|
x = asarray(x) |
|
n = len(x) |
|
w = -arange(n)*(2j*pi/n) |
|
r = zeros(n, dtype=double) |
|
for i in range(n//2+1): |
|
y = dot(exp(i*w), x) |
|
if i: |
|
r[2*i-1] = y.real |
|
if 2*i < n: |
|
r[2*i] = y.imag |
|
else: |
|
r[0] = y.real |
|
return r |
|
|
|
|
|
def direct_irdft(x): |
|
x = asarray(x) |
|
n = len(x) |
|
x1 = zeros(n, dtype=cdouble) |
|
for i in range(n//2+1): |
|
if i: |
|
if 2*i < n: |
|
x1[i] = x[2*i-1] + 1j*x[2*i] |
|
x1[n-i] = x[2*i-1] - 1j*x[2*i] |
|
else: |
|
x1[i] = x[2*i-1] |
|
else: |
|
x1[0] = x[0] |
|
return direct_idft(x1).real |
|
|
|
|
|
class _TestFFTBase: |
|
def setup_method(self): |
|
self.cdt = None |
|
self.rdt = None |
|
np.random.seed(1234) |
|
|
|
def test_definition(self): |
|
x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt) |
|
y = fft(x) |
|
assert_equal(y.dtype, self.cdt) |
|
y1 = direct_dft(x) |
|
assert_array_almost_equal(y,y1) |
|
x = np.array([1,2,3,4+0j,5], dtype=self.cdt) |
|
assert_array_almost_equal(fft(x),direct_dft(x)) |
|
|
|
def test_n_argument_real(self): |
|
x1 = np.array([1,2,3,4], dtype=self.rdt) |
|
x2 = np.array([1,2,3,4], dtype=self.rdt) |
|
y = fft([x1,x2],n=4) |
|
assert_equal(y.dtype, self.cdt) |
|
assert_equal(y.shape,(2,4)) |
|
assert_array_almost_equal(y[0],direct_dft(x1)) |
|
assert_array_almost_equal(y[1],direct_dft(x2)) |
|
|
|
def _test_n_argument_complex(self): |
|
x1 = np.array([1,2,3,4+1j], dtype=self.cdt) |
|
x2 = np.array([1,2,3,4+1j], dtype=self.cdt) |
|
y = fft([x1,x2],n=4) |
|
assert_equal(y.dtype, self.cdt) |
|
assert_equal(y.shape,(2,4)) |
|
assert_array_almost_equal(y[0],direct_dft(x1)) |
|
assert_array_almost_equal(y[1],direct_dft(x2)) |
|
|
|
def test_invalid_sizes(self): |
|
assert_raises(ValueError, fft, []) |
|
assert_raises(ValueError, fft, [[1,1],[2,2]], -5) |
|
|
|
|
|
class TestDoubleFFT(_TestFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex128 |
|
self.rdt = np.float64 |
|
|
|
|
|
class TestSingleFFT(_TestFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex64 |
|
self.rdt = np.float32 |
|
|
|
reason = ("single-precision FFT implementation is partially disabled, " |
|
"until accuracy issues with large prime powers are resolved") |
|
|
|
@pytest.mark.xfail(run=False, reason=reason) |
|
def test_notice(self): |
|
pass |
|
|
|
|
|
class TestFloat16FFT: |
|
|
|
def test_1_argument_real(self): |
|
x1 = np.array([1, 2, 3, 4], dtype=np.float16) |
|
y = fft(x1, n=4) |
|
assert_equal(y.dtype, np.complex64) |
|
assert_equal(y.shape, (4, )) |
|
assert_array_almost_equal(y, direct_dft(x1.astype(np.float32))) |
|
|
|
def test_n_argument_real(self): |
|
x1 = np.array([1, 2, 3, 4], dtype=np.float16) |
|
x2 = np.array([1, 2, 3, 4], dtype=np.float16) |
|
y = fft([x1, x2], n=4) |
|
assert_equal(y.dtype, np.complex64) |
|
assert_equal(y.shape, (2, 4)) |
|
assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32))) |
|
assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32))) |
|
|
|
|
|
class _TestIFFTBase: |
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
def test_definition(self): |
|
x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt) |
|
y = ifft(x) |
|
y1 = direct_idft(x) |
|
assert_equal(y.dtype, self.cdt) |
|
assert_array_almost_equal(y,y1) |
|
|
|
x = np.array([1,2,3,4+0j,5], self.cdt) |
|
assert_array_almost_equal(ifft(x),direct_idft(x)) |
|
|
|
def test_definition_real(self): |
|
x = np.array([1,2,3,4,1,2,3,4], self.rdt) |
|
y = ifft(x) |
|
assert_equal(y.dtype, self.cdt) |
|
y1 = direct_idft(x) |
|
assert_array_almost_equal(y,y1) |
|
|
|
x = np.array([1,2,3,4,5], dtype=self.rdt) |
|
assert_equal(y.dtype, self.cdt) |
|
assert_array_almost_equal(ifft(x),direct_idft(x)) |
|
|
|
def test_random_complex(self): |
|
for size in [1,51,111,100,200,64,128,256,1024]: |
|
x = random([size]).astype(self.cdt) |
|
x = random([size]).astype(self.cdt) + 1j*x |
|
y1 = ifft(fft(x)) |
|
y2 = fft(ifft(x)) |
|
assert_equal(y1.dtype, self.cdt) |
|
assert_equal(y2.dtype, self.cdt) |
|
assert_array_almost_equal(y1, x) |
|
assert_array_almost_equal(y2, x) |
|
|
|
def test_random_real(self): |
|
for size in [1,51,111,100,200,64,128,256,1024]: |
|
x = random([size]).astype(self.rdt) |
|
y1 = ifft(fft(x)) |
|
y2 = fft(ifft(x)) |
|
assert_equal(y1.dtype, self.cdt) |
|
assert_equal(y2.dtype, self.cdt) |
|
assert_array_almost_equal(y1, x) |
|
assert_array_almost_equal(y2, x) |
|
|
|
def test_size_accuracy(self): |
|
|
|
if self.rdt == np.float32: |
|
rtol = 1e-5 |
|
elif self.rdt == np.float64: |
|
rtol = 1e-10 |
|
|
|
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: |
|
np.random.seed(1234) |
|
x = np.random.rand(size).astype(self.rdt) |
|
y = ifft(fft(x)) |
|
_assert_close_in_norm(x, y, rtol, size, self.rdt) |
|
y = fft(ifft(x)) |
|
_assert_close_in_norm(x, y, rtol, size, self.rdt) |
|
|
|
x = (x + 1j*np.random.rand(size)).astype(self.cdt) |
|
y = ifft(fft(x)) |
|
_assert_close_in_norm(x, y, rtol, size, self.rdt) |
|
y = fft(ifft(x)) |
|
_assert_close_in_norm(x, y, rtol, size, self.rdt) |
|
|
|
def test_invalid_sizes(self): |
|
assert_raises(ValueError, ifft, []) |
|
assert_raises(ValueError, ifft, [[1,1],[2,2]], -5) |
|
|
|
|
|
class TestDoubleIFFT(_TestIFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex128 |
|
self.rdt = np.float64 |
|
|
|
|
|
class TestSingleIFFT(_TestIFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex64 |
|
self.rdt = np.float32 |
|
|
|
|
|
class _TestRFFTBase: |
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
def test_definition(self): |
|
for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]: |
|
x = np.array(t, dtype=self.rdt) |
|
y = rfft(x) |
|
y1 = direct_rdft(x) |
|
assert_array_almost_equal(y,y1) |
|
assert_equal(y.dtype, self.rdt) |
|
|
|
def test_invalid_sizes(self): |
|
assert_raises(ValueError, rfft, []) |
|
assert_raises(ValueError, rfft, [[1,1],[2,2]], -5) |
|
|
|
|
|
class MockSeries: |
|
def __init__(self, data): |
|
self.data = np.asarray(data) |
|
|
|
def __getattr__(self, item): |
|
try: |
|
return getattr(self.data, item) |
|
except AttributeError as e: |
|
raise AttributeError("'MockSeries' object " |
|
f"has no attribute '{item}'") from e |
|
|
|
def test_non_ndarray_with_dtype(self): |
|
x = np.array([1., 2., 3., 4., 5.]) |
|
xs = _TestRFFTBase.MockSeries(x) |
|
|
|
expected = [1, 2, 3, 4, 5] |
|
rfft(xs) |
|
|
|
|
|
assert_equal(x, expected) |
|
assert_equal(xs.data, expected) |
|
|
|
def test_complex_input(self): |
|
assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64)) |
|
|
|
|
|
class TestRFFTDouble(_TestRFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex128 |
|
self.rdt = np.float64 |
|
|
|
|
|
class TestRFFTSingle(_TestRFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex64 |
|
self.rdt = np.float32 |
|
|
|
|
|
class _TestIRFFTBase: |
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
def test_definition(self): |
|
x1 = [1,2,3,4,1,2,3,4] |
|
x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j] |
|
x2 = [1,2,3,4,1,2,3,4,5] |
|
x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j] |
|
|
|
def _test(x, xr): |
|
y = irfft(np.array(x, dtype=self.rdt)) |
|
y1 = direct_irdft(x) |
|
assert_equal(y.dtype, self.rdt) |
|
assert_array_almost_equal(y,y1, decimal=self.ndec) |
|
assert_array_almost_equal(y,ifft(xr), decimal=self.ndec) |
|
|
|
_test(x1, x1_1) |
|
_test(x2, x2_1) |
|
|
|
def test_random_real(self): |
|
for size in [1,51,111,100,200,64,128,256,1024]: |
|
x = random([size]).astype(self.rdt) |
|
y1 = irfft(rfft(x)) |
|
y2 = rfft(irfft(x)) |
|
assert_equal(y1.dtype, self.rdt) |
|
assert_equal(y2.dtype, self.rdt) |
|
assert_array_almost_equal(y1, x, decimal=self.ndec, |
|
err_msg="size=%d" % size) |
|
assert_array_almost_equal(y2, x, decimal=self.ndec, |
|
err_msg="size=%d" % size) |
|
|
|
def test_size_accuracy(self): |
|
|
|
if self.rdt == np.float32: |
|
rtol = 1e-5 |
|
elif self.rdt == np.float64: |
|
rtol = 1e-10 |
|
|
|
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: |
|
np.random.seed(1234) |
|
x = np.random.rand(size).astype(self.rdt) |
|
y = irfft(rfft(x)) |
|
_assert_close_in_norm(x, y, rtol, size, self.rdt) |
|
y = rfft(irfft(x)) |
|
_assert_close_in_norm(x, y, rtol, size, self.rdt) |
|
|
|
def test_invalid_sizes(self): |
|
assert_raises(ValueError, irfft, []) |
|
assert_raises(ValueError, irfft, [[1,1],[2,2]], -5) |
|
|
|
def test_complex_input(self): |
|
assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64)) |
|
|
|
|
|
|
|
|
|
|
|
class TestIRFFTDouble(_TestIRFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex128 |
|
self.rdt = np.float64 |
|
self.ndec = 14 |
|
|
|
|
|
class TestIRFFTSingle(_TestIRFFTBase): |
|
def setup_method(self): |
|
self.cdt = np.complex64 |
|
self.rdt = np.float32 |
|
self.ndec = 5 |
|
|
|
|
|
class Testfft2: |
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
def test_regression_244(self): |
|
"""FFT returns wrong result with axes parameter.""" |
|
|
|
|
|
x = numpy.ones((4, 4, 2)) |
|
y = fft2(x, shape=(8, 8), axes=(-3, -2)) |
|
y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2)) |
|
assert_array_almost_equal(y, y_r) |
|
|
|
def test_invalid_sizes(self): |
|
assert_raises(ValueError, fft2, [[]]) |
|
assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3)) |
|
|
|
|
|
class TestFftnSingle: |
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
def test_definition(self): |
|
x = [[1, 2, 3], |
|
[4, 5, 6], |
|
[7, 8, 9]] |
|
y = fftn(np.array(x, np.float32)) |
|
assert_(y.dtype == np.complex64, |
|
msg="double precision output with single precision") |
|
|
|
y_r = np.array(fftn(x), np.complex64) |
|
assert_array_almost_equal_nulp(y, y_r) |
|
|
|
@pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES) |
|
def test_size_accuracy_small(self, size): |
|
rng = np.random.default_rng(1234) |
|
x = rng.random((size, size)) + 1j*rng.random((size, size)) |
|
y1 = fftn(x.real.astype(np.float32)) |
|
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) |
|
|
|
assert_equal(y1.dtype, np.complex64) |
|
assert_array_almost_equal_nulp(y1, y2, 2000) |
|
|
|
@pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES) |
|
def test_size_accuracy_large(self, size): |
|
rand = np.random.default_rng(1234) |
|
x = rand.random((size, 3)) + 1j*rand.random((size, 3)) |
|
y1 = fftn(x.real.astype(np.float32)) |
|
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) |
|
|
|
assert_equal(y1.dtype, np.complex64) |
|
assert_array_almost_equal_nulp(y1, y2, 2000) |
|
|
|
def test_definition_float16(self): |
|
x = [[1, 2, 3], |
|
[4, 5, 6], |
|
[7, 8, 9]] |
|
y = fftn(np.array(x, np.float16)) |
|
assert_equal(y.dtype, np.complex64) |
|
y_r = np.array(fftn(x), np.complex64) |
|
assert_array_almost_equal_nulp(y, y_r) |
|
|
|
@pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES) |
|
def test_float16_input_small(self, size): |
|
rng = np.random.default_rng(1234) |
|
x = rng.random((size, size)) + 1j * rng.random((size, size)) |
|
y1 = fftn(x.real.astype(np.float16)) |
|
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) |
|
|
|
assert_equal(y1.dtype, np.complex64) |
|
assert_array_almost_equal_nulp(y1, y2, 5e5) |
|
|
|
@pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES) |
|
def test_float16_input_large(self, size): |
|
rng = np.random.default_rng(1234) |
|
x = rng.random((size, 3)) + 1j*rng.random((size, 3)) |
|
y1 = fftn(x.real.astype(np.float16)) |
|
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) |
|
|
|
assert_equal(y1.dtype, np.complex64) |
|
assert_array_almost_equal_nulp(y1, y2, 2e6) |
|
|
|
|
|
class TestFftn: |
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
def test_definition(self): |
|
x = [[1, 2, 3], |
|
[4, 5, 6], |
|
[7, 8, 9]] |
|
y = fftn(x) |
|
assert_array_almost_equal(y, direct_dftn(x)) |
|
|
|
x = random((20, 26)) |
|
assert_array_almost_equal(fftn(x), direct_dftn(x)) |
|
|
|
x = random((5, 4, 3, 20)) |
|
assert_array_almost_equal(fftn(x), direct_dftn(x)) |
|
|
|
def test_axes_argument(self): |
|
|
|
plane1 = [[1, 2, 3], |
|
[4, 5, 6], |
|
[7, 8, 9]] |
|
plane2 = [[10, 11, 12], |
|
[13, 14, 15], |
|
[16, 17, 18]] |
|
plane3 = [[19, 20, 21], |
|
[22, 23, 24], |
|
[25, 26, 27]] |
|
ki_plane1 = [[1, 2, 3], |
|
[10, 11, 12], |
|
[19, 20, 21]] |
|
ki_plane2 = [[4, 5, 6], |
|
[13, 14, 15], |
|
[22, 23, 24]] |
|
ki_plane3 = [[7, 8, 9], |
|
[16, 17, 18], |
|
[25, 26, 27]] |
|
jk_plane1 = [[1, 10, 19], |
|
[4, 13, 22], |
|
[7, 16, 25]] |
|
jk_plane2 = [[2, 11, 20], |
|
[5, 14, 23], |
|
[8, 17, 26]] |
|
jk_plane3 = [[3, 12, 21], |
|
[6, 15, 24], |
|
[9, 18, 27]] |
|
kj_plane1 = [[1, 4, 7], |
|
[10, 13, 16], [19, 22, 25]] |
|
kj_plane2 = [[2, 5, 8], |
|
[11, 14, 17], [20, 23, 26]] |
|
kj_plane3 = [[3, 6, 9], |
|
[12, 15, 18], [21, 24, 27]] |
|
ij_plane1 = [[1, 4, 7], |
|
[2, 5, 8], |
|
[3, 6, 9]] |
|
ij_plane2 = [[10, 13, 16], |
|
[11, 14, 17], |
|
[12, 15, 18]] |
|
ij_plane3 = [[19, 22, 25], |
|
[20, 23, 26], |
|
[21, 24, 27]] |
|
ik_plane1 = [[1, 10, 19], |
|
[2, 11, 20], |
|
[3, 12, 21]] |
|
ik_plane2 = [[4, 13, 22], |
|
[5, 14, 23], |
|
[6, 15, 24]] |
|
ik_plane3 = [[7, 16, 25], |
|
[8, 17, 26], |
|
[9, 18, 27]] |
|
ijk_space = [jk_plane1, jk_plane2, jk_plane3] |
|
ikj_space = [kj_plane1, kj_plane2, kj_plane3] |
|
jik_space = [ik_plane1, ik_plane2, ik_plane3] |
|
jki_space = [ki_plane1, ki_plane2, ki_plane3] |
|
kij_space = [ij_plane1, ij_plane2, ij_plane3] |
|
x = array([plane1, plane2, plane3]) |
|
|
|
assert_array_almost_equal(fftn(x), |
|
fftn(x, axes=(-3, -2, -1))) |
|
assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2))) |
|
assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1))) |
|
y = fftn(x, axes=(2, 1, 0)) |
|
assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space)) |
|
y = fftn(x, axes=(2, 0, 1)) |
|
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2), |
|
fftn(ikj_space)) |
|
y = fftn(x, axes=(1, 2, 0)) |
|
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2), |
|
fftn(jik_space)) |
|
y = fftn(x, axes=(1, 0, 2)) |
|
assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space)) |
|
y = fftn(x, axes=(0, 2, 1)) |
|
assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space)) |
|
|
|
y = fftn(x, axes=(-2, -1)) |
|
assert_array_almost_equal(fftn(plane1), y[0]) |
|
assert_array_almost_equal(fftn(plane2), y[1]) |
|
assert_array_almost_equal(fftn(plane3), y[2]) |
|
|
|
y = fftn(x, axes=(1, 2)) |
|
assert_array_almost_equal(fftn(plane1), y[0]) |
|
assert_array_almost_equal(fftn(plane2), y[1]) |
|
assert_array_almost_equal(fftn(plane3), y[2]) |
|
|
|
y = fftn(x, axes=(-3, -2)) |
|
assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0]) |
|
assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1]) |
|
assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2]) |
|
|
|
y = fftn(x, axes=(-3, -1)) |
|
assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :]) |
|
assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :]) |
|
assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :]) |
|
|
|
y = fftn(x, axes=(-1, -2)) |
|
assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1)) |
|
assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1)) |
|
assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1)) |
|
|
|
y = fftn(x, axes=(-1, -3)) |
|
assert_array_almost_equal(fftn(ik_plane1), |
|
swapaxes(y[:, 0, :], -1, -2)) |
|
assert_array_almost_equal(fftn(ik_plane2), |
|
swapaxes(y[:, 1, :], -1, -2)) |
|
assert_array_almost_equal(fftn(ik_plane3), |
|
swapaxes(y[:, 2, :], -1, -2)) |
|
|
|
y = fftn(x, axes=(-2, -3)) |
|
assert_array_almost_equal(fftn(jk_plane1), |
|
swapaxes(y[:, :, 0], -1, -2)) |
|
assert_array_almost_equal(fftn(jk_plane2), |
|
swapaxes(y[:, :, 1], -1, -2)) |
|
assert_array_almost_equal(fftn(jk_plane3), |
|
swapaxes(y[:, :, 2], -1, -2)) |
|
|
|
y = fftn(x, axes=(-1,)) |
|
for i in range(3): |
|
for j in range(3): |
|
assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :]) |
|
y = fftn(x, axes=(-2,)) |
|
for i in range(3): |
|
for j in range(3): |
|
assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j]) |
|
y = fftn(x, axes=(0,)) |
|
for i in range(3): |
|
for j in range(3): |
|
assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j]) |
|
|
|
y = fftn(x, axes=()) |
|
assert_array_almost_equal(y, x) |
|
|
|
def test_shape_argument(self): |
|
small_x = [[1, 2, 3], |
|
[4, 5, 6]] |
|
large_x1 = [[1, 2, 3, 0], |
|
[4, 5, 6, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]] |
|
|
|
y = fftn(small_x, shape=(4, 4)) |
|
assert_array_almost_equal(y, fftn(large_x1)) |
|
|
|
y = fftn(small_x, shape=(3, 4)) |
|
assert_array_almost_equal(y, fftn(large_x1[:-1])) |
|
|
|
def test_shape_axes_argument(self): |
|
small_x = [[1, 2, 3], |
|
[4, 5, 6], |
|
[7, 8, 9]] |
|
large_x1 = array([[1, 2, 3, 0], |
|
[4, 5, 6, 0], |
|
[7, 8, 9, 0], |
|
[0, 0, 0, 0]]) |
|
y = fftn(small_x, shape=(4, 4), axes=(-2, -1)) |
|
assert_array_almost_equal(y, fftn(large_x1)) |
|
y = fftn(small_x, shape=(4, 4), axes=(-1, -2)) |
|
|
|
assert_array_almost_equal(y, swapaxes( |
|
fftn(swapaxes(large_x1, -1, -2)), -1, -2)) |
|
|
|
def test_shape_axes_argument2(self): |
|
|
|
x = numpy.random.random((10, 5, 3, 7)) |
|
y = fftn(x, axes=(-1,), shape=(8,)) |
|
assert_array_almost_equal(y, fft(x, axis=-1, n=8)) |
|
|
|
|
|
x = numpy.random.random((10, 5, 3, 7)) |
|
y = fftn(x, axes=(-2,), shape=(8,)) |
|
assert_array_almost_equal(y, fft(x, axis=-2, n=8)) |
|
|
|
|
|
x = numpy.random.random((4, 4, 2)) |
|
y = fftn(x, axes=(-3, -2), shape=(8, 8)) |
|
assert_array_almost_equal(y, |
|
numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8))) |
|
|
|
def test_shape_argument_more(self): |
|
x = zeros((4, 4, 2)) |
|
with assert_raises(ValueError, |
|
match="when given, axes and shape arguments" |
|
" have to be of the same length"): |
|
fftn(x, shape=(8, 8, 2, 1)) |
|
|
|
def test_invalid_sizes(self): |
|
with assert_raises(ValueError, |
|
match="invalid number of data points" |
|
r" \(\[1, 0\]\) specified"): |
|
fftn([[]]) |
|
|
|
with assert_raises(ValueError, |
|
match="invalid number of data points" |
|
r" \(\[4, -3\]\) specified"): |
|
fftn([[1, 1], [2, 2]], (4, -3)) |
|
|
|
|
|
class TestIfftn: |
|
dtype = None |
|
cdtype = None |
|
|
|
def setup_method(self): |
|
np.random.seed(1234) |
|
|
|
@pytest.mark.parametrize('dtype,cdtype,maxnlp', |
|
[(np.float64, np.complex128, 2000), |
|
(np.float32, np.complex64, 3500)]) |
|
def test_definition(self, dtype, cdtype, maxnlp): |
|
rng = np.random.default_rng(1234) |
|
x = np.array([[1, 2, 3], |
|
[4, 5, 6], |
|
[7, 8, 9]], dtype=dtype) |
|
y = ifftn(x) |
|
assert_equal(y.dtype, cdtype) |
|
assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp) |
|
|
|
x = rng.random((20, 26)) |
|
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp) |
|
|
|
x = rng.random((5, 4, 3, 20)) |
|
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp) |
|
|
|
@pytest.mark.parametrize('maxnlp', [2000, 3500]) |
|
@pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92]) |
|
def test_random_complex(self, maxnlp, size): |
|
rng = np.random.default_rng(1234) |
|
x = rng.random([size, size]) + 1j * rng.random([size, size]) |
|
assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp) |
|
assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp) |
|
|
|
def test_invalid_sizes(self): |
|
with assert_raises(ValueError, |
|
match="invalid number of data points" |
|
r" \(\[1, 0\]\) specified"): |
|
ifftn([[]]) |
|
|
|
with assert_raises(ValueError, |
|
match="invalid number of data points" |
|
r" \(\[4, -3\]\) specified"): |
|
ifftn([[1, 1], [2, 2]], (4, -3)) |
|
|
|
|
|
class FakeArray: |
|
def __init__(self, data): |
|
self._data = data |
|
self.__array_interface__ = data.__array_interface__ |
|
|
|
|
|
class FakeArray2: |
|
def __init__(self, data): |
|
self._data = data |
|
|
|
def __array__(self, dtype=None, copy=None): |
|
return self._data |
|
|
|
|
|
class TestOverwrite: |
|
"""Check input overwrite behavior of the FFT functions.""" |
|
|
|
real_dtypes = (np.float32, np.float64) |
|
dtypes = real_dtypes + (np.complex64, np.complex128) |
|
fftsizes = [8, 16, 32] |
|
|
|
def _check(self, x, routine, fftsize, axis, overwrite_x): |
|
x2 = x.copy() |
|
for fake in [lambda x: x, FakeArray, FakeArray2]: |
|
routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x) |
|
|
|
sig = (f"{routine.__name__}({x.dtype}{x.shape!r}, {fftsize!r}, " |
|
f"axis={axis!r}, overwrite_x={overwrite_x!r})") |
|
if not overwrite_x: |
|
assert_equal(x2, x, err_msg=f"spurious overwrite in {sig}") |
|
|
|
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes, |
|
fftsize, overwrite_x): |
|
np.random.seed(1234) |
|
if np.issubdtype(dtype, np.complexfloating): |
|
data = np.random.randn(*shape) + 1j*np.random.randn(*shape) |
|
else: |
|
data = np.random.randn(*shape) |
|
data = data.astype(dtype) |
|
|
|
self._check(data, routine, fftsize, axis, |
|
overwrite_x=overwrite_x) |
|
|
|
@pytest.mark.parametrize('dtype', dtypes) |
|
@pytest.mark.parametrize('fftsize', fftsizes) |
|
@pytest.mark.parametrize('overwrite_x', [True, False]) |
|
@pytest.mark.parametrize('shape,axes', [((16,), -1), |
|
((16, 2), 0), |
|
((2, 16), 1)]) |
|
def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes): |
|
overwritable = (np.complex128, np.complex64) |
|
self._check_1d(fft, dtype, shape, axes, overwritable, |
|
fftsize, overwrite_x) |
|
self._check_1d(ifft, dtype, shape, axes, overwritable, |
|
fftsize, overwrite_x) |
|
|
|
@pytest.mark.parametrize('dtype', real_dtypes) |
|
@pytest.mark.parametrize('fftsize', fftsizes) |
|
@pytest.mark.parametrize('overwrite_x', [True, False]) |
|
@pytest.mark.parametrize('shape,axes', [((16,), -1), |
|
((16, 2), 0), |
|
((2, 16), 1)]) |
|
def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes): |
|
overwritable = self.real_dtypes |
|
self._check_1d(irfft, dtype, shape, axes, overwritable, |
|
fftsize, overwrite_x) |
|
self._check_1d(rfft, dtype, shape, axes, overwritable, |
|
fftsize, overwrite_x) |
|
|
|
def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes, |
|
overwrite_x): |
|
np.random.seed(1234) |
|
if np.issubdtype(dtype, np.complexfloating): |
|
data = np.random.randn(*shape) + 1j*np.random.randn(*shape) |
|
else: |
|
data = np.random.randn(*shape) |
|
data = data.astype(dtype) |
|
|
|
def fftshape_iter(shp): |
|
if len(shp) <= 0: |
|
yield () |
|
else: |
|
for j in (shp[0]//2, shp[0], shp[0]*2): |
|
for rest in fftshape_iter(shp[1:]): |
|
yield (j,) + rest |
|
|
|
if axes is None: |
|
part_shape = shape |
|
else: |
|
part_shape = tuple(np.take(shape, axes)) |
|
|
|
for fftshape in fftshape_iter(part_shape): |
|
self._check(data, routine, fftshape, axes, |
|
overwrite_x=overwrite_x) |
|
if data.ndim > 1: |
|
self._check(data.T, routine, fftshape, axes, |
|
overwrite_x=overwrite_x) |
|
|
|
@pytest.mark.parametrize('dtype', dtypes) |
|
@pytest.mark.parametrize('overwrite_x', [True, False]) |
|
@pytest.mark.parametrize('shape,axes', [((16,), None), |
|
((16,), (0,)), |
|
((16, 2), (0,)), |
|
((2, 16), (1,)), |
|
((8, 16), None), |
|
((8, 16), (0, 1)), |
|
((8, 16, 2), (0, 1)), |
|
((8, 16, 2), (1, 2)), |
|
((8, 16, 2), (0,)), |
|
((8, 16, 2), (1,)), |
|
((8, 16, 2), (2,)), |
|
((8, 16, 2), None), |
|
((8, 16, 2), (0, 1, 2))]) |
|
def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes): |
|
overwritable = (np.complex128, np.complex64) |
|
self._check_nd_one(fftn, dtype, shape, axes, overwritable, |
|
overwrite_x) |
|
self._check_nd_one(ifftn, dtype, shape, axes, overwritable, |
|
overwrite_x) |
|
|
|
|
|
@pytest.mark.parametrize('func', [fftn, ifftn, fft2]) |
|
def test_shape_axes_ndarray(func): |
|
|
|
|
|
a = np.random.rand(10, 10) |
|
|
|
expect = func(a, shape=(5, 5)) |
|
actual = func(a, shape=np.array([5, 5])) |
|
assert_equal(expect, actual) |
|
|
|
expect = func(a, axes=(-1,)) |
|
actual = func(a, axes=np.array([-1,])) |
|
assert_equal(expect, actual) |
|
|
|
expect = func(a, shape=(4, 7), axes=(1, 0)) |
|
actual = func(a, shape=np.array([4, 7]), axes=np.array([1, 0])) |
|
assert_equal(expect, actual) |
|
|