|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg', |
|
'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der', |
|
'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime', |
|
'line_search', 'check_grad', 'OptimizeResult', 'show_options', |
|
'OptimizeWarning'] |
|
|
|
__docformat__ = "restructuredtext en" |
|
|
|
import math |
|
import warnings |
|
import sys |
|
import inspect |
|
from numpy import eye, argmin, zeros, shape, asarray, sqrt |
|
import numpy as np |
|
from scipy.linalg import cholesky, issymmetric, LinAlgError |
|
from scipy.sparse.linalg import LinearOperator |
|
from ._linesearch import (line_search_wolfe1, line_search_wolfe2, |
|
line_search_wolfe2 as line_search, |
|
LineSearchWarning) |
|
from ._numdiff import approx_derivative |
|
from scipy._lib._util import getfullargspec_no_self as _getfullargspec |
|
from scipy._lib._util import (MapWrapper, check_random_state, _RichResult, |
|
_call_callback_maybe_halt, _transition_to_rng) |
|
from scipy.optimize._differentiable_functions import ScalarFunction, FD_METHODS |
|
from scipy._lib._array_api import array_namespace |
|
from scipy._lib import array_api_extra as xpx |
|
|
|
|
|
|
|
_status_message = {'success': 'Optimization terminated successfully.', |
|
'maxfev': 'Maximum number of function evaluations has ' |
|
'been exceeded.', |
|
'maxiter': 'Maximum number of iterations has been ' |
|
'exceeded.', |
|
'pr_loss': 'Desired error not necessarily achieved due ' |
|
'to precision loss.', |
|
'nan': 'NaN result encountered.', |
|
'out_of_bounds': 'The result is outside of the provided ' |
|
'bounds.'} |
|
|
|
|
|
class MemoizeJac: |
|
"""Decorator that caches the return values of a function returning ``(fun, grad)`` |
|
each time it is called.""" |
|
|
|
def __init__(self, fun): |
|
self.fun = fun |
|
self.jac = None |
|
self._value = None |
|
self.x = None |
|
|
|
def _compute_if_needed(self, x, *args): |
|
if not np.all(x == self.x) or self._value is None or self.jac is None: |
|
self.x = np.asarray(x).copy() |
|
fg = self.fun(x, *args) |
|
self.jac = fg[1] |
|
self._value = fg[0] |
|
|
|
def __call__(self, x, *args): |
|
""" returns the function value """ |
|
self._compute_if_needed(x, *args) |
|
return self._value |
|
|
|
def derivative(self, x, *args): |
|
self._compute_if_needed(x, *args) |
|
return self.jac |
|
|
|
|
|
def _wrap_callback(callback, method=None): |
|
"""Wrap a user-provided callback so that attributes can be attached.""" |
|
if callback is None or method in {'tnc', 'slsqp', 'cobyla', 'cobyqa'}: |
|
return callback |
|
|
|
sig = inspect.signature(callback) |
|
|
|
if set(sig.parameters) == {'intermediate_result'}: |
|
def wrapped_callback(res): |
|
return callback(intermediate_result=res) |
|
elif method == 'trust-constr': |
|
def wrapped_callback(res): |
|
return callback(np.copy(res.x), res) |
|
elif method == 'differential_evolution': |
|
def wrapped_callback(res): |
|
return callback(np.copy(res.x), res.convergence) |
|
else: |
|
def wrapped_callback(res): |
|
return callback(np.copy(res.x)) |
|
|
|
wrapped_callback.stop_iteration = False |
|
return wrapped_callback |
|
|
|
|
|
class OptimizeResult(_RichResult): |
|
""" |
|
Represents the optimization result. |
|
|
|
Attributes |
|
---------- |
|
x : ndarray |
|
The solution of the optimization. |
|
success : bool |
|
Whether or not the optimizer exited successfully. |
|
status : int |
|
Termination status of the optimizer. Its value depends on the |
|
underlying solver. Refer to `message` for details. |
|
message : str |
|
Description of the cause of the termination. |
|
fun : float |
|
Value of objective function at `x`. |
|
jac, hess : ndarray |
|
Values of objective function's Jacobian and its Hessian at `x` (if |
|
available). The Hessian may be an approximation, see the documentation |
|
of the function in question. |
|
hess_inv : object |
|
Inverse of the objective function's Hessian; may be an approximation. |
|
Not available for all solvers. The type of this attribute may be |
|
either np.ndarray or scipy.sparse.linalg.LinearOperator. |
|
nfev, njev, nhev : int |
|
Number of evaluations of the objective functions and of its |
|
Jacobian and Hessian. |
|
nit : int |
|
Number of iterations performed by the optimizer. |
|
maxcv : float |
|
The maximum constraint violation. |
|
|
|
Notes |
|
----- |
|
Depending on the specific solver being used, `OptimizeResult` may |
|
not have all attributes listed here, and they may have additional |
|
attributes not listed here. Since this class is essentially a |
|
subclass of dict with attribute accessors, one can see which |
|
attributes are available using the `OptimizeResult.keys` method. |
|
|
|
""" |
|
pass |
|
|
|
|
|
class OptimizeWarning(UserWarning): |
|
pass |
|
|
|
def _check_positive_definite(Hk): |
|
def is_pos_def(A): |
|
if issymmetric(A): |
|
try: |
|
cholesky(A) |
|
return True |
|
except LinAlgError: |
|
return False |
|
else: |
|
return False |
|
if Hk is not None: |
|
if not is_pos_def(Hk): |
|
raise ValueError("'hess_inv0' matrix isn't positive definite.") |
|
|
|
|
|
def _check_unknown_options(unknown_options): |
|
if unknown_options: |
|
msg = ", ".join(map(str, unknown_options.keys())) |
|
|
|
|
|
|
|
warnings.warn(f"Unknown solver options: {msg}", OptimizeWarning, stacklevel=4) |
|
|
|
|
|
def is_finite_scalar(x): |
|
"""Test whether `x` is either a finite scalar or a finite array scalar. |
|
|
|
""" |
|
return np.size(x) == 1 and np.isfinite(x) |
|
|
|
|
|
_epsilon = sqrt(np.finfo(float).eps) |
|
|
|
|
|
def vecnorm(x, ord=2): |
|
if ord == np.inf: |
|
return np.amax(np.abs(x)) |
|
elif ord == -np.inf: |
|
return np.amin(np.abs(x)) |
|
else: |
|
return np.sum(np.abs(x)**ord, axis=0)**(1.0 / ord) |
|
|
|
|
|
def _prepare_scalar_function(fun, x0, jac=None, args=(), bounds=None, |
|
epsilon=None, finite_diff_rel_step=None, |
|
hess=None): |
|
""" |
|
Creates a ScalarFunction object for use with scalar minimizers |
|
(BFGS/LBFGSB/SLSQP/TNC/CG/etc). |
|
|
|
Parameters |
|
---------- |
|
fun : callable |
|
The objective function to be minimized. |
|
|
|
``fun(x, *args) -> float`` |
|
|
|
where ``x`` is an 1-D array with shape (n,) and ``args`` |
|
is a tuple of the fixed parameters needed to completely |
|
specify the function. |
|
x0 : ndarray, shape (n,) |
|
Initial guess. Array of real elements of size (n,), |
|
where 'n' is the number of independent variables. |
|
jac : {callable, '2-point', '3-point', 'cs', None}, optional |
|
Method for computing the gradient vector. If it is a callable, it |
|
should be a function that returns the gradient vector: |
|
|
|
``jac(x, *args) -> array_like, shape (n,)`` |
|
|
|
If one of `{'2-point', '3-point', 'cs'}` is selected then the gradient |
|
is calculated with a relative step for finite differences. If `None`, |
|
then two-point finite differences with an absolute step is used. |
|
args : tuple, optional |
|
Extra arguments passed to the objective function and its |
|
derivatives (`fun`, `jac` functions). |
|
bounds : sequence, optional |
|
Bounds on variables. 'new-style' bounds are required. |
|
eps : float or ndarray |
|
If ``jac is None`` the absolute step size used for numerical |
|
approximation of the jacobian via forward differences. |
|
finite_diff_rel_step : None or array_like, optional |
|
If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to |
|
use for numerical approximation of the jacobian. The absolute step |
|
size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, |
|
possibly adjusted to fit into the bounds. For ``jac='3-point'`` |
|
the sign of `h` is ignored. If None (default) then step is selected |
|
automatically. |
|
hess : {callable, '2-point', '3-point', 'cs', None} |
|
Computes the Hessian matrix. If it is callable, it should return the |
|
Hessian matrix: |
|
|
|
``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` |
|
|
|
Alternatively, the keywords {'2-point', '3-point', 'cs'} select a |
|
finite difference scheme for numerical estimation. |
|
Whenever the gradient is estimated via finite-differences, the Hessian |
|
cannot be estimated with options {'2-point', '3-point', 'cs'} and needs |
|
to be estimated using one of the quasi-Newton strategies. |
|
|
|
Returns |
|
------- |
|
sf : ScalarFunction |
|
""" |
|
if callable(jac): |
|
grad = jac |
|
elif jac in FD_METHODS: |
|
|
|
|
|
epsilon = None |
|
grad = jac |
|
else: |
|
|
|
|
|
|
|
|
|
grad = '2-point' |
|
epsilon = epsilon |
|
|
|
if hess is None: |
|
|
|
|
|
|
|
|
|
def hess(x, *args): |
|
return None |
|
|
|
if bounds is None: |
|
bounds = (-np.inf, np.inf) |
|
|
|
|
|
|
|
sf = ScalarFunction(fun, x0, args, grad, hess, |
|
finite_diff_rel_step, bounds, epsilon=epsilon) |
|
|
|
return sf |
|
|
|
|
|
def _clip_x_for_func(func, bounds): |
|
|
|
|
|
|
|
|
|
|
|
def eval(x): |
|
x = _check_clip_x(x, bounds) |
|
return func(x) |
|
|
|
return eval |
|
|
|
|
|
def _check_clip_x(x, bounds): |
|
if (x < bounds[0]).any() or (x > bounds[1]).any(): |
|
warnings.warn("Values in x were outside bounds during a " |
|
"minimize step, clipping to bounds", |
|
RuntimeWarning, stacklevel=3) |
|
x = np.clip(x, bounds[0], bounds[1]) |
|
return x |
|
|
|
return x |
|
|
|
|
|
def rosen(x): |
|
""" |
|
The Rosenbrock function. |
|
|
|
The function computed is:: |
|
|
|
sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0) |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
1-D array of points at which the Rosenbrock function is to be computed. |
|
|
|
Returns |
|
------- |
|
f : float |
|
The value of the Rosenbrock function. |
|
|
|
See Also |
|
-------- |
|
rosen_der, rosen_hess, rosen_hess_prod |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.optimize import rosen |
|
>>> X = 0.1 * np.arange(10) |
|
>>> rosen(X) |
|
76.56 |
|
|
|
For higher-dimensional input ``rosen`` broadcasts. |
|
In the following example, we use this to plot a 2D landscape. |
|
Note that ``rosen_hess`` does not broadcast in this manner. |
|
|
|
>>> import matplotlib.pyplot as plt |
|
>>> from mpl_toolkits.mplot3d import Axes3D |
|
>>> x = np.linspace(-1, 1, 50) |
|
>>> X, Y = np.meshgrid(x, x) |
|
>>> ax = plt.subplot(111, projection='3d') |
|
>>> ax.plot_surface(X, Y, rosen([X, Y])) |
|
>>> plt.show() |
|
""" |
|
xp = array_namespace(x) |
|
x = xp.asarray(x) |
|
if xp.isdtype(x.dtype, 'integral'): |
|
x = xp.astype(x, xp.asarray(1.).dtype) |
|
r = xp.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0, |
|
axis=0, dtype=x.dtype) |
|
return r |
|
|
|
|
|
def rosen_der(x): |
|
""" |
|
The derivative (i.e. gradient) of the Rosenbrock function. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
1-D array of points at which the derivative is to be computed. |
|
|
|
Returns |
|
------- |
|
rosen_der : (N,) ndarray |
|
The gradient of the Rosenbrock function at `x`. |
|
|
|
See Also |
|
-------- |
|
rosen, rosen_hess, rosen_hess_prod |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.optimize import rosen_der |
|
>>> X = 0.1 * np.arange(9) |
|
>>> rosen_der(X) |
|
array([ -2. , 10.6, 15.6, 13.4, 6.4, -3. , -12.4, -19.4, 62. ]) |
|
|
|
""" |
|
xp = array_namespace(x) |
|
x = xp.asarray(x) |
|
if xp.isdtype(x.dtype, 'integral'): |
|
x = xp.astype(x, xp.asarray(1.).dtype) |
|
xm = x[1:-1] |
|
xm_m1 = x[:-2] |
|
xm_p1 = x[2:] |
|
der = xp.zeros_like(x) |
|
der[1:-1] = (200 * (xm - xm_m1**2) - |
|
400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm)) |
|
der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0]) |
|
der[-1] = 200 * (x[-1] - x[-2]**2) |
|
return der |
|
|
|
|
|
def rosen_hess(x): |
|
""" |
|
The Hessian matrix of the Rosenbrock function. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
1-D array of points at which the Hessian matrix is to be computed. |
|
|
|
Returns |
|
------- |
|
rosen_hess : ndarray |
|
The Hessian matrix of the Rosenbrock function at `x`. |
|
|
|
See Also |
|
-------- |
|
rosen, rosen_der, rosen_hess_prod |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.optimize import rosen_hess |
|
>>> X = 0.1 * np.arange(4) |
|
>>> rosen_hess(X) |
|
array([[-38., 0., 0., 0.], |
|
[ 0., 134., -40., 0.], |
|
[ 0., -40., 130., -80.], |
|
[ 0., 0., -80., 200.]]) |
|
|
|
""" |
|
xp = array_namespace(x) |
|
x = xpx.atleast_nd(x, ndim=1, xp=xp) |
|
if xp.isdtype(x.dtype, 'integral'): |
|
x = xp.astype(x, xp.asarray(1.).dtype) |
|
H = (xpx.create_diagonal(-400 * x[:-1], offset=1, xp=xp) |
|
- xpx.create_diagonal(400 * x[:-1], offset=-1, xp=xp)) |
|
diagonal = xp.zeros(x.shape[0], dtype=x.dtype) |
|
diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2 |
|
diagonal[-1] = 200 |
|
diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:] |
|
return H + xpx.create_diagonal(diagonal, xp=xp) |
|
|
|
|
|
def rosen_hess_prod(x, p): |
|
""" |
|
Product of the Hessian matrix of the Rosenbrock function with a vector. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
1-D array of points at which the Hessian matrix is to be computed. |
|
p : array_like |
|
1-D array, the vector to be multiplied by the Hessian matrix. |
|
|
|
Returns |
|
------- |
|
rosen_hess_prod : ndarray |
|
The Hessian matrix of the Rosenbrock function at `x` multiplied |
|
by the vector `p`. |
|
|
|
See Also |
|
-------- |
|
rosen, rosen_der, rosen_hess |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.optimize import rosen_hess_prod |
|
>>> X = 0.1 * np.arange(9) |
|
>>> p = 0.5 * np.arange(9) |
|
>>> rosen_hess_prod(X, p) |
|
array([ -0., 27., -10., -95., -192., -265., -278., -195., -180.]) |
|
|
|
""" |
|
xp = array_namespace(x, p) |
|
x = xpx.atleast_nd(x, ndim=1, xp=xp) |
|
if xp.isdtype(x.dtype, 'integral'): |
|
x = xp.astype(x, xp.asarray(1.).dtype) |
|
p = xp.asarray(p, dtype=x.dtype) |
|
Hp = xp.zeros(x.shape[0], dtype=x.dtype) |
|
Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1] |
|
Hp[1:-1] = (-400 * x[:-2] * p[:-2] + |
|
(202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] - |
|
400 * x[1:-1] * p[2:]) |
|
Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1] |
|
return Hp |
|
|
|
|
|
def _wrap_scalar_function(function, args): |
|
|
|
|
|
ncalls = [0] |
|
if function is None: |
|
return ncalls, None |
|
|
|
def function_wrapper(x, *wrapper_args): |
|
ncalls[0] += 1 |
|
|
|
fx = function(np.copy(x), *(wrapper_args + args)) |
|
|
|
|
|
if not np.isscalar(fx): |
|
try: |
|
fx = np.asarray(fx).item() |
|
except (TypeError, ValueError) as e: |
|
raise ValueError("The user-provided objective function " |
|
"must return a scalar value.") from e |
|
return fx |
|
|
|
return ncalls, function_wrapper |
|
|
|
|
|
class _MaxFuncCallError(RuntimeError): |
|
pass |
|
|
|
|
|
def _wrap_scalar_function_maxfun_validation(function, args, maxfun): |
|
|
|
|
|
ncalls = [0] |
|
if function is None: |
|
return ncalls, None |
|
|
|
def function_wrapper(x, *wrapper_args): |
|
if ncalls[0] >= maxfun: |
|
raise _MaxFuncCallError("Too many function calls") |
|
ncalls[0] += 1 |
|
|
|
fx = function(np.copy(x), *(wrapper_args + args)) |
|
|
|
|
|
|
|
if not np.isscalar(fx): |
|
try: |
|
fx = np.asarray(fx).item() |
|
except (TypeError, ValueError) as e: |
|
raise ValueError("The user-provided objective function " |
|
"must return a scalar value.") from e |
|
return fx |
|
|
|
return ncalls, function_wrapper |
|
|
|
|
|
def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None, |
|
full_output=0, disp=1, retall=0, callback=None, initial_simplex=None): |
|
""" |
|
Minimize a function using the downhill simplex algorithm. |
|
|
|
This algorithm only uses function values, not derivatives or second |
|
derivatives. |
|
|
|
Parameters |
|
---------- |
|
func : callable func(x,*args) |
|
The objective function to be minimized. |
|
x0 : ndarray |
|
Initial guess. |
|
args : tuple, optional |
|
Extra arguments passed to func, i.e., ``f(x,*args)``. |
|
xtol : float, optional |
|
Absolute error in xopt between iterations that is acceptable for |
|
convergence. |
|
ftol : number, optional |
|
Absolute error in func(xopt) between iterations that is acceptable for |
|
convergence. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. |
|
maxfun : number, optional |
|
Maximum number of function evaluations to make. |
|
full_output : bool, optional |
|
Set to True if fopt and warnflag outputs are desired. |
|
disp : bool, optional |
|
Set to True to print convergence messages. |
|
retall : bool, optional |
|
Set to True to return list of solutions at each iteration. |
|
callback : callable, optional |
|
Called after each iteration, as callback(xk), where xk is the |
|
current parameter vector. |
|
initial_simplex : array_like of shape (N + 1, N), optional |
|
Initial simplex. If given, overrides `x0`. |
|
``initial_simplex[j,:]`` should contain the coordinates of |
|
the jth vertex of the ``N+1`` vertices in the simplex, where |
|
``N`` is the dimension. |
|
|
|
Returns |
|
------- |
|
xopt : ndarray |
|
Parameter that minimizes function. |
|
fopt : float |
|
Value of function at minimum: ``fopt = func(xopt)``. |
|
iter : int |
|
Number of iterations performed. |
|
funcalls : int |
|
Number of function calls made. |
|
warnflag : int |
|
1 : Maximum number of function evaluations made. |
|
2 : Maximum number of iterations reached. |
|
allvecs : list |
|
Solution at each iteration. |
|
|
|
See also |
|
-------- |
|
minimize: Interface to minimization algorithms for multivariate |
|
functions. See the 'Nelder-Mead' `method` in particular. |
|
|
|
Notes |
|
----- |
|
Uses a Nelder-Mead simplex algorithm to find the minimum of function of |
|
one or more variables. |
|
|
|
This algorithm has a long history of successful use in applications. |
|
But it will usually be slower than an algorithm that uses first or |
|
second derivative information. In practice, it can have poor |
|
performance in high-dimensional problems and is not robust to |
|
minimizing complicated functions. Additionally, there currently is no |
|
complete theory describing when the algorithm will successfully |
|
converge to the minimum, or how fast it will if it does. Both the ftol and |
|
xtol criteria must be met for convergence. |
|
|
|
Examples |
|
-------- |
|
>>> def f(x): |
|
... return x**2 |
|
|
|
>>> from scipy import optimize |
|
|
|
>>> minimum = optimize.fmin(f, 1) |
|
Optimization terminated successfully. |
|
Current function value: 0.000000 |
|
Iterations: 17 |
|
Function evaluations: 34 |
|
>>> minimum[0] |
|
-8.8817841970012523e-16 |
|
|
|
References |
|
---------- |
|
.. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function |
|
minimization", The Computer Journal, 7, pp. 308-313 |
|
|
|
.. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now |
|
Respectable", in Numerical Analysis 1995, Proceedings of the |
|
1995 Dundee Biennial Conference in Numerical Analysis, D.F. |
|
Griffiths and G.A. Watson (Eds.), Addison Wesley Longman, |
|
Harlow, UK, pp. 191-208. |
|
|
|
""" |
|
opts = {'xatol': xtol, |
|
'fatol': ftol, |
|
'maxiter': maxiter, |
|
'maxfev': maxfun, |
|
'disp': disp, |
|
'return_all': retall, |
|
'initial_simplex': initial_simplex} |
|
|
|
callback = _wrap_callback(callback) |
|
res = _minimize_neldermead(func, x0, args, callback=callback, **opts) |
|
if full_output: |
|
retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status'] |
|
if retall: |
|
retlist += (res['allvecs'], ) |
|
return retlist |
|
else: |
|
if retall: |
|
return res['x'], res['allvecs'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_neldermead(func, x0, args=(), callback=None, |
|
maxiter=None, maxfev=None, disp=False, |
|
return_all=False, initial_simplex=None, |
|
xatol=1e-4, fatol=1e-4, adaptive=False, bounds=None, |
|
**unknown_options): |
|
""" |
|
Minimization of scalar function of one or more variables using the |
|
Nelder-Mead algorithm. |
|
|
|
Options |
|
------- |
|
disp : bool |
|
Set to True to print convergence messages. |
|
maxiter, maxfev : int |
|
Maximum allowed number of iterations and function evaluations. |
|
Will default to ``N*200``, where ``N`` is the number of |
|
variables, if neither `maxiter` or `maxfev` is set. If both |
|
`maxiter` and `maxfev` are set, minimization will stop at the |
|
first reached. |
|
return_all : bool, optional |
|
Set to True to return a list of the best solution at each of the |
|
iterations. |
|
initial_simplex : array_like of shape (N + 1, N) |
|
Initial simplex. If given, overrides `x0`. |
|
``initial_simplex[j,:]`` should contain the coordinates of |
|
the jth vertex of the ``N+1`` vertices in the simplex, where |
|
``N`` is the dimension. |
|
xatol : float, optional |
|
Absolute error in xopt between iterations that is acceptable for |
|
convergence. |
|
fatol : number, optional |
|
Absolute error in func(xopt) between iterations that is acceptable for |
|
convergence. |
|
adaptive : bool, optional |
|
Adapt algorithm parameters to dimensionality of problem. Useful for |
|
high-dimensional minimization [1]_. |
|
bounds : sequence or `Bounds`, optional |
|
Bounds on variables. There are two ways to specify the bounds: |
|
|
|
1. Instance of `Bounds` class. |
|
2. Sequence of ``(min, max)`` pairs for each element in `x`. None |
|
is used to specify no bound. |
|
|
|
Note that this just clips all vertices in simplex based on |
|
the bounds. |
|
|
|
References |
|
---------- |
|
.. [1] Gao, F. and Han, L. |
|
Implementing the Nelder-Mead simplex algorithm with adaptive |
|
parameters. 2012. Computational Optimization and Applications. |
|
51:1, pp. 259-277 |
|
|
|
""" |
|
_check_unknown_options(unknown_options) |
|
maxfun = maxfev |
|
retall = return_all |
|
|
|
x0 = np.atleast_1d(x0).flatten() |
|
dtype = x0.dtype if np.issubdtype(x0.dtype, np.inexact) else np.float64 |
|
x0 = np.asarray(x0, dtype=dtype) |
|
|
|
if adaptive: |
|
dim = float(len(x0)) |
|
rho = 1 |
|
chi = 1 + 2/dim |
|
psi = 0.75 - 1/(2*dim) |
|
sigma = 1 - 1/dim |
|
else: |
|
rho = 1 |
|
chi = 2 |
|
psi = 0.5 |
|
sigma = 0.5 |
|
|
|
nonzdelt = 0.05 |
|
zdelt = 0.00025 |
|
|
|
if bounds is not None: |
|
lower_bound, upper_bound = bounds.lb, bounds.ub |
|
|
|
if (lower_bound > upper_bound).any(): |
|
raise ValueError("Nelder Mead - one of the lower bounds " |
|
"is greater than an upper bound.") |
|
if np.any(lower_bound > x0) or np.any(x0 > upper_bound): |
|
warnings.warn("Initial guess is not within the specified bounds", |
|
OptimizeWarning, stacklevel=3) |
|
|
|
if bounds is not None: |
|
x0 = np.clip(x0, lower_bound, upper_bound) |
|
|
|
if initial_simplex is None: |
|
N = len(x0) |
|
|
|
sim = np.empty((N + 1, N), dtype=x0.dtype) |
|
sim[0] = x0 |
|
for k in range(N): |
|
y = np.array(x0, copy=True) |
|
if y[k] != 0: |
|
y[k] = (1 + nonzdelt)*y[k] |
|
else: |
|
y[k] = zdelt |
|
sim[k + 1] = y |
|
else: |
|
sim = np.atleast_2d(initial_simplex).copy() |
|
dtype = sim.dtype if np.issubdtype(sim.dtype, np.inexact) else np.float64 |
|
sim = np.asarray(sim, dtype=dtype) |
|
if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1: |
|
raise ValueError("`initial_simplex` should be an array of shape (N+1,N)") |
|
if len(x0) != sim.shape[1]: |
|
raise ValueError("Size of `initial_simplex` is not consistent with `x0`") |
|
N = sim.shape[1] |
|
|
|
if retall: |
|
allvecs = [sim[0]] |
|
|
|
|
|
if maxiter is None and maxfun is None: |
|
maxiter = N * 200 |
|
maxfun = N * 200 |
|
elif maxiter is None: |
|
|
|
|
|
if maxfun == np.inf: |
|
maxiter = N * 200 |
|
else: |
|
maxiter = np.inf |
|
elif maxfun is None: |
|
if maxiter == np.inf: |
|
maxfun = N * 200 |
|
else: |
|
maxfun = np.inf |
|
|
|
if bounds is not None: |
|
|
|
|
|
|
|
|
|
|
|
msk = sim > upper_bound |
|
|
|
sim = np.where(msk, 2*upper_bound - sim, sim) |
|
|
|
sim = np.clip(sim, lower_bound, upper_bound) |
|
|
|
one2np1 = list(range(1, N + 1)) |
|
fsim = np.full((N + 1,), np.inf, dtype=float) |
|
|
|
fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun) |
|
|
|
try: |
|
for k in range(N + 1): |
|
fsim[k] = func(sim[k]) |
|
except _MaxFuncCallError: |
|
pass |
|
finally: |
|
ind = np.argsort(fsim) |
|
sim = np.take(sim, ind, 0) |
|
fsim = np.take(fsim, ind, 0) |
|
|
|
ind = np.argsort(fsim) |
|
fsim = np.take(fsim, ind, 0) |
|
|
|
sim = np.take(sim, ind, 0) |
|
|
|
iterations = 1 |
|
|
|
while (fcalls[0] < maxfun and iterations < maxiter): |
|
try: |
|
if (np.max(np.ravel(np.abs(sim[1:] - sim[0]))) <= xatol and |
|
np.max(np.abs(fsim[0] - fsim[1:])) <= fatol): |
|
break |
|
|
|
xbar = np.add.reduce(sim[:-1], 0) / N |
|
xr = (1 + rho) * xbar - rho * sim[-1] |
|
if bounds is not None: |
|
xr = np.clip(xr, lower_bound, upper_bound) |
|
fxr = func(xr) |
|
doshrink = 0 |
|
|
|
if fxr < fsim[0]: |
|
xe = (1 + rho * chi) * xbar - rho * chi * sim[-1] |
|
if bounds is not None: |
|
xe = np.clip(xe, lower_bound, upper_bound) |
|
fxe = func(xe) |
|
|
|
if fxe < fxr: |
|
sim[-1] = xe |
|
fsim[-1] = fxe |
|
else: |
|
sim[-1] = xr |
|
fsim[-1] = fxr |
|
else: |
|
if fxr < fsim[-2]: |
|
sim[-1] = xr |
|
fsim[-1] = fxr |
|
else: |
|
|
|
if fxr < fsim[-1]: |
|
xc = (1 + psi * rho) * xbar - psi * rho * sim[-1] |
|
if bounds is not None: |
|
xc = np.clip(xc, lower_bound, upper_bound) |
|
fxc = func(xc) |
|
|
|
if fxc <= fxr: |
|
sim[-1] = xc |
|
fsim[-1] = fxc |
|
else: |
|
doshrink = 1 |
|
else: |
|
|
|
xcc = (1 - psi) * xbar + psi * sim[-1] |
|
if bounds is not None: |
|
xcc = np.clip(xcc, lower_bound, upper_bound) |
|
fxcc = func(xcc) |
|
|
|
if fxcc < fsim[-1]: |
|
sim[-1] = xcc |
|
fsim[-1] = fxcc |
|
else: |
|
doshrink = 1 |
|
|
|
if doshrink: |
|
for j in one2np1: |
|
sim[j] = sim[0] + sigma * (sim[j] - sim[0]) |
|
if bounds is not None: |
|
sim[j] = np.clip( |
|
sim[j], lower_bound, upper_bound) |
|
fsim[j] = func(sim[j]) |
|
iterations += 1 |
|
except _MaxFuncCallError: |
|
pass |
|
finally: |
|
ind = np.argsort(fsim) |
|
sim = np.take(sim, ind, 0) |
|
fsim = np.take(fsim, ind, 0) |
|
if retall: |
|
allvecs.append(sim[0]) |
|
intermediate_result = OptimizeResult(x=sim[0], fun=fsim[0]) |
|
if _call_callback_maybe_halt(callback, intermediate_result): |
|
break |
|
|
|
x = sim[0] |
|
fval = np.min(fsim) |
|
warnflag = 0 |
|
|
|
if fcalls[0] >= maxfun: |
|
warnflag = 1 |
|
msg = _status_message['maxfev'] |
|
if disp: |
|
warnings.warn(msg, RuntimeWarning, stacklevel=3) |
|
elif iterations >= maxiter: |
|
warnflag = 2 |
|
msg = _status_message['maxiter'] |
|
if disp: |
|
warnings.warn(msg, RuntimeWarning, stacklevel=3) |
|
else: |
|
msg = _status_message['success'] |
|
if disp: |
|
print(msg) |
|
print(f" Current function value: {fval:f}") |
|
print(" Iterations: %d" % iterations) |
|
print(" Function evaluations: %d" % fcalls[0]) |
|
|
|
result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0], |
|
status=warnflag, success=(warnflag == 0), |
|
message=msg, x=x, final_simplex=(sim, fsim)) |
|
if retall: |
|
result['allvecs'] = allvecs |
|
return result |
|
|
|
|
|
def approx_fprime(xk, f, epsilon=_epsilon, *args): |
|
"""Finite difference approximation of the derivatives of a |
|
scalar or vector-valued function. |
|
|
|
If a function maps from :math:`R^n` to :math:`R^m`, its derivatives form |
|
an m-by-n matrix |
|
called the Jacobian, where an element :math:`(i, j)` is a partial |
|
derivative of f[i] with respect to ``xk[j]``. |
|
|
|
Parameters |
|
---------- |
|
xk : array_like |
|
The coordinate vector at which to determine the gradient of `f`. |
|
f : callable |
|
Function of which to estimate the derivatives of. Has the signature |
|
``f(xk, *args)`` where `xk` is the argument in the form of a 1-D array |
|
and `args` is a tuple of any additional fixed parameters needed to |
|
completely specify the function. The argument `xk` passed to this |
|
function is an ndarray of shape (n,) (never a scalar even if n=1). |
|
It must return a 1-D array_like of shape (m,) or a scalar. |
|
|
|
Suppose the callable has signature ``f0(x, *my_args, **my_kwargs)``, where |
|
``my_args`` and ``my_kwargs`` are required positional and keyword arguments. |
|
Rather than passing ``f0`` as the callable, wrap it to accept |
|
only ``x``; e.g., pass ``fun=lambda x: f0(x, *my_args, **my_kwargs)`` as the |
|
callable, where ``my_args`` (tuple) and ``my_kwargs`` (dict) have been |
|
gathered before invoking this function. |
|
|
|
.. versionchanged:: 1.9.0 |
|
`f` is now able to return a 1-D array-like, with the :math:`(m, n)` |
|
Jacobian being estimated. |
|
|
|
epsilon : {float, array_like}, optional |
|
Increment to `xk` to use for determining the function gradient. |
|
If a scalar, uses the same finite difference delta for all partial |
|
derivatives. If an array, should contain one value per element of |
|
`xk`. Defaults to ``sqrt(np.finfo(float).eps)``, which is approximately |
|
1.49e-08. |
|
\\*args : args, optional |
|
Any other arguments that are to be passed to `f`. |
|
|
|
Returns |
|
------- |
|
jac : ndarray |
|
The partial derivatives of `f` to `xk`. |
|
|
|
See Also |
|
-------- |
|
check_grad : Check correctness of gradient function against approx_fprime. |
|
|
|
Notes |
|
----- |
|
The function gradient is determined by the forward finite difference |
|
formula:: |
|
|
|
f(xk[i] + epsilon[i]) - f(xk[i]) |
|
f'[i] = --------------------------------- |
|
epsilon[i] |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy import optimize |
|
>>> def func(x, c0, c1): |
|
... "Coordinate vector `x` should be an array of size two." |
|
... return c0 * x[0]**2 + c1*x[1]**2 |
|
|
|
>>> x = np.ones(2) |
|
>>> c0, c1 = (1, 200) |
|
>>> eps = np.sqrt(np.finfo(float).eps) |
|
>>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1) |
|
array([ 2. , 400.00004208]) |
|
|
|
""" |
|
xk = np.asarray(xk, float) |
|
f0 = f(xk, *args) |
|
|
|
return approx_derivative(f, xk, method='2-point', abs_step=epsilon, |
|
args=args, f0=f0) |
|
|
|
|
|
@_transition_to_rng("seed", position_num=6) |
|
def check_grad(func, grad, x0, *args, epsilon=_epsilon, |
|
direction='all', rng=None): |
|
r"""Check the correctness of a gradient function by comparing it against a |
|
(forward) finite-difference approximation of the gradient. |
|
|
|
Parameters |
|
---------- |
|
func : callable ``func(x0, *args)`` |
|
Function whose derivative is to be checked. |
|
grad : callable ``grad(x0, *args)`` |
|
Jacobian of `func`. |
|
x0 : ndarray |
|
Points to check `grad` against forward difference approximation of grad |
|
using `func`. |
|
args : \\*args, optional |
|
Extra arguments passed to `func` and `grad`. |
|
epsilon : float, optional |
|
Step size used for the finite difference approximation. It defaults to |
|
``sqrt(np.finfo(float).eps)``, which is approximately 1.49e-08. |
|
direction : str, optional |
|
If set to ``'random'``, then gradients along a random vector |
|
are used to check `grad` against forward difference approximation |
|
using `func`. By default it is ``'all'``, in which case, all |
|
the one hot direction vectors are considered to check `grad`. |
|
If `func` is a vector valued function then only ``'all'`` can be used. |
|
rng : `numpy.random.Generator`, optional |
|
Pseudorandom number generator state. When `rng` is None, a new |
|
`numpy.random.Generator` is created using entropy from the |
|
operating system. Types other than `numpy.random.Generator` are |
|
passed to `numpy.random.default_rng` to instantiate a ``Generator``. |
|
|
|
The random numbers generated affect the random vector along which gradients |
|
are computed to check ``grad``. Note that `rng` is only used when `direction` |
|
argument is set to `'random'`. |
|
|
|
Returns |
|
------- |
|
err : float |
|
The square root of the sum of squares (i.e., the 2-norm) of the |
|
difference between ``grad(x0, *args)`` and the finite difference |
|
approximation of `grad` using func at the points `x0`. |
|
|
|
See Also |
|
-------- |
|
approx_fprime |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> def func(x): |
|
... return x[0]**2 - 0.5 * x[1]**3 |
|
>>> def grad(x): |
|
... return [2 * x[0], -1.5 * x[1]**2] |
|
>>> from scipy.optimize import check_grad |
|
>>> check_grad(func, grad, [1.5, -1.5]) |
|
2.9802322387695312e-08 # may vary |
|
>>> rng = np.random.default_rng() |
|
>>> check_grad(func, grad, [1.5, -1.5], |
|
... direction='random', seed=rng) |
|
2.9802322387695312e-08 |
|
|
|
""" |
|
step = epsilon |
|
x0 = np.asarray(x0) |
|
|
|
def g(w, func, x0, v, *args): |
|
return func(x0 + w*v, *args) |
|
|
|
if direction == 'random': |
|
_grad = np.asanyarray(grad(x0, *args)) |
|
if _grad.ndim > 1: |
|
raise ValueError("'random' can only be used with scalar valued" |
|
" func") |
|
rng_gen = check_random_state(rng) |
|
v = rng_gen.standard_normal(size=(x0.shape)) |
|
_args = (func, x0, v) + args |
|
_func = g |
|
vars = np.zeros((1,)) |
|
analytical_grad = np.dot(_grad, v) |
|
elif direction == 'all': |
|
_args = args |
|
_func = func |
|
vars = x0 |
|
analytical_grad = grad(x0, *args) |
|
else: |
|
raise ValueError(f"{direction} is not a valid string for " |
|
"``direction`` argument") |
|
|
|
return np.sqrt(np.sum(np.abs( |
|
(analytical_grad - approx_fprime(vars, _func, step, *_args))**2 |
|
))) |
|
|
|
|
|
def approx_fhess_p(x0, p, fprime, epsilon, *args): |
|
|
|
f1 = fprime(*((x0,) + args)) |
|
f2 = fprime(*((x0 + epsilon*p,) + args)) |
|
return (f2 - f1) / epsilon |
|
|
|
|
|
class _LineSearchError(RuntimeError): |
|
pass |
|
|
|
|
|
def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, |
|
**kwargs): |
|
""" |
|
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if |
|
suitable step length is not found, and raise an exception if a |
|
suitable step length is not found. |
|
|
|
Raises |
|
------ |
|
_LineSearchError |
|
If no suitable step size is found |
|
|
|
""" |
|
|
|
extra_condition = kwargs.pop('extra_condition', None) |
|
|
|
ret = line_search_wolfe1(f, fprime, xk, pk, gfk, |
|
old_fval, old_old_fval, |
|
**kwargs) |
|
|
|
if ret[0] is not None and extra_condition is not None: |
|
xp1 = xk + ret[0] * pk |
|
if not extra_condition(ret[0], xp1, ret[3], ret[5]): |
|
|
|
ret = (None,) |
|
|
|
if ret[0] is None: |
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter('ignore', LineSearchWarning) |
|
kwargs2 = {} |
|
for key in ('c1', 'c2', 'amax'): |
|
if key in kwargs: |
|
kwargs2[key] = kwargs[key] |
|
ret = line_search_wolfe2(f, fprime, xk, pk, gfk, |
|
old_fval, old_old_fval, |
|
extra_condition=extra_condition, |
|
**kwargs2) |
|
|
|
if ret[0] is None: |
|
raise _LineSearchError() |
|
|
|
return ret |
|
|
|
|
|
def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf, |
|
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, |
|
retall=0, callback=None, xrtol=0, c1=1e-4, c2=0.9, |
|
hess_inv0=None): |
|
""" |
|
Minimize a function using the BFGS algorithm. |
|
|
|
Parameters |
|
---------- |
|
f : callable ``f(x,*args)`` |
|
Objective function to be minimized. |
|
x0 : ndarray |
|
Initial guess, shape (n,) |
|
fprime : callable ``f'(x,*args)``, optional |
|
Gradient of f. |
|
args : tuple, optional |
|
Extra arguments passed to f and fprime. |
|
gtol : float, optional |
|
Terminate successfully if gradient norm is less than `gtol` |
|
norm : float, optional |
|
Order of norm (Inf is max, -Inf is min) |
|
epsilon : int or ndarray, optional |
|
If `fprime` is approximated, use this value for the step size. |
|
callback : callable, optional |
|
An optional user-supplied function to call after each |
|
iteration. Called as ``callback(xk)``, where ``xk`` is the |
|
current parameter vector. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. |
|
full_output : bool, optional |
|
If True, return ``fopt``, ``func_calls``, ``grad_calls``, and |
|
``warnflag`` in addition to ``xopt``. |
|
disp : bool, optional |
|
Print convergence message if True. |
|
retall : bool, optional |
|
Return a list of results at each iteration if True. |
|
xrtol : float, default: 0 |
|
Relative tolerance for `x`. Terminate successfully if step |
|
size is less than ``xk * xrtol`` where ``xk`` is the current |
|
parameter vector. |
|
c1 : float, default: 1e-4 |
|
Parameter for Armijo condition rule. |
|
c2 : float, default: 0.9 |
|
Parameter for curvature condition rule. |
|
hess_inv0 : None or ndarray, optional`` |
|
Initial inverse hessian estimate, shape (n, n). If None (default) then |
|
the identity matrix is used. |
|
|
|
Returns |
|
------- |
|
xopt : ndarray |
|
Parameters which minimize f, i.e., ``f(xopt) == fopt``. |
|
fopt : float |
|
Minimum value. |
|
gopt : ndarray |
|
Value of gradient at minimum, f'(xopt), which should be near 0. |
|
Bopt : ndarray |
|
Value of 1/f''(xopt), i.e., the inverse Hessian matrix. |
|
func_calls : int |
|
Number of function_calls made. |
|
grad_calls : int |
|
Number of gradient calls made. |
|
warnflag : integer |
|
1 : Maximum number of iterations exceeded. |
|
2 : Gradient and/or function calls not changing. |
|
3 : NaN result encountered. |
|
allvecs : list |
|
The value of `xopt` at each iteration. Only returned if `retall` is |
|
True. |
|
|
|
Notes |
|
----- |
|
Optimize the function, `f`, whose gradient is given by `fprime` |
|
using the quasi-Newton method of Broyden, Fletcher, Goldfarb, |
|
and Shanno (BFGS). |
|
|
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
|
|
See Also |
|
-------- |
|
minimize: Interface to minimization algorithms for multivariate |
|
functions. See ``method='BFGS'`` in particular. |
|
|
|
References |
|
---------- |
|
Wright, and Nocedal 'Numerical Optimization', 1999, p. 198. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.optimize import fmin_bfgs |
|
>>> def quadratic_cost(x, Q): |
|
... return x @ Q @ x |
|
... |
|
>>> x0 = np.array([-3, -4]) |
|
>>> cost_weight = np.diag([1., 10.]) |
|
>>> # Note that a trailing comma is necessary for a tuple with single element |
|
>>> fmin_bfgs(quadratic_cost, x0, args=(cost_weight,)) |
|
Optimization terminated successfully. |
|
Current function value: 0.000000 |
|
Iterations: 7 # may vary |
|
Function evaluations: 24 # may vary |
|
Gradient evaluations: 8 # may vary |
|
array([ 2.85169950e-06, -4.61820139e-07]) |
|
|
|
>>> def quadratic_cost_grad(x, Q): |
|
... return 2 * Q @ x |
|
... |
|
>>> fmin_bfgs(quadratic_cost, x0, quadratic_cost_grad, args=(cost_weight,)) |
|
Optimization terminated successfully. |
|
Current function value: 0.000000 |
|
Iterations: 7 |
|
Function evaluations: 8 |
|
Gradient evaluations: 8 |
|
array([ 2.85916637e-06, -4.54371951e-07]) |
|
|
|
""" |
|
opts = {'gtol': gtol, |
|
'norm': norm, |
|
'eps': epsilon, |
|
'disp': disp, |
|
'maxiter': maxiter, |
|
'return_all': retall, |
|
'xrtol': xrtol, |
|
'c1': c1, |
|
'c2': c2, |
|
'hess_inv0': hess_inv0} |
|
|
|
callback = _wrap_callback(callback) |
|
res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts) |
|
|
|
if full_output: |
|
retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'], |
|
res['nfev'], res['njev'], res['status']) |
|
if retall: |
|
retlist += (res['allvecs'], ) |
|
return retlist |
|
else: |
|
if retall: |
|
return res['x'], res['allvecs'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None, |
|
gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None, |
|
disp=False, return_all=False, finite_diff_rel_step=None, |
|
xrtol=0, c1=1e-4, c2=0.9, |
|
hess_inv0=None, **unknown_options): |
|
""" |
|
Minimization of scalar function of one or more variables using the |
|
BFGS algorithm. |
|
|
|
Options |
|
------- |
|
disp : bool |
|
Set to True to print convergence messages. |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
gtol : float |
|
Terminate successfully if gradient norm is less than `gtol`. |
|
norm : float |
|
Order of norm (Inf is max, -Inf is min). |
|
eps : float or ndarray |
|
If `jac is None` the absolute step size used for numerical |
|
approximation of the jacobian via forward differences. |
|
return_all : bool, optional |
|
Set to True to return a list of the best solution at each of the |
|
iterations. |
|
finite_diff_rel_step : None or array_like, optional |
|
If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to |
|
use for numerical approximation of the jacobian. The absolute step |
|
size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, |
|
possibly adjusted to fit into the bounds. For ``jac='3-point'`` |
|
the sign of `h` is ignored. If None (default) then step is selected |
|
automatically. |
|
xrtol : float, default: 0 |
|
Relative tolerance for `x`. Terminate successfully if step size is |
|
less than ``xk * xrtol`` where ``xk`` is the current parameter vector. |
|
c1 : float, default: 1e-4 |
|
Parameter for Armijo condition rule. |
|
c2 : float, default: 0.9 |
|
Parameter for curvature condition rule. |
|
hess_inv0 : None or ndarray, optional |
|
Initial inverse hessian estimate, shape (n, n). If None (default) then |
|
the identity matrix is used. |
|
|
|
Notes |
|
----- |
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
|
|
If minimization doesn't complete successfully, with an error message of |
|
``Desired error not necessarily achieved due to precision loss``, then |
|
consider setting `gtol` to a higher value. This precision loss typically |
|
occurs when the (finite difference) numerical differentiation cannot provide |
|
sufficient precision to satisfy the `gtol` termination criterion. |
|
This can happen when working in single precision and a callable jac is not |
|
provided. For single precision problems a `gtol` of 1e-3 seems to work. |
|
""" |
|
_check_unknown_options(unknown_options) |
|
_check_positive_definite(hess_inv0) |
|
retall = return_all |
|
|
|
x0 = asarray(x0).flatten() |
|
if x0.ndim == 0: |
|
x0.shape = (1,) |
|
if maxiter is None: |
|
maxiter = len(x0) * 200 |
|
|
|
sf = _prepare_scalar_function(fun, x0, jac, args=args, epsilon=eps, |
|
finite_diff_rel_step=finite_diff_rel_step) |
|
|
|
f = sf.fun |
|
myfprime = sf.grad |
|
|
|
old_fval = f(x0) |
|
gfk = myfprime(x0) |
|
|
|
k = 0 |
|
N = len(x0) |
|
I = np.eye(N, dtype=int) |
|
Hk = I if hess_inv0 is None else hess_inv0 |
|
|
|
|
|
old_old_fval = old_fval + np.linalg.norm(gfk) / 2 |
|
|
|
xk = x0 |
|
if retall: |
|
allvecs = [x0] |
|
warnflag = 0 |
|
gnorm = vecnorm(gfk, ord=norm) |
|
while (gnorm > gtol) and (k < maxiter): |
|
pk = -np.dot(Hk, gfk) |
|
try: |
|
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
|
_line_search_wolfe12(f, myfprime, xk, pk, gfk, |
|
old_fval, old_old_fval, amin=1e-100, |
|
amax=1e100, c1=c1, c2=c2) |
|
except _LineSearchError: |
|
|
|
warnflag = 2 |
|
break |
|
|
|
sk = alpha_k * pk |
|
xkp1 = xk + sk |
|
|
|
if retall: |
|
allvecs.append(xkp1) |
|
xk = xkp1 |
|
if gfkp1 is None: |
|
gfkp1 = myfprime(xkp1) |
|
|
|
yk = gfkp1 - gfk |
|
gfk = gfkp1 |
|
k += 1 |
|
intermediate_result = OptimizeResult(x=xk, fun=old_fval) |
|
if _call_callback_maybe_halt(callback, intermediate_result): |
|
break |
|
gnorm = vecnorm(gfk, ord=norm) |
|
if (gnorm <= gtol): |
|
break |
|
|
|
|
|
|
|
|
|
|
|
if (alpha_k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))): |
|
break |
|
|
|
if not np.isfinite(old_fval): |
|
|
|
|
|
warnflag = 2 |
|
break |
|
|
|
rhok_inv = np.dot(yk, sk) |
|
|
|
|
|
|
|
if rhok_inv == 0.: |
|
rhok = 1000.0 |
|
if disp: |
|
msg = "Divide-by-zero encountered: rhok assumed large" |
|
_print_success_message_or_warn(True, msg) |
|
else: |
|
rhok = 1. / rhok_inv |
|
|
|
A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok |
|
A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok |
|
Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * |
|
sk[np.newaxis, :]) |
|
|
|
fval = old_fval |
|
|
|
if warnflag == 2: |
|
msg = _status_message['pr_loss'] |
|
elif k >= maxiter: |
|
warnflag = 1 |
|
msg = _status_message['maxiter'] |
|
elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any(): |
|
warnflag = 3 |
|
msg = _status_message['nan'] |
|
else: |
|
msg = _status_message['success'] |
|
|
|
if disp: |
|
_print_success_message_or_warn(warnflag, msg) |
|
print(f" Current function value: {fval:f}") |
|
print(" Iterations: %d" % k) |
|
print(" Function evaluations: %d" % sf.nfev) |
|
print(" Gradient evaluations: %d" % sf.ngev) |
|
|
|
result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=sf.nfev, |
|
njev=sf.ngev, status=warnflag, |
|
success=(warnflag == 0), message=msg, x=xk, |
|
nit=k) |
|
if retall: |
|
result['allvecs'] = allvecs |
|
return result |
|
|
|
|
|
def _print_success_message_or_warn(warnflag, message, warntype=None): |
|
if not warnflag: |
|
print(message) |
|
else: |
|
warnings.warn(message, warntype or OptimizeWarning, stacklevel=3) |
|
|
|
|
|
def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf, |
|
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, |
|
callback=None, c1=1e-4, c2=0.4): |
|
""" |
|
Minimize a function using a nonlinear conjugate gradient algorithm. |
|
|
|
Parameters |
|
---------- |
|
f : callable, ``f(x, *args)`` |
|
Objective function to be minimized. Here `x` must be a 1-D array of |
|
the variables that are to be changed in the search for a minimum, and |
|
`args` are the other (fixed) parameters of `f`. |
|
x0 : ndarray |
|
A user-supplied initial estimate of `xopt`, the optimal value of `x`. |
|
It must be a 1-D array of values. |
|
fprime : callable, ``fprime(x, *args)``, optional |
|
A function that returns the gradient of `f` at `x`. Here `x` and `args` |
|
are as described above for `f`. The returned value must be a 1-D array. |
|
Defaults to None, in which case the gradient is approximated |
|
numerically (see `epsilon`, below). |
|
args : tuple, optional |
|
Parameter values passed to `f` and `fprime`. Must be supplied whenever |
|
additional fixed parameters are needed to completely specify the |
|
functions `f` and `fprime`. |
|
gtol : float, optional |
|
Stop when the norm of the gradient is less than `gtol`. |
|
norm : float, optional |
|
Order to use for the norm of the gradient |
|
(``-np.inf`` is min, ``np.inf`` is max). |
|
epsilon : float or ndarray, optional |
|
Step size(s) to use when `fprime` is approximated numerically. Can be a |
|
scalar or a 1-D array. Defaults to ``sqrt(eps)``, with eps the |
|
floating point machine precision. Usually ``sqrt(eps)`` is about |
|
1.5e-8. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. Default is ``200 * len(x0)``. |
|
full_output : bool, optional |
|
If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in |
|
addition to `xopt`. See the Returns section below for additional |
|
information on optional return values. |
|
disp : bool, optional |
|
If True, return a convergence message, followed by `xopt`. |
|
retall : bool, optional |
|
If True, add to the returned values the results of each iteration. |
|
callback : callable, optional |
|
An optional user-supplied function, called after each iteration. |
|
Called as ``callback(xk)``, where ``xk`` is the current value of `x0`. |
|
c1 : float, default: 1e-4 |
|
Parameter for Armijo condition rule. |
|
c2 : float, default: 0.4 |
|
Parameter for curvature condition rule. |
|
|
|
Returns |
|
------- |
|
xopt : ndarray |
|
Parameters which minimize f, i.e., ``f(xopt) == fopt``. |
|
fopt : float, optional |
|
Minimum value found, f(xopt). Only returned if `full_output` is True. |
|
func_calls : int, optional |
|
The number of function_calls made. Only returned if `full_output` |
|
is True. |
|
grad_calls : int, optional |
|
The number of gradient calls made. Only returned if `full_output` is |
|
True. |
|
warnflag : int, optional |
|
Integer value with warning status, only returned if `full_output` is |
|
True. |
|
|
|
0 : Success. |
|
|
|
1 : The maximum number of iterations was exceeded. |
|
|
|
2 : Gradient and/or function calls were not changing. May indicate |
|
that precision was lost, i.e., the routine did not converge. |
|
|
|
3 : NaN result encountered. |
|
|
|
allvecs : list of ndarray, optional |
|
List of arrays, containing the results at each iteration. |
|
Only returned if `retall` is True. |
|
|
|
See Also |
|
-------- |
|
minimize : common interface to all `scipy.optimize` algorithms for |
|
unconstrained and constrained minimization of multivariate |
|
functions. It provides an alternative way to call |
|
``fmin_cg``, by specifying ``method='CG'``. |
|
|
|
Notes |
|
----- |
|
This conjugate gradient algorithm is based on that of Polak and Ribiere |
|
[1]_. |
|
|
|
Conjugate gradient methods tend to work better when: |
|
|
|
1. `f` has a unique global minimizing point, and no local minima or |
|
other stationary points, |
|
2. `f` is, at least locally, reasonably well approximated by a |
|
quadratic function of the variables, |
|
3. `f` is continuous and has a continuous gradient, |
|
4. `fprime` is not too large, e.g., has a norm less than 1000, |
|
5. The initial guess, `x0`, is reasonably close to `f` 's global |
|
minimizing point, `xopt`. |
|
|
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
|
|
References |
|
---------- |
|
.. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122. |
|
|
|
Examples |
|
-------- |
|
Example 1: seek the minimum value of the expression |
|
``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values |
|
of the parameters and an initial guess ``(u, v) = (0, 0)``. |
|
|
|
>>> import numpy as np |
|
>>> args = (2, 3, 7, 8, 9, 10) # parameter values |
|
>>> def f(x, *args): |
|
... u, v = x |
|
... a, b, c, d, e, f = args |
|
... return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f |
|
>>> def gradf(x, *args): |
|
... u, v = x |
|
... a, b, c, d, e, f = args |
|
... gu = 2*a*u + b*v + d # u-component of the gradient |
|
... gv = b*u + 2*c*v + e # v-component of the gradient |
|
... return np.asarray((gu, gv)) |
|
>>> x0 = np.asarray((0, 0)) # Initial guess. |
|
>>> from scipy import optimize |
|
>>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args) |
|
Optimization terminated successfully. |
|
Current function value: 1.617021 |
|
Iterations: 4 |
|
Function evaluations: 8 |
|
Gradient evaluations: 8 |
|
>>> res1 |
|
array([-1.80851064, -0.25531915]) |
|
|
|
Example 2: solve the same problem using the `minimize` function. |
|
(This `myopts` dictionary shows all of the available options, |
|
although in practice only non-default values would be needed. |
|
The returned value will be a dictionary.) |
|
|
|
>>> opts = {'maxiter' : None, # default value. |
|
... 'disp' : True, # non-default value. |
|
... 'gtol' : 1e-5, # default value. |
|
... 'norm' : np.inf, # default value. |
|
... 'eps' : 1.4901161193847656e-08} # default value. |
|
>>> res2 = optimize.minimize(f, x0, jac=gradf, args=args, |
|
... method='CG', options=opts) |
|
Optimization terminated successfully. |
|
Current function value: 1.617021 |
|
Iterations: 4 |
|
Function evaluations: 8 |
|
Gradient evaluations: 8 |
|
>>> res2.x # minimum found |
|
array([-1.80851064, -0.25531915]) |
|
|
|
""" |
|
opts = {'gtol': gtol, |
|
'norm': norm, |
|
'eps': epsilon, |
|
'disp': disp, |
|
'maxiter': maxiter, |
|
'return_all': retall} |
|
|
|
callback = _wrap_callback(callback) |
|
res = _minimize_cg(f, x0, args, fprime, callback=callback, c1=c1, c2=c2, |
|
**opts) |
|
|
|
if full_output: |
|
retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status'] |
|
if retall: |
|
retlist += (res['allvecs'], ) |
|
return retlist |
|
else: |
|
if retall: |
|
return res['x'], res['allvecs'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_cg(fun, x0, args=(), jac=None, callback=None, |
|
gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None, |
|
disp=False, return_all=False, finite_diff_rel_step=None, |
|
c1=1e-4, c2=0.4, **unknown_options): |
|
""" |
|
Minimization of scalar function of one or more variables using the |
|
conjugate gradient algorithm. |
|
|
|
Options |
|
------- |
|
disp : bool |
|
Set to True to print convergence messages. |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
gtol : float |
|
Gradient norm must be less than `gtol` before successful |
|
termination. |
|
norm : float |
|
Order of norm (Inf is max, -Inf is min). |
|
eps : float or ndarray |
|
If `jac is None` the absolute step size used for numerical |
|
approximation of the jacobian via forward differences. |
|
return_all : bool, optional |
|
Set to True to return a list of the best solution at each of the |
|
iterations. |
|
finite_diff_rel_step : None or array_like, optional |
|
If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to |
|
use for numerical approximation of the jacobian. The absolute step |
|
size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, |
|
possibly adjusted to fit into the bounds. For ``jac='3-point'`` |
|
the sign of `h` is ignored. If None (default) then step is selected |
|
automatically. |
|
c1 : float, default: 1e-4 |
|
Parameter for Armijo condition rule. |
|
c2 : float, default: 0.4 |
|
Parameter for curvature condition rule. |
|
|
|
Notes |
|
----- |
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
""" |
|
_check_unknown_options(unknown_options) |
|
|
|
retall = return_all |
|
|
|
x0 = asarray(x0).flatten() |
|
if maxiter is None: |
|
maxiter = len(x0) * 200 |
|
|
|
sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps, |
|
finite_diff_rel_step=finite_diff_rel_step) |
|
|
|
f = sf.fun |
|
myfprime = sf.grad |
|
|
|
old_fval = f(x0) |
|
gfk = myfprime(x0) |
|
|
|
k = 0 |
|
xk = x0 |
|
|
|
old_old_fval = old_fval + np.linalg.norm(gfk) / 2 |
|
|
|
if retall: |
|
allvecs = [xk] |
|
warnflag = 0 |
|
pk = -gfk |
|
gnorm = vecnorm(gfk, ord=norm) |
|
|
|
sigma_3 = 0.01 |
|
|
|
while (gnorm > gtol) and (k < maxiter): |
|
deltak = np.dot(gfk, gfk) |
|
|
|
cached_step = [None] |
|
|
|
def polak_ribiere_powell_step(alpha, gfkp1=None): |
|
xkp1 = xk + alpha * pk |
|
if gfkp1 is None: |
|
gfkp1 = myfprime(xkp1) |
|
yk = gfkp1 - gfk |
|
beta_k = max(0, np.dot(yk, gfkp1) / deltak) |
|
pkp1 = -gfkp1 + beta_k * pk |
|
gnorm = vecnorm(gfkp1, ord=norm) |
|
return (alpha, xkp1, pkp1, gfkp1, gnorm) |
|
|
|
def descent_condition(alpha, xkp1, fp1, gfkp1): |
|
|
|
|
|
|
|
|
|
|
|
|
|
cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) |
|
alpha, xk, pk, gfk, gnorm = cached_step |
|
|
|
|
|
if gnorm <= gtol: |
|
return True |
|
|
|
|
|
return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk) |
|
|
|
try: |
|
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
|
_line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval, |
|
old_old_fval, c1=c1, c2=c2, amin=1e-100, |
|
amax=1e100, extra_condition=descent_condition) |
|
except _LineSearchError: |
|
|
|
warnflag = 2 |
|
break |
|
|
|
|
|
if alpha_k == cached_step[0]: |
|
alpha_k, xk, pk, gfk, gnorm = cached_step |
|
else: |
|
alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) |
|
|
|
if retall: |
|
allvecs.append(xk) |
|
k += 1 |
|
intermediate_result = OptimizeResult(x=xk, fun=old_fval) |
|
if _call_callback_maybe_halt(callback, intermediate_result): |
|
break |
|
|
|
fval = old_fval |
|
if warnflag == 2: |
|
msg = _status_message['pr_loss'] |
|
elif k >= maxiter: |
|
warnflag = 1 |
|
msg = _status_message['maxiter'] |
|
elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any(): |
|
warnflag = 3 |
|
msg = _status_message['nan'] |
|
else: |
|
msg = _status_message['success'] |
|
|
|
if disp: |
|
_print_success_message_or_warn(warnflag, msg) |
|
print(f" Current function value: {fval:f}") |
|
print(" Iterations: %d" % k) |
|
print(" Function evaluations: %d" % sf.nfev) |
|
print(" Gradient evaluations: %d" % sf.ngev) |
|
|
|
result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev, |
|
njev=sf.ngev, status=warnflag, |
|
success=(warnflag == 0), message=msg, x=xk, |
|
nit=k) |
|
if retall: |
|
result['allvecs'] = allvecs |
|
return result |
|
|
|
|
|
def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5, |
|
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, |
|
callback=None, c1=1e-4, c2=0.9): |
|
""" |
|
Unconstrained minimization of a function using the Newton-CG method. |
|
|
|
Parameters |
|
---------- |
|
f : callable ``f(x, *args)`` |
|
Objective function to be minimized. |
|
x0 : ndarray |
|
Initial guess. |
|
fprime : callable ``f'(x, *args)`` |
|
Gradient of f. |
|
fhess_p : callable ``fhess_p(x, p, *args)``, optional |
|
Function which computes the Hessian of f times an |
|
arbitrary vector, p. |
|
fhess : callable ``fhess(x, *args)``, optional |
|
Function to compute the Hessian matrix of f. |
|
args : tuple, optional |
|
Extra arguments passed to f, fprime, fhess_p, and fhess |
|
(the same set of extra arguments is supplied to all of |
|
these functions). |
|
epsilon : float or ndarray, optional |
|
If fhess is approximated, use this value for the step size. |
|
callback : callable, optional |
|
An optional user-supplied function which is called after |
|
each iteration. Called as callback(xk), where xk is the |
|
current parameter vector. |
|
avextol : float, optional |
|
Convergence is assumed when the average relative error in |
|
the minimizer falls below this amount. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. |
|
full_output : bool, optional |
|
If True, return the optional outputs. |
|
disp : bool, optional |
|
If True, print convergence message. |
|
retall : bool, optional |
|
If True, return a list of results at each iteration. |
|
c1 : float, default: 1e-4 |
|
Parameter for Armijo condition rule. |
|
c2 : float, default: 0.9 |
|
Parameter for curvature condition rule |
|
|
|
Returns |
|
------- |
|
xopt : ndarray |
|
Parameters which minimize f, i.e., ``f(xopt) == fopt``. |
|
fopt : float |
|
Value of the function at xopt, i.e., ``fopt = f(xopt)``. |
|
fcalls : int |
|
Number of function calls made. |
|
gcalls : int |
|
Number of gradient calls made. |
|
hcalls : int |
|
Number of Hessian calls made. |
|
warnflag : int |
|
Warnings generated by the algorithm. |
|
1 : Maximum number of iterations exceeded. |
|
2 : Line search failure (precision loss). |
|
3 : NaN result encountered. |
|
allvecs : list |
|
The result at each iteration, if retall is True (see below). |
|
|
|
See also |
|
-------- |
|
minimize: Interface to minimization algorithms for multivariate |
|
functions. See the 'Newton-CG' `method` in particular. |
|
|
|
Notes |
|
----- |
|
Only one of `fhess_p` or `fhess` need to be given. If `fhess` |
|
is provided, then `fhess_p` will be ignored. If neither `fhess` |
|
nor `fhess_p` is provided, then the hessian product will be |
|
approximated using finite differences on `fprime`. `fhess_p` |
|
must compute the hessian times an arbitrary vector. If it is not |
|
given, finite-differences on `fprime` are used to compute |
|
it. |
|
|
|
Newton-CG methods are also called truncated Newton methods. This |
|
function differs from scipy.optimize.fmin_tnc because |
|
|
|
1. scipy.optimize.fmin_ncg is written purely in Python using NumPy |
|
and scipy while scipy.optimize.fmin_tnc calls a C function. |
|
2. scipy.optimize.fmin_ncg is only for unconstrained minimization |
|
while scipy.optimize.fmin_tnc is for unconstrained minimization |
|
or box constrained minimization. (Box constraints give |
|
lower and upper bounds for each variable separately.) |
|
|
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
|
|
References |
|
---------- |
|
Wright & Nocedal, 'Numerical Optimization', 1999, p. 140. |
|
|
|
""" |
|
opts = {'xtol': avextol, |
|
'eps': epsilon, |
|
'maxiter': maxiter, |
|
'disp': disp, |
|
'return_all': retall} |
|
|
|
callback = _wrap_callback(callback) |
|
res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p, |
|
callback=callback, c1=c1, c2=c2, **opts) |
|
|
|
if full_output: |
|
retlist = (res['x'], res['fun'], res['nfev'], res['njev'], |
|
res['nhev'], res['status']) |
|
if retall: |
|
retlist += (res['allvecs'], ) |
|
return retlist |
|
else: |
|
if retall: |
|
return res['x'], res['allvecs'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None, |
|
callback=None, xtol=1e-5, eps=_epsilon, maxiter=None, |
|
disp=False, return_all=False, c1=1e-4, c2=0.9, |
|
**unknown_options): |
|
""" |
|
Minimization of scalar function of one or more variables using the |
|
Newton-CG algorithm. |
|
|
|
Note that the `jac` parameter (Jacobian) is required. |
|
|
|
Options |
|
------- |
|
disp : bool |
|
Set to True to print convergence messages. |
|
xtol : float |
|
Average relative error in solution `xopt` acceptable for |
|
convergence. |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
eps : float or ndarray |
|
If `hessp` is approximated, use this value for the step size. |
|
return_all : bool, optional |
|
Set to True to return a list of the best solution at each of the |
|
iterations. |
|
c1 : float, default: 1e-4 |
|
Parameter for Armijo condition rule. |
|
c2 : float, default: 0.9 |
|
Parameter for curvature condition rule. |
|
|
|
Notes |
|
----- |
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
""" |
|
_check_unknown_options(unknown_options) |
|
if jac is None: |
|
raise ValueError('Jacobian is required for Newton-CG method') |
|
fhess_p = hessp |
|
fhess = hess |
|
avextol = xtol |
|
epsilon = eps |
|
retall = return_all |
|
|
|
x0 = asarray(x0).flatten() |
|
|
|
sf = _prepare_scalar_function( |
|
fun, x0, jac, args=args, epsilon=eps, hess=hess |
|
) |
|
f = sf.fun |
|
fprime = sf.grad |
|
_h = sf.hess(x0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (hess in FD_METHODS or isinstance(_h, LinearOperator)): |
|
fhess = None |
|
|
|
def _hessp(x, p, *args): |
|
return sf.hess(x).dot(p) |
|
|
|
fhess_p = _hessp |
|
|
|
def terminate(warnflag, msg): |
|
if disp: |
|
_print_success_message_or_warn(warnflag, msg) |
|
print(f" Current function value: {old_fval:f}") |
|
print(" Iterations: %d" % k) |
|
print(" Function evaluations: %d" % sf.nfev) |
|
print(" Gradient evaluations: %d" % sf.ngev) |
|
print(" Hessian evaluations: %d" % hcalls) |
|
fval = old_fval |
|
result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev, |
|
njev=sf.ngev, nhev=hcalls, status=warnflag, |
|
success=(warnflag == 0), message=msg, x=xk, |
|
nit=k) |
|
if retall: |
|
result['allvecs'] = allvecs |
|
return result |
|
|
|
hcalls = 0 |
|
if maxiter is None: |
|
maxiter = len(x0)*200 |
|
cg_maxiter = 20*len(x0) |
|
|
|
xtol = len(x0) * avextol |
|
|
|
update_l1norm = np.finfo(float).max |
|
xk = np.copy(x0) |
|
if retall: |
|
allvecs = [xk] |
|
k = 0 |
|
gfk = None |
|
old_fval = f(x0) |
|
old_old_fval = None |
|
float64eps = np.finfo(np.float64).eps |
|
while update_l1norm > xtol: |
|
if k >= maxiter: |
|
msg = "Warning: " + _status_message['maxiter'] |
|
return terminate(1, msg) |
|
|
|
|
|
b = -fprime(xk) |
|
maggrad = np.linalg.norm(b, ord=1) |
|
eta = min(0.5, math.sqrt(maggrad)) |
|
termcond = eta * maggrad |
|
xsupi = zeros(len(x0), dtype=x0.dtype) |
|
ri = -b |
|
psupi = -ri |
|
i = 0 |
|
dri0 = np.dot(ri, ri) |
|
|
|
if fhess is not None: |
|
A = sf.hess(xk) |
|
hcalls += 1 |
|
|
|
for k2 in range(cg_maxiter): |
|
if np.add.reduce(np.abs(ri)) <= termcond: |
|
break |
|
if fhess is None: |
|
if fhess_p is None: |
|
Ap = approx_fhess_p(xk, psupi, fprime, epsilon) |
|
else: |
|
Ap = fhess_p(xk, psupi, *args) |
|
hcalls += 1 |
|
else: |
|
|
|
|
|
Ap = A.dot(psupi) |
|
|
|
Ap = asarray(Ap).squeeze() |
|
curv = np.dot(psupi, Ap) |
|
if 0 <= curv <= 3 * float64eps: |
|
break |
|
elif curv < 0: |
|
if (i > 0): |
|
break |
|
else: |
|
|
|
xsupi = dri0 / (-curv) * b |
|
break |
|
alphai = dri0 / curv |
|
xsupi += alphai * psupi |
|
ri += alphai * Ap |
|
dri1 = np.dot(ri, ri) |
|
betai = dri1 / dri0 |
|
psupi = -ri + betai * psupi |
|
i += 1 |
|
dri0 = dri1 |
|
else: |
|
|
|
msg = ("Warning: CG iterations didn't converge. The Hessian is not " |
|
"positive definite.") |
|
return terminate(3, msg) |
|
|
|
pk = xsupi |
|
gfk = -b |
|
|
|
try: |
|
alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
|
_line_search_wolfe12(f, fprime, xk, pk, gfk, |
|
old_fval, old_old_fval, c1=c1, c2=c2) |
|
except _LineSearchError: |
|
|
|
msg = "Warning: " + _status_message['pr_loss'] |
|
return terminate(2, msg) |
|
|
|
update = alphak * pk |
|
xk += update |
|
if retall: |
|
allvecs.append(xk) |
|
k += 1 |
|
intermediate_result = OptimizeResult(x=xk, fun=old_fval) |
|
if _call_callback_maybe_halt(callback, intermediate_result): |
|
return terminate(5, "") |
|
update_l1norm = np.linalg.norm(update, ord=1) |
|
|
|
else: |
|
if np.isnan(old_fval) or np.isnan(update_l1norm): |
|
return terminate(3, _status_message['nan']) |
|
|
|
msg = _status_message['success'] |
|
return terminate(0, msg) |
|
|
|
|
|
def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500, |
|
full_output=0, disp=1): |
|
"""Bounded minimization for scalar functions. |
|
|
|
Parameters |
|
---------- |
|
func : callable f(x,*args) |
|
Objective function to be minimized (must accept and return scalars). |
|
x1, x2 : float or array scalar |
|
Finite optimization bounds. |
|
args : tuple, optional |
|
Extra arguments passed to function. |
|
xtol : float, optional |
|
The convergence tolerance. |
|
maxfun : int, optional |
|
Maximum number of function evaluations allowed. |
|
full_output : bool, optional |
|
If True, return optional outputs. |
|
disp: int, optional |
|
If non-zero, print messages. |
|
|
|
``0`` : no message printing. |
|
|
|
``1`` : non-convergence notification messages only. |
|
|
|
``2`` : print a message on convergence too. |
|
|
|
``3`` : print iteration results. |
|
|
|
Returns |
|
------- |
|
xopt : ndarray |
|
Parameters (over given interval) which minimize the |
|
objective function. |
|
fval : number |
|
(Optional output) The function value evaluated at the minimizer. |
|
ierr : int |
|
(Optional output) An error flag (0 if converged, 1 if maximum number of |
|
function calls reached). |
|
numfunc : int |
|
(Optional output) The number of function calls made. |
|
|
|
See also |
|
-------- |
|
minimize_scalar: Interface to minimization algorithms for scalar |
|
univariate functions. See the 'Bounded' `method` in particular. |
|
|
|
Notes |
|
----- |
|
Finds a local minimizer of the scalar function `func` in the |
|
interval x1 < xopt < x2 using Brent's method. (See `brent` |
|
for auto-bracketing.) |
|
|
|
References |
|
---------- |
|
.. [1] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods |
|
for Mathematical Computations." Prentice-Hall Series in Automatic |
|
Computation 259 (1977). |
|
.. [2] Brent, Richard P. Algorithms for Minimization Without Derivatives. |
|
Courier Corporation, 2013. |
|
|
|
Examples |
|
-------- |
|
`fminbound` finds the minimizer of the function in the given range. |
|
The following examples illustrate this. |
|
|
|
>>> from scipy import optimize |
|
>>> def f(x): |
|
... return (x-1)**2 |
|
>>> minimizer = optimize.fminbound(f, -4, 4) |
|
>>> minimizer |
|
1.0 |
|
>>> minimum = f(minimizer) |
|
>>> minimum |
|
0.0 |
|
>>> res = optimize.fminbound(f, 3, 4, full_output=True) |
|
>>> minimizer, fval, ierr, numfunc = res |
|
>>> minimizer |
|
3.000005960860986 |
|
>>> minimum = f(minimizer) |
|
>>> minimum, fval |
|
(4.000023843479476, 4.000023843479476) |
|
""" |
|
options = {'xatol': xtol, |
|
'maxiter': maxfun, |
|
'disp': disp} |
|
|
|
res = _minimize_scalar_bounded(func, (x1, x2), args, **options) |
|
if full_output: |
|
return res['x'], res['fun'], res['status'], res['nfev'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_scalar_bounded(func, bounds, args=(), |
|
xatol=1e-5, maxiter=500, disp=0, |
|
**unknown_options): |
|
""" |
|
Options |
|
------- |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
disp: int, optional |
|
If non-zero, print messages. |
|
|
|
``0`` : no message printing. |
|
|
|
``1`` : non-convergence notification messages only. |
|
|
|
``2`` : print a message on convergence too. |
|
|
|
``3`` : print iteration results. |
|
|
|
xatol : float |
|
Absolute error in solution `xopt` acceptable for convergence. |
|
|
|
""" |
|
_check_unknown_options(unknown_options) |
|
maxfun = maxiter |
|
|
|
if len(bounds) != 2: |
|
raise ValueError('bounds must have two elements.') |
|
x1, x2 = bounds |
|
|
|
if not (is_finite_scalar(x1) and is_finite_scalar(x2)): |
|
raise ValueError("Optimization bounds must be finite scalars.") |
|
|
|
if x1 > x2: |
|
raise ValueError("The lower bound exceeds the upper bound.") |
|
|
|
flag = 0 |
|
header = ' Func-count x f(x) Procedure' |
|
step = ' initial' |
|
|
|
sqrt_eps = sqrt(2.2e-16) |
|
golden_mean = 0.5 * (3.0 - sqrt(5.0)) |
|
a, b = x1, x2 |
|
fulc = a + golden_mean * (b - a) |
|
nfc, xf = fulc, fulc |
|
rat = e = 0.0 |
|
x = xf |
|
fx = func(x, *args) |
|
num = 1 |
|
fmin_data = (1, xf, fx) |
|
fu = np.inf |
|
|
|
ffulc = fnfc = fx |
|
xm = 0.5 * (a + b) |
|
tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0 |
|
tol2 = 2.0 * tol1 |
|
|
|
if disp > 2: |
|
print(" ") |
|
print(header) |
|
print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) |
|
|
|
while (np.abs(xf - xm) > (tol2 - 0.5 * (b - a))): |
|
golden = 1 |
|
|
|
if np.abs(e) > tol1: |
|
golden = 0 |
|
r = (xf - nfc) * (fx - ffulc) |
|
q = (xf - fulc) * (fx - fnfc) |
|
p = (xf - fulc) * q - (xf - nfc) * r |
|
q = 2.0 * (q - r) |
|
if q > 0.0: |
|
p = -p |
|
q = np.abs(q) |
|
r = e |
|
e = rat |
|
|
|
|
|
if ((np.abs(p) < np.abs(0.5*q*r)) and (p > q*(a - xf)) and |
|
(p < q * (b - xf))): |
|
rat = (p + 0.0) / q |
|
x = xf + rat |
|
step = ' parabolic' |
|
|
|
if ((x - a) < tol2) or ((b - x) < tol2): |
|
si = np.sign(xm - xf) + ((xm - xf) == 0) |
|
rat = tol1 * si |
|
else: |
|
golden = 1 |
|
|
|
if golden: |
|
if xf >= xm: |
|
e = a - xf |
|
else: |
|
e = b - xf |
|
rat = golden_mean*e |
|
step = ' golden' |
|
|
|
si = np.sign(rat) + (rat == 0) |
|
x = xf + si * np.maximum(np.abs(rat), tol1) |
|
fu = func(x, *args) |
|
num += 1 |
|
fmin_data = (num, x, fu) |
|
if disp > 2: |
|
print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) |
|
|
|
if fu <= fx: |
|
if x >= xf: |
|
a = xf |
|
else: |
|
b = xf |
|
fulc, ffulc = nfc, fnfc |
|
nfc, fnfc = xf, fx |
|
xf, fx = x, fu |
|
else: |
|
if x < xf: |
|
a = x |
|
else: |
|
b = x |
|
if (fu <= fnfc) or (nfc == xf): |
|
fulc, ffulc = nfc, fnfc |
|
nfc, fnfc = x, fu |
|
elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc): |
|
fulc, ffulc = x, fu |
|
|
|
xm = 0.5 * (a + b) |
|
tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0 |
|
tol2 = 2.0 * tol1 |
|
|
|
if num >= maxfun: |
|
flag = 1 |
|
break |
|
|
|
if np.isnan(xf) or np.isnan(fx) or np.isnan(fu): |
|
flag = 2 |
|
|
|
fval = fx |
|
if disp > 0: |
|
_endprint(x, flag, fval, maxfun, xatol, disp) |
|
|
|
result = OptimizeResult(fun=fval, status=flag, success=(flag == 0), |
|
message={0: 'Solution found.', |
|
1: 'Maximum number of function calls ' |
|
'reached.', |
|
2: _status_message['nan']}.get(flag, ''), |
|
x=xf, nfev=num, nit=num) |
|
|
|
return result |
|
|
|
|
|
class Brent: |
|
|
|
def __init__(self, func, args=(), tol=1.48e-8, maxiter=500, |
|
full_output=0, disp=0): |
|
self.func = func |
|
self.args = args |
|
self.tol = tol |
|
self.maxiter = maxiter |
|
self._mintol = 1.0e-11 |
|
self._cg = 0.3819660 |
|
self.xmin = None |
|
self.fval = None |
|
self.iter = 0 |
|
self.funcalls = 0 |
|
self.disp = disp |
|
|
|
|
|
def set_bracket(self, brack=None): |
|
self.brack = brack |
|
|
|
def get_bracket_info(self): |
|
|
|
func = self.func |
|
args = self.args |
|
brack = self.brack |
|
|
|
|
|
if brack is None: |
|
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) |
|
elif len(brack) == 2: |
|
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], |
|
xb=brack[1], args=args) |
|
elif len(brack) == 3: |
|
xa, xb, xc = brack |
|
if (xa > xc): |
|
xc, xa = xa, xc |
|
if not ((xa < xb) and (xb < xc)): |
|
raise ValueError( |
|
"Bracketing values (xa, xb, xc) do not" |
|
" fulfill this requirement: (xa < xb) and (xb < xc)" |
|
) |
|
fa = func(*((xa,) + args)) |
|
fb = func(*((xb,) + args)) |
|
fc = func(*((xc,) + args)) |
|
if not ((fb < fa) and (fb < fc)): |
|
raise ValueError( |
|
"Bracketing values (xa, xb, xc) do not fulfill" |
|
" this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))" |
|
) |
|
|
|
funcalls = 3 |
|
else: |
|
raise ValueError("Bracketing interval must be " |
|
"length 2 or 3 sequence.") |
|
|
|
|
|
return xa, xb, xc, fa, fb, fc, funcalls |
|
|
|
def optimize(self): |
|
|
|
func = self.func |
|
xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info() |
|
_mintol = self._mintol |
|
_cg = self._cg |
|
|
|
|
|
|
|
x = w = v = xb |
|
fw = fv = fx = fb |
|
if (xa < xc): |
|
a = xa |
|
b = xc |
|
else: |
|
a = xc |
|
b = xa |
|
deltax = 0.0 |
|
iter = 0 |
|
|
|
if self.disp > 2: |
|
print(" ") |
|
print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}") |
|
print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}") |
|
|
|
while (iter < self.maxiter): |
|
tol1 = self.tol * np.abs(x) + _mintol |
|
tol2 = 2.0 * tol1 |
|
xmid = 0.5 * (a + b) |
|
|
|
if np.abs(x - xmid) < (tol2 - 0.5 * (b - a)): |
|
break |
|
|
|
|
|
|
|
if (np.abs(deltax) <= tol1): |
|
if (x >= xmid): |
|
deltax = a - x |
|
else: |
|
deltax = b - x |
|
rat = _cg * deltax |
|
else: |
|
tmp1 = (x - w) * (fx - fv) |
|
tmp2 = (x - v) * (fx - fw) |
|
p = (x - v) * tmp2 - (x - w) * tmp1 |
|
tmp2 = 2.0 * (tmp2 - tmp1) |
|
if (tmp2 > 0.0): |
|
p = -p |
|
tmp2 = np.abs(tmp2) |
|
dx_temp = deltax |
|
deltax = rat |
|
|
|
if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and |
|
(np.abs(p) < np.abs(0.5 * tmp2 * dx_temp))): |
|
rat = p * 1.0 / tmp2 |
|
u = x + rat |
|
if ((u - a) < tol2 or (b - u) < tol2): |
|
if xmid - x >= 0: |
|
rat = tol1 |
|
else: |
|
rat = -tol1 |
|
else: |
|
if (x >= xmid): |
|
deltax = a - x |
|
else: |
|
deltax = b - x |
|
rat = _cg * deltax |
|
|
|
if (np.abs(rat) < tol1): |
|
if rat >= 0: |
|
u = x + tol1 |
|
else: |
|
u = x - tol1 |
|
else: |
|
u = x + rat |
|
fu = func(*((u,) + self.args)) |
|
funcalls += 1 |
|
|
|
if (fu > fx): |
|
if (u < x): |
|
a = u |
|
else: |
|
b = u |
|
if (fu <= fw) or (w == x): |
|
v = w |
|
w = u |
|
fv = fw |
|
fw = fu |
|
elif (fu <= fv) or (v == x) or (v == w): |
|
v = u |
|
fv = fu |
|
else: |
|
if (u >= x): |
|
a = x |
|
else: |
|
b = x |
|
v = w |
|
w = x |
|
x = u |
|
fv = fw |
|
fw = fx |
|
fx = fu |
|
|
|
if self.disp > 2: |
|
print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}") |
|
|
|
iter += 1 |
|
|
|
|
|
|
|
|
|
self.xmin = x |
|
self.fval = fx |
|
self.iter = iter |
|
self.funcalls = funcalls |
|
|
|
def get_result(self, full_output=False): |
|
if full_output: |
|
return self.xmin, self.fval, self.iter, self.funcalls |
|
else: |
|
return self.xmin |
|
|
|
|
|
def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500): |
|
""" |
|
Given a function of one variable and a possible bracket, return |
|
a local minimizer of the function isolated to a fractional precision |
|
of tol. |
|
|
|
Parameters |
|
---------- |
|
func : callable f(x,*args) |
|
Objective function. |
|
args : tuple, optional |
|
Additional arguments (if present). |
|
brack : tuple, optional |
|
Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and |
|
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair |
|
``(xa, xb)`` to be used as initial points for a downhill bracket search |
|
(see `scipy.optimize.bracket`). |
|
The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``. |
|
tol : float, optional |
|
Relative error in solution `xopt` acceptable for convergence. |
|
full_output : bool, optional |
|
If True, return all output args (xmin, fval, iter, |
|
funcalls). |
|
maxiter : int, optional |
|
Maximum number of iterations in solution. |
|
|
|
Returns |
|
------- |
|
xmin : ndarray |
|
Optimum point. |
|
fval : float |
|
(Optional output) Optimum function value. |
|
iter : int |
|
(Optional output) Number of iterations. |
|
funcalls : int |
|
(Optional output) Number of objective function evaluations made. |
|
|
|
See also |
|
-------- |
|
minimize_scalar: Interface to minimization algorithms for scalar |
|
univariate functions. See the 'Brent' `method` in particular. |
|
|
|
Notes |
|
----- |
|
Uses inverse parabolic interpolation when possible to speed up |
|
convergence of golden section method. |
|
|
|
Does not ensure that the minimum lies in the range specified by |
|
`brack`. See `scipy.optimize.fminbound`. |
|
|
|
Examples |
|
-------- |
|
We illustrate the behaviour of the function when `brack` is of |
|
size 2 and 3 respectively. In the case where `brack` is of the |
|
form ``(xa, xb)``, we can see for the given values, the output does |
|
not necessarily lie in the range ``(xa, xb)``. |
|
|
|
>>> def f(x): |
|
... return (x-1)**2 |
|
|
|
>>> from scipy import optimize |
|
|
|
>>> minimizer = optimize.brent(f, brack=(1, 2)) |
|
>>> minimizer |
|
1 |
|
>>> res = optimize.brent(f, brack=(-1, 0.5, 2), full_output=True) |
|
>>> xmin, fval, iter, funcalls = res |
|
>>> f(xmin), fval |
|
(0.0, 0.0) |
|
|
|
""" |
|
options = {'xtol': tol, |
|
'maxiter': maxiter} |
|
res = _minimize_scalar_brent(func, brack, args, **options) |
|
if full_output: |
|
return res['x'], res['fun'], res['nit'], res['nfev'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_scalar_brent(func, brack=None, args=(), xtol=1.48e-8, |
|
maxiter=500, disp=0, |
|
**unknown_options): |
|
""" |
|
Options |
|
------- |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
xtol : float |
|
Relative error in solution `xopt` acceptable for convergence. |
|
disp : int, optional |
|
If non-zero, print messages. |
|
|
|
``0`` : no message printing. |
|
|
|
``1`` : non-convergence notification messages only. |
|
|
|
``2`` : print a message on convergence too. |
|
|
|
``3`` : print iteration results. |
|
|
|
Notes |
|
----- |
|
Uses inverse parabolic interpolation when possible to speed up |
|
convergence of golden section method. |
|
|
|
""" |
|
_check_unknown_options(unknown_options) |
|
tol = xtol |
|
if tol < 0: |
|
raise ValueError(f'tolerance should be >= 0, got {tol!r}') |
|
|
|
brent = Brent(func=func, args=args, tol=tol, |
|
full_output=True, maxiter=maxiter, disp=disp) |
|
brent.set_bracket(brack) |
|
brent.optimize() |
|
x, fval, nit, nfev = brent.get_result(full_output=True) |
|
|
|
success = nit < maxiter and not (np.isnan(x) or np.isnan(fval)) |
|
|
|
if success: |
|
message = ("\nOptimization terminated successfully;\n" |
|
"The returned value satisfies the termination criteria\n" |
|
f"(using xtol = {xtol} )") |
|
else: |
|
if nit >= maxiter: |
|
message = "\nMaximum number of iterations exceeded" |
|
if np.isnan(x) or np.isnan(fval): |
|
message = f"{_status_message['nan']}" |
|
|
|
if disp: |
|
_print_success_message_or_warn(not success, message) |
|
|
|
return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev, |
|
success=success, message=message) |
|
|
|
|
|
def golden(func, args=(), brack=None, tol=_epsilon, |
|
full_output=0, maxiter=5000): |
|
""" |
|
Return the minimizer of a function of one variable using the golden section |
|
method. |
|
|
|
Given a function of one variable and a possible bracketing interval, |
|
return a minimizer of the function isolated to a fractional precision of |
|
tol. |
|
|
|
Parameters |
|
---------- |
|
func : callable func(x,*args) |
|
Objective function to minimize. |
|
args : tuple, optional |
|
Additional arguments (if present), passed to func. |
|
brack : tuple, optional |
|
Either a triple ``(xa, xb, xc)`` where ``xa < xb < xc`` and |
|
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair (xa, xb) |
|
to be used as initial points for a downhill bracket search (see |
|
`scipy.optimize.bracket`). |
|
The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``. |
|
tol : float, optional |
|
x tolerance stop criterion |
|
full_output : bool, optional |
|
If True, return optional outputs. |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
|
|
Returns |
|
------- |
|
xmin : ndarray |
|
Optimum point. |
|
fval : float |
|
(Optional output) Optimum function value. |
|
funcalls : int |
|
(Optional output) Number of objective function evaluations made. |
|
|
|
See also |
|
-------- |
|
minimize_scalar: Interface to minimization algorithms for scalar |
|
univariate functions. See the 'Golden' `method` in particular. |
|
|
|
Notes |
|
----- |
|
Uses analog of bisection method to decrease the bracketed |
|
interval. |
|
|
|
Examples |
|
-------- |
|
We illustrate the behaviour of the function when `brack` is of |
|
size 2 and 3, respectively. In the case where `brack` is of the |
|
form (xa,xb), we can see for the given values, the output need |
|
not necessarily lie in the range ``(xa, xb)``. |
|
|
|
>>> def f(x): |
|
... return (x-1)**2 |
|
|
|
>>> from scipy import optimize |
|
|
|
>>> minimizer = optimize.golden(f, brack=(1, 2)) |
|
>>> minimizer |
|
1 |
|
>>> res = optimize.golden(f, brack=(-1, 0.5, 2), full_output=True) |
|
>>> xmin, fval, funcalls = res |
|
>>> f(xmin), fval |
|
(9.925165290385052e-18, 9.925165290385052e-18) |
|
|
|
""" |
|
options = {'xtol': tol, 'maxiter': maxiter} |
|
res = _minimize_scalar_golden(func, brack, args, **options) |
|
if full_output: |
|
return res['x'], res['fun'], res['nfev'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_scalar_golden(func, brack=None, args=(), |
|
xtol=_epsilon, maxiter=5000, disp=0, |
|
**unknown_options): |
|
""" |
|
Options |
|
------- |
|
xtol : float |
|
Relative error in solution `xopt` acceptable for convergence. |
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
disp: int, optional |
|
If non-zero, print messages. |
|
|
|
``0`` : no message printing. |
|
|
|
``1`` : non-convergence notification messages only. |
|
|
|
``2`` : print a message on convergence too. |
|
|
|
``3`` : print iteration results. |
|
""" |
|
_check_unknown_options(unknown_options) |
|
tol = xtol |
|
if brack is None: |
|
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) |
|
elif len(brack) == 2: |
|
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], |
|
xb=brack[1], args=args) |
|
elif len(brack) == 3: |
|
xa, xb, xc = brack |
|
if (xa > xc): |
|
xc, xa = xa, xc |
|
if not ((xa < xb) and (xb < xc)): |
|
raise ValueError( |
|
"Bracketing values (xa, xb, xc) do not" |
|
" fulfill this requirement: (xa < xb) and (xb < xc)" |
|
) |
|
fa = func(*((xa,) + args)) |
|
fb = func(*((xb,) + args)) |
|
fc = func(*((xc,) + args)) |
|
if not ((fb < fa) and (fb < fc)): |
|
raise ValueError( |
|
"Bracketing values (xa, xb, xc) do not fulfill" |
|
" this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))" |
|
) |
|
funcalls = 3 |
|
else: |
|
raise ValueError("Bracketing interval must be length 2 or 3 sequence.") |
|
|
|
_gR = 0.61803399 |
|
_gC = 1.0 - _gR |
|
x3 = xc |
|
x0 = xa |
|
if (np.abs(xc - xb) > np.abs(xb - xa)): |
|
x1 = xb |
|
x2 = xb + _gC * (xc - xb) |
|
else: |
|
x2 = xb |
|
x1 = xb - _gC * (xb - xa) |
|
f1 = func(*((x1,) + args)) |
|
f2 = func(*((x2,) + args)) |
|
funcalls += 2 |
|
nit = 0 |
|
|
|
if disp > 2: |
|
print(" ") |
|
print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}") |
|
|
|
for i in range(maxiter): |
|
if np.abs(x3 - x0) <= tol * (np.abs(x1) + np.abs(x2)): |
|
break |
|
if (f2 < f1): |
|
x0 = x1 |
|
x1 = x2 |
|
x2 = _gR * x1 + _gC * x3 |
|
f1 = f2 |
|
f2 = func(*((x2,) + args)) |
|
else: |
|
x3 = x2 |
|
x2 = x1 |
|
x1 = _gR * x2 + _gC * x0 |
|
f2 = f1 |
|
f1 = func(*((x1,) + args)) |
|
funcalls += 1 |
|
if disp > 2: |
|
if (f1 < f2): |
|
xmin, fval = x1, f1 |
|
else: |
|
xmin, fval = x2, f2 |
|
print(f"{funcalls:^12g} {xmin:^12.6g} {fval:^12.6g}") |
|
|
|
nit += 1 |
|
|
|
|
|
if (f1 < f2): |
|
xmin = x1 |
|
fval = f1 |
|
else: |
|
xmin = x2 |
|
fval = f2 |
|
|
|
success = nit < maxiter and not (np.isnan(fval) or np.isnan(xmin)) |
|
|
|
if success: |
|
message = ("\nOptimization terminated successfully;\n" |
|
"The returned value satisfies the termination criteria\n" |
|
f"(using xtol = {xtol} )") |
|
else: |
|
if nit >= maxiter: |
|
message = "\nMaximum number of iterations exceeded" |
|
if np.isnan(xmin) or np.isnan(fval): |
|
message = f"{_status_message['nan']}" |
|
|
|
if disp: |
|
_print_success_message_or_warn(not success, message) |
|
|
|
return OptimizeResult(fun=fval, nfev=funcalls, x=xmin, nit=nit, |
|
success=success, message=message) |
|
|
|
|
|
def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000): |
|
""" |
|
Bracket the minimum of a function. |
|
|
|
Given a function and distinct initial points, search in the |
|
downhill direction (as defined by the initial points) and return |
|
three points that bracket the minimum of the function. |
|
|
|
Parameters |
|
---------- |
|
func : callable f(x,*args) |
|
Objective function to minimize. |
|
xa, xb : float, optional |
|
Initial points. Defaults `xa` to 0.0, and `xb` to 1.0. |
|
A local minimum need not be contained within this interval. |
|
args : tuple, optional |
|
Additional arguments (if present), passed to `func`. |
|
grow_limit : float, optional |
|
Maximum grow limit. Defaults to 110.0 |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. Defaults to 1000. |
|
|
|
Returns |
|
------- |
|
xa, xb, xc : float |
|
Final points of the bracket. |
|
fa, fb, fc : float |
|
Objective function values at the bracket points. |
|
funcalls : int |
|
Number of function evaluations made. |
|
|
|
Raises |
|
------ |
|
BracketError |
|
If no valid bracket is found before the algorithm terminates. |
|
See notes for conditions of a valid bracket. |
|
|
|
Notes |
|
----- |
|
The algorithm attempts to find three strictly ordered points (i.e. |
|
:math:`x_a < x_b < x_c` or :math:`x_c < x_b < x_a`) satisfying |
|
:math:`f(x_b) ≤ f(x_a)` and :math:`f(x_b) ≤ f(x_c)`, where one of the |
|
inequalities must be satisfied strictly and all :math:`x_i` must be |
|
finite. |
|
|
|
Examples |
|
-------- |
|
This function can find a downward convex region of a function: |
|
|
|
>>> import numpy as np |
|
>>> import matplotlib.pyplot as plt |
|
>>> from scipy.optimize import bracket |
|
>>> def f(x): |
|
... return 10*x**2 + 3*x + 5 |
|
>>> x = np.linspace(-2, 2) |
|
>>> y = f(x) |
|
>>> init_xa, init_xb = 0.1, 1 |
|
>>> xa, xb, xc, fa, fb, fc, funcalls = bracket(f, xa=init_xa, xb=init_xb) |
|
>>> plt.axvline(x=init_xa, color="k", linestyle="--") |
|
>>> plt.axvline(x=init_xb, color="k", linestyle="--") |
|
>>> plt.plot(x, y, "-k") |
|
>>> plt.plot(xa, fa, "bx") |
|
>>> plt.plot(xb, fb, "rx") |
|
>>> plt.plot(xc, fc, "bx") |
|
>>> plt.show() |
|
|
|
Note that both initial points were to the right of the minimum, and the |
|
third point was found in the "downhill" direction: the direction |
|
in which the function appeared to be decreasing (to the left). |
|
The final points are strictly ordered, and the function value |
|
at the middle point is less than the function values at the endpoints; |
|
it follows that a minimum must lie within the bracket. |
|
|
|
""" |
|
_gold = 1.618034 |
|
_verysmall_num = 1e-21 |
|
|
|
xa, xb = np.asarray([xa, xb]) |
|
fa = func(*(xa,) + args) |
|
fb = func(*(xb,) + args) |
|
if (fa < fb): |
|
xa, xb = xb, xa |
|
fa, fb = fb, fa |
|
xc = xb + _gold * (xb - xa) |
|
fc = func(*((xc,) + args)) |
|
funcalls = 3 |
|
iter = 0 |
|
while (fc < fb): |
|
tmp1 = (xb - xa) * (fb - fc) |
|
tmp2 = (xb - xc) * (fb - fa) |
|
val = tmp2 - tmp1 |
|
if np.abs(val) < _verysmall_num: |
|
denom = 2.0 * _verysmall_num |
|
else: |
|
denom = 2.0 * val |
|
w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom |
|
wlim = xb + grow_limit * (xc - xb) |
|
msg = ("No valid bracket was found before the iteration limit was " |
|
"reached. Consider trying different initial points or " |
|
"increasing `maxiter`.") |
|
if iter > maxiter: |
|
raise RuntimeError(msg) |
|
iter += 1 |
|
if (w - xc) * (xb - w) > 0.0: |
|
fw = func(*((w,) + args)) |
|
funcalls += 1 |
|
if (fw < fc): |
|
xa = xb |
|
xb = w |
|
fa = fb |
|
fb = fw |
|
break |
|
elif (fw > fb): |
|
xc = w |
|
fc = fw |
|
break |
|
w = xc + _gold * (xc - xb) |
|
fw = func(*((w,) + args)) |
|
funcalls += 1 |
|
elif (w - wlim)*(wlim - xc) >= 0.0: |
|
w = wlim |
|
fw = func(*((w,) + args)) |
|
funcalls += 1 |
|
elif (w - wlim)*(xc - w) > 0.0: |
|
fw = func(*((w,) + args)) |
|
funcalls += 1 |
|
if (fw < fc): |
|
xb = xc |
|
xc = w |
|
w = xc + _gold * (xc - xb) |
|
fb = fc |
|
fc = fw |
|
fw = func(*((w,) + args)) |
|
funcalls += 1 |
|
else: |
|
w = xc + _gold * (xc - xb) |
|
fw = func(*((w,) + args)) |
|
funcalls += 1 |
|
xa = xb |
|
xb = xc |
|
xc = w |
|
fa = fb |
|
fb = fc |
|
fc = fw |
|
|
|
|
|
cond1 = (fb < fc and fb <= fa) or (fb < fa and fb <= fc) |
|
cond2 = (xa < xb < xc or xc < xb < xa) |
|
cond3 = np.isfinite(xa) and np.isfinite(xb) and np.isfinite(xc) |
|
msg = ("The algorithm terminated without finding a valid bracket. " |
|
"Consider trying different initial points.") |
|
if not (cond1 and cond2 and cond3): |
|
e = BracketError(msg) |
|
e.data = (xa, xb, xc, fa, fb, fc, funcalls) |
|
raise e |
|
|
|
return xa, xb, xc, fa, fb, fc, funcalls |
|
|
|
|
|
class BracketError(RuntimeError): |
|
pass |
|
|
|
|
|
def _recover_from_bracket_error(solver, fun, bracket, args, **options): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
res = solver(fun, bracket, args, **options) |
|
except BracketError as e: |
|
msg = str(e) |
|
xa, xb, xc, fa, fb, fc, funcalls = e.data |
|
xs, fs = [xa, xb, xc], [fa, fb, fc] |
|
if np.any(np.isnan([xs, fs])): |
|
x, fun = np.nan, np.nan |
|
else: |
|
imin = np.argmin(fs) |
|
x, fun = xs[imin], fs[imin] |
|
return OptimizeResult(fun=fun, nfev=funcalls, x=x, |
|
nit=0, success=False, message=msg) |
|
return res |
|
|
|
|
|
def _line_for_search(x0, alpha, lower_bound, upper_bound): |
|
""" |
|
Given a parameter vector ``x0`` with length ``n`` and a direction |
|
vector ``alpha`` with length ``n``, and lower and upper bounds on |
|
each of the ``n`` parameters, what are the bounds on a scalar |
|
``l`` such that ``lower_bound <= x0 + alpha * l <= upper_bound``. |
|
|
|
|
|
Parameters |
|
---------- |
|
x0 : np.array. |
|
The vector representing the current location. |
|
Note ``np.shape(x0) == (n,)``. |
|
alpha : np.array. |
|
The vector representing the direction. |
|
Note ``np.shape(alpha) == (n,)``. |
|
lower_bound : np.array. |
|
The lower bounds for each parameter in ``x0``. If the ``i``th |
|
parameter in ``x0`` is unbounded below, then ``lower_bound[i]`` |
|
should be ``-np.inf``. |
|
Note ``np.shape(lower_bound) == (n,)``. |
|
upper_bound : np.array. |
|
The upper bounds for each parameter in ``x0``. If the ``i``th |
|
parameter in ``x0`` is unbounded above, then ``upper_bound[i]`` |
|
should be ``np.inf``. |
|
Note ``np.shape(upper_bound) == (n,)``. |
|
|
|
Returns |
|
------- |
|
res : tuple ``(lmin, lmax)`` |
|
The bounds for ``l`` such that |
|
``lower_bound[i] <= x0[i] + alpha[i] * l <= upper_bound[i]`` |
|
for all ``i``. |
|
|
|
""" |
|
|
|
|
|
|
|
nonzero, = alpha.nonzero() |
|
lower_bound, upper_bound = lower_bound[nonzero], upper_bound[nonzero] |
|
x0, alpha = x0[nonzero], alpha[nonzero] |
|
low = (lower_bound - x0) / alpha |
|
high = (upper_bound - x0) / alpha |
|
|
|
|
|
pos = alpha > 0 |
|
|
|
lmin_pos = np.where(pos, low, 0) |
|
lmin_neg = np.where(pos, 0, high) |
|
lmax_pos = np.where(pos, high, 0) |
|
lmax_neg = np.where(pos, 0, low) |
|
|
|
lmin = np.max(lmin_pos + lmin_neg) |
|
lmax = np.min(lmax_pos + lmax_neg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return (lmin, lmax) if lmax >= lmin else (0, 0) |
|
|
|
|
|
def _linesearch_powell(func, p, xi, tol=1e-3, |
|
lower_bound=None, upper_bound=None, fval=None): |
|
"""Line-search algorithm using fminbound. |
|
|
|
Find the minimum of the function ``func(x0 + alpha*direc)``. |
|
|
|
lower_bound : np.array. |
|
The lower bounds for each parameter in ``x0``. If the ``i``th |
|
parameter in ``x0`` is unbounded below, then ``lower_bound[i]`` |
|
should be ``-np.inf``. |
|
Note ``np.shape(lower_bound) == (n,)``. |
|
upper_bound : np.array. |
|
The upper bounds for each parameter in ``x0``. If the ``i``th |
|
parameter in ``x0`` is unbounded above, then ``upper_bound[i]`` |
|
should be ``np.inf``. |
|
Note ``np.shape(upper_bound) == (n,)``. |
|
fval : number. |
|
``fval`` is equal to ``func(p)``, the idea is just to avoid |
|
recomputing it so we can limit the ``fevals``. |
|
|
|
""" |
|
def myfunc(alpha): |
|
return func(p + alpha*xi) |
|
|
|
|
|
if not np.any(xi): |
|
return ((fval, p, xi) if fval is not None else (func(p), p, xi)) |
|
elif lower_bound is None and upper_bound is None: |
|
|
|
res = _recover_from_bracket_error(_minimize_scalar_brent, |
|
myfunc, None, tuple(), xtol=tol) |
|
alpha_min, fret = res.x, res.fun |
|
xi = alpha_min * xi |
|
return fret, p + xi, xi |
|
else: |
|
bound = _line_for_search(p, xi, lower_bound, upper_bound) |
|
if np.isneginf(bound[0]) and np.isposinf(bound[1]): |
|
|
|
return _linesearch_powell(func, p, xi, fval=fval, tol=tol) |
|
elif not np.isneginf(bound[0]) and not np.isposinf(bound[1]): |
|
|
|
res = _minimize_scalar_bounded(myfunc, bound, xatol=tol / 100) |
|
xi = res.x * xi |
|
return res.fun, p + xi, xi |
|
else: |
|
|
|
|
|
|
|
bound = np.arctan(bound[0]), np.arctan(bound[1]) |
|
res = _minimize_scalar_bounded( |
|
lambda x: myfunc(np.tan(x)), |
|
bound, |
|
xatol=tol / 100) |
|
xi = np.tan(res.x) * xi |
|
return res.fun, p + xi, xi |
|
|
|
|
|
def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, |
|
maxfun=None, full_output=0, disp=1, retall=0, callback=None, |
|
direc=None): |
|
""" |
|
Minimize a function using modified Powell's method. |
|
|
|
This method only uses function values, not derivatives. |
|
|
|
Parameters |
|
---------- |
|
func : callable f(x,*args) |
|
Objective function to be minimized. |
|
x0 : ndarray |
|
Initial guess. |
|
args : tuple, optional |
|
Extra arguments passed to func. |
|
xtol : float, optional |
|
Line-search error tolerance. |
|
ftol : float, optional |
|
Relative error in ``func(xopt)`` acceptable for convergence. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. |
|
maxfun : int, optional |
|
Maximum number of function evaluations to make. |
|
full_output : bool, optional |
|
If True, ``fopt``, ``xi``, ``direc``, ``iter``, ``funcalls``, and |
|
``warnflag`` are returned. |
|
disp : bool, optional |
|
If True, print convergence messages. |
|
retall : bool, optional |
|
If True, return a list of the solution at each iteration. |
|
callback : callable, optional |
|
An optional user-supplied function, called after each |
|
iteration. Called as ``callback(xk)``, where ``xk`` is the |
|
current parameter vector. |
|
direc : ndarray, optional |
|
Initial fitting step and parameter order set as an (N, N) array, where N |
|
is the number of fitting parameters in `x0`. Defaults to step size 1.0 |
|
fitting all parameters simultaneously (``np.eye((N, N))``). To |
|
prevent initial consideration of values in a step or to change initial |
|
step size, set to 0 or desired step size in the Jth position in the Mth |
|
block, where J is the position in `x0` and M is the desired evaluation |
|
step, with steps being evaluated in index order. Step size and ordering |
|
will change freely as minimization proceeds. |
|
|
|
Returns |
|
------- |
|
xopt : ndarray |
|
Parameter which minimizes `func`. |
|
fopt : number |
|
Value of function at minimum: ``fopt = func(xopt)``. |
|
direc : ndarray |
|
Current direction set. |
|
iter : int |
|
Number of iterations. |
|
funcalls : int |
|
Number of function calls made. |
|
warnflag : int |
|
Integer warning flag: |
|
1 : Maximum number of function evaluations. |
|
2 : Maximum number of iterations. |
|
3 : NaN result encountered. |
|
4 : The result is out of the provided bounds. |
|
allvecs : list |
|
List of solutions at each iteration. |
|
|
|
See also |
|
-------- |
|
minimize: Interface to unconstrained minimization algorithms for |
|
multivariate functions. See the 'Powell' method in particular. |
|
|
|
Notes |
|
----- |
|
Uses a modification of Powell's method to find the minimum of |
|
a function of N variables. Powell's method is a conjugate |
|
direction method. |
|
|
|
The algorithm has two loops. The outer loop merely iterates over the inner |
|
loop. The inner loop minimizes over each current direction in the direction |
|
set. At the end of the inner loop, if certain conditions are met, the |
|
direction that gave the largest decrease is dropped and replaced with the |
|
difference between the current estimated x and the estimated x from the |
|
beginning of the inner-loop. |
|
|
|
The technical conditions for replacing the direction of greatest |
|
increase amount to checking that |
|
|
|
1. No further gain can be made along the direction of greatest increase |
|
from that iteration. |
|
2. The direction of greatest increase accounted for a large sufficient |
|
fraction of the decrease in the function value from that iteration of |
|
the inner loop. |
|
|
|
References |
|
---------- |
|
Powell M.J.D. (1964) An efficient method for finding the minimum of a |
|
function of several variables without calculating derivatives, |
|
Computer Journal, 7 (2):155-162. |
|
|
|
Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.: |
|
Numerical Recipes (any edition), Cambridge University Press |
|
|
|
Examples |
|
-------- |
|
>>> def f(x): |
|
... return x**2 |
|
|
|
>>> from scipy import optimize |
|
|
|
>>> minimum = optimize.fmin_powell(f, -1) |
|
Optimization terminated successfully. |
|
Current function value: 0.000000 |
|
Iterations: 2 |
|
Function evaluations: 16 |
|
>>> minimum |
|
array(0.0) |
|
|
|
""" |
|
opts = {'xtol': xtol, |
|
'ftol': ftol, |
|
'maxiter': maxiter, |
|
'maxfev': maxfun, |
|
'disp': disp, |
|
'direc': direc, |
|
'return_all': retall} |
|
|
|
callback = _wrap_callback(callback) |
|
res = _minimize_powell(func, x0, args, callback=callback, **opts) |
|
|
|
if full_output: |
|
retlist = (res['x'], res['fun'], res['direc'], res['nit'], |
|
res['nfev'], res['status']) |
|
if retall: |
|
retlist += (res['allvecs'], ) |
|
return retlist |
|
else: |
|
if retall: |
|
return res['x'], res['allvecs'] |
|
else: |
|
return res['x'] |
|
|
|
|
|
def _minimize_powell(func, x0, args=(), callback=None, bounds=None, |
|
xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None, |
|
disp=False, direc=None, return_all=False, |
|
**unknown_options): |
|
""" |
|
Minimization of scalar function of one or more variables using the |
|
modified Powell algorithm. |
|
|
|
Parameters |
|
---------- |
|
fun : callable |
|
The objective function to be minimized:: |
|
|
|
fun(x, *args) -> float |
|
|
|
where ``x`` is a 1-D array with shape (n,) and ``args`` |
|
is a tuple of the fixed parameters needed to completely |
|
specify the function. |
|
x0 : ndarray, shape (n,) |
|
Initial guess. Array of real elements of size (n,), |
|
where ``n`` is the number of independent variables. |
|
args : tuple, optional |
|
Extra arguments passed to the objective function and its |
|
derivatives (`fun`, `jac` and `hess` functions). |
|
method : str or callable, optional |
|
The present documentation is specific to ``method='powell'``, but other |
|
options are available. See documentation for `scipy.optimize.minimize`. |
|
bounds : sequence or `Bounds`, optional |
|
Bounds on decision variables. There are two ways to specify the bounds: |
|
|
|
1. Instance of `Bounds` class. |
|
2. Sequence of ``(min, max)`` pairs for each element in `x`. None |
|
is used to specify no bound. |
|
|
|
If bounds are not provided, then an unbounded line search will be used. |
|
If bounds are provided and the initial guess is within the bounds, then |
|
every function evaluation throughout the minimization procedure will be |
|
within the bounds. If bounds are provided, the initial guess is outside |
|
the bounds, and `direc` is full rank (or left to default), then some |
|
function evaluations during the first iteration may be outside the |
|
bounds, but every function evaluation after the first iteration will be |
|
within the bounds. If `direc` is not full rank, then some parameters |
|
may not be optimized and the solution is not guaranteed to be within |
|
the bounds. |
|
|
|
options : dict, optional |
|
A dictionary of solver options. All methods accept the following |
|
generic options: |
|
|
|
maxiter : int |
|
Maximum number of iterations to perform. Depending on the |
|
method each iteration may use several function evaluations. |
|
disp : bool |
|
Set to True to print convergence messages. |
|
|
|
See method-specific options for ``method='powell'`` below. |
|
callback : callable, optional |
|
Called after each iteration. The signature is:: |
|
|
|
callback(xk) |
|
|
|
where ``xk`` is the current parameter vector. |
|
|
|
Returns |
|
------- |
|
res : OptimizeResult |
|
The optimization result represented as a ``OptimizeResult`` object. |
|
Important attributes are: ``x`` the solution array, ``success`` a |
|
Boolean flag indicating if the optimizer exited successfully and |
|
``message`` which describes the cause of the termination. See |
|
`OptimizeResult` for a description of other attributes. |
|
|
|
Options |
|
------- |
|
disp : bool |
|
Set to True to print convergence messages. |
|
xtol : float |
|
Relative error in solution `xopt` acceptable for convergence. |
|
ftol : float |
|
Relative error in ``fun(xopt)`` acceptable for convergence. |
|
maxiter, maxfev : int |
|
Maximum allowed number of iterations and function evaluations. |
|
Will default to ``N*1000``, where ``N`` is the number of |
|
variables, if neither `maxiter` or `maxfev` is set. If both |
|
`maxiter` and `maxfev` are set, minimization will stop at the |
|
first reached. |
|
direc : ndarray |
|
Initial set of direction vectors for the Powell method. |
|
return_all : bool, optional |
|
Set to True to return a list of the best solution at each of the |
|
iterations. |
|
""" |
|
_check_unknown_options(unknown_options) |
|
maxfun = maxfev |
|
retall = return_all |
|
|
|
x = asarray(x0).flatten() |
|
if retall: |
|
allvecs = [x] |
|
N = len(x) |
|
|
|
if maxiter is None and maxfun is None: |
|
maxiter = N * 1000 |
|
maxfun = N * 1000 |
|
elif maxiter is None: |
|
|
|
|
|
if maxfun == np.inf: |
|
maxiter = N * 1000 |
|
else: |
|
maxiter = np.inf |
|
elif maxfun is None: |
|
if maxiter == np.inf: |
|
maxfun = N * 1000 |
|
else: |
|
maxfun = np.inf |
|
|
|
|
|
|
|
fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun) |
|
|
|
if direc is None: |
|
direc = eye(N, dtype=float) |
|
else: |
|
direc = asarray(direc, dtype=float) |
|
if np.linalg.matrix_rank(direc) != direc.shape[0]: |
|
warnings.warn("direc input is not full rank, some parameters may " |
|
"not be optimized", |
|
OptimizeWarning, stacklevel=3) |
|
|
|
if bounds is None: |
|
|
|
|
|
|
|
|
|
lower_bound, upper_bound = None, None |
|
else: |
|
|
|
lower_bound, upper_bound = bounds.lb, bounds.ub |
|
if np.any(lower_bound > x0) or np.any(x0 > upper_bound): |
|
warnings.warn("Initial guess is not within the specified bounds", |
|
OptimizeWarning, stacklevel=3) |
|
|
|
fval = func(x) |
|
x1 = x.copy() |
|
iter = 0 |
|
while True: |
|
try: |
|
fx = fval |
|
bigind = 0 |
|
delta = 0.0 |
|
for i in range(N): |
|
direc1 = direc[i] |
|
fx2 = fval |
|
fval, x, direc1 = _linesearch_powell(func, x, direc1, |
|
tol=xtol * 100, |
|
lower_bound=lower_bound, |
|
upper_bound=upper_bound, |
|
fval=fval) |
|
if (fx2 - fval) > delta: |
|
delta = fx2 - fval |
|
bigind = i |
|
iter += 1 |
|
if retall: |
|
allvecs.append(x) |
|
intermediate_result = OptimizeResult(x=x, fun=fval) |
|
if _call_callback_maybe_halt(callback, intermediate_result): |
|
break |
|
bnd = ftol * (np.abs(fx) + np.abs(fval)) + 1e-20 |
|
if 2.0 * (fx - fval) <= bnd: |
|
break |
|
if fcalls[0] >= maxfun: |
|
break |
|
if iter >= maxiter: |
|
break |
|
if np.isnan(fx) and np.isnan(fval): |
|
|
|
break |
|
|
|
|
|
direc1 = x - x1 |
|
x1 = x.copy() |
|
|
|
if lower_bound is None and upper_bound is None: |
|
lmax = 1 |
|
else: |
|
_, lmax = _line_for_search(x, direc1, lower_bound, upper_bound) |
|
x2 = x + min(lmax, 1) * direc1 |
|
fx2 = func(x2) |
|
|
|
if (fx > fx2): |
|
t = 2.0*(fx + fx2 - 2.0*fval) |
|
temp = (fx - fval - delta) |
|
t *= temp*temp |
|
temp = fx - fx2 |
|
t -= delta*temp*temp |
|
if t < 0.0: |
|
fval, x, direc1 = _linesearch_powell( |
|
func, x, direc1, |
|
tol=xtol * 100, |
|
lower_bound=lower_bound, |
|
upper_bound=upper_bound, |
|
fval=fval |
|
) |
|
if np.any(direc1): |
|
direc[bigind] = direc[-1] |
|
direc[-1] = direc1 |
|
except _MaxFuncCallError: |
|
break |
|
|
|
warnflag = 0 |
|
msg = _status_message['success'] |
|
|
|
|
|
|
|
|
|
if bounds and (np.any(lower_bound > x) or np.any(x > upper_bound)): |
|
warnflag = 4 |
|
msg = _status_message['out_of_bounds'] |
|
elif fcalls[0] >= maxfun: |
|
warnflag = 1 |
|
msg = _status_message['maxfev'] |
|
elif iter >= maxiter: |
|
warnflag = 2 |
|
msg = _status_message['maxiter'] |
|
elif np.isnan(fval) or np.isnan(x).any(): |
|
warnflag = 3 |
|
msg = _status_message['nan'] |
|
|
|
if disp: |
|
_print_success_message_or_warn(warnflag, msg, RuntimeWarning) |
|
print(f" Current function value: {fval:f}") |
|
print(" Iterations: %d" % iter) |
|
print(" Function evaluations: %d" % fcalls[0]) |
|
result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0], |
|
status=warnflag, success=(warnflag == 0), |
|
message=msg, x=x) |
|
if retall: |
|
result['allvecs'] = allvecs |
|
return result |
|
|
|
|
|
def _endprint(x, flag, fval, maxfun, xtol, disp): |
|
if flag == 0: |
|
if disp > 1: |
|
print("\nOptimization terminated successfully;\n" |
|
"The returned value satisfies the termination criteria\n" |
|
"(using xtol = ", xtol, ")") |
|
return |
|
|
|
if flag == 1: |
|
msg = ("\nMaximum number of function evaluations exceeded --- " |
|
"increase maxfun argument.\n") |
|
elif flag == 2: |
|
msg = f"\n{_status_message['nan']}" |
|
|
|
_print_success_message_or_warn(flag, msg) |
|
return |
|
|
|
|
|
def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin, |
|
disp=False, workers=1): |
|
"""Minimize a function over a given range by brute force. |
|
|
|
Uses the "brute force" method, i.e., computes the function's value |
|
at each point of a multidimensional grid of points, to find the global |
|
minimum of the function. |
|
|
|
The function is evaluated everywhere in the range with the datatype of the |
|
first call to the function, as enforced by the ``vectorize`` NumPy |
|
function. The value and type of the function evaluation returned when |
|
``full_output=True`` are affected in addition by the ``finish`` argument |
|
(see Notes). |
|
|
|
The brute force approach is inefficient because the number of grid points |
|
increases exponentially - the number of grid points to evaluate is |
|
``Ns ** len(x)``. Consequently, even with coarse grid spacing, even |
|
moderately sized problems can take a long time to run, and/or run into |
|
memory limitations. |
|
|
|
Parameters |
|
---------- |
|
func : callable |
|
The objective function to be minimized. Must be in the |
|
form ``f(x, *args)``, where ``x`` is the argument in |
|
the form of a 1-D array and ``args`` is a tuple of any |
|
additional fixed parameters needed to completely specify |
|
the function. |
|
ranges : tuple |
|
Each component of the `ranges` tuple must be either a |
|
"slice object" or a range tuple of the form ``(low, high)``. |
|
The program uses these to create the grid of points on which |
|
the objective function will be computed. See `Note 2` for |
|
more detail. |
|
args : tuple, optional |
|
Any additional fixed parameters needed to completely specify |
|
the function. |
|
Ns : int, optional |
|
Number of grid points along the axes, if not otherwise |
|
specified. See `Note2`. |
|
full_output : bool, optional |
|
If True, return the evaluation grid and the objective function's |
|
values on it. |
|
finish : callable, optional |
|
An optimization function that is called with the result of brute force |
|
minimization as initial guess. `finish` should take `func` and |
|
the initial guess as positional arguments, and take `args` as |
|
keyword arguments. It may additionally take `full_output` |
|
and/or `disp` as keyword arguments. Use None if no "polishing" |
|
function is to be used. See Notes for more details. |
|
disp : bool, optional |
|
Set to True to print convergence messages from the `finish` callable. |
|
workers : int or map-like callable, optional |
|
If `workers` is an int the grid is subdivided into `workers` |
|
sections and evaluated in parallel (uses |
|
`multiprocessing.Pool <multiprocessing>`). |
|
Supply `-1` to use all cores available to the Process. |
|
Alternatively supply a map-like callable, such as |
|
`multiprocessing.Pool.map` for evaluating the grid in parallel. |
|
This evaluation is carried out as ``workers(func, iterable)``. |
|
Requires that `func` be pickleable. |
|
|
|
.. versionadded:: 1.3.0 |
|
|
|
Returns |
|
------- |
|
x0 : ndarray |
|
A 1-D array containing the coordinates of a point at which the |
|
objective function had its minimum value. (See `Note 1` for |
|
which point is returned.) |
|
fval : float |
|
Function value at the point `x0`. (Returned when `full_output` is |
|
True.) |
|
grid : tuple |
|
Representation of the evaluation grid. It has the same |
|
length as `x0`. (Returned when `full_output` is True.) |
|
Jout : ndarray |
|
Function values at each point of the evaluation |
|
grid, i.e., ``Jout = func(*grid)``. (Returned |
|
when `full_output` is True.) |
|
|
|
See Also |
|
-------- |
|
basinhopping, differential_evolution |
|
|
|
Notes |
|
----- |
|
*Note 1*: The program finds the gridpoint at which the lowest value |
|
of the objective function occurs. If `finish` is None, that is the |
|
point returned. When the global minimum occurs within (or not very far |
|
outside) the grid's boundaries, and the grid is fine enough, that |
|
point will be in the neighborhood of the global minimum. |
|
|
|
However, users often employ some other optimization program to |
|
"polish" the gridpoint values, i.e., to seek a more precise |
|
(local) minimum near `brute's` best gridpoint. |
|
The `brute` function's `finish` option provides a convenient way to do |
|
that. Any polishing program used must take `brute's` output as its |
|
initial guess as a positional argument, and take `brute's` input values |
|
for `args` as keyword arguments, otherwise an error will be raised. |
|
It may additionally take `full_output` and/or `disp` as keyword arguments. |
|
|
|
`brute` assumes that the `finish` function returns either an |
|
`OptimizeResult` object or a tuple in the form: |
|
``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing |
|
value of the argument, ``Jmin`` is the minimum value of the objective |
|
function, "..." may be some other returned values (which are not used |
|
by `brute`), and ``statuscode`` is the status code of the `finish` program. |
|
|
|
Note that when `finish` is not None, the values returned are those |
|
of the `finish` program, *not* the gridpoint ones. Consequently, |
|
while `brute` confines its search to the input grid points, |
|
the `finish` program's results usually will not coincide with any |
|
gridpoint, and may fall outside the grid's boundary. Thus, if a |
|
minimum only needs to be found over the provided grid points, make |
|
sure to pass in ``finish=None``. |
|
|
|
*Note 2*: The grid of points is a `numpy.mgrid` object. |
|
For `brute` the `ranges` and `Ns` inputs have the following effect. |
|
Each component of the `ranges` tuple can be either a slice object or a |
|
two-tuple giving a range of values, such as (0, 5). If the component is a |
|
slice object, `brute` uses it directly. If the component is a two-tuple |
|
range, `brute` internally converts it to a slice object that interpolates |
|
`Ns` points from its low-value to its high-value, inclusive. |
|
|
|
Examples |
|
-------- |
|
We illustrate the use of `brute` to seek the global minimum of a function |
|
of two variables that is given as the sum of a positive-definite |
|
quadratic and two deep "Gaussian-shaped" craters. Specifically, define |
|
the objective function `f` as the sum of three other functions, |
|
``f = f1 + f2 + f3``. We suppose each of these has a signature |
|
``(z, *params)``, where ``z = (x, y)``, and ``params`` and the functions |
|
are as defined below. |
|
|
|
>>> import numpy as np |
|
>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5) |
|
>>> def f1(z, *params): |
|
... x, y = z |
|
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params |
|
... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f) |
|
|
|
>>> def f2(z, *params): |
|
... x, y = z |
|
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params |
|
... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale)) |
|
|
|
>>> def f3(z, *params): |
|
... x, y = z |
|
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params |
|
... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale)) |
|
|
|
>>> def f(z, *params): |
|
... return f1(z, *params) + f2(z, *params) + f3(z, *params) |
|
|
|
Thus, the objective function may have local minima near the minimum |
|
of each of the three functions of which it is composed. To |
|
use `fmin` to polish its gridpoint result, we may then continue as |
|
follows: |
|
|
|
>>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25)) |
|
>>> from scipy import optimize |
|
>>> resbrute = optimize.brute(f, rranges, args=params, full_output=True, |
|
... finish=optimize.fmin) |
|
>>> resbrute[0] # global minimum |
|
array([-1.05665192, 1.80834843]) |
|
>>> resbrute[1] # function value at global minimum |
|
-3.4085818767 |
|
|
|
Note that if `finish` had been set to None, we would have gotten the |
|
gridpoint [-1.0 1.75] where the rounded function value is -2.892. |
|
|
|
""" |
|
N = len(ranges) |
|
if N > 40: |
|
raise ValueError("Brute Force not possible with more " |
|
"than 40 variables.") |
|
lrange = list(ranges) |
|
for k in range(N): |
|
if not isinstance(lrange[k], slice): |
|
if len(lrange[k]) < 3: |
|
lrange[k] = tuple(lrange[k]) + (complex(Ns),) |
|
lrange[k] = slice(*lrange[k]) |
|
if (N == 1): |
|
lrange = lrange[0] |
|
|
|
grid = np.mgrid[lrange] |
|
|
|
|
|
inpt_shape = grid.shape |
|
if (N > 1): |
|
grid = np.reshape(grid, (inpt_shape[0], np.prod(inpt_shape[1:]))).T |
|
|
|
if not np.iterable(args): |
|
args = (args,) |
|
|
|
wrapped_func = _Brute_Wrapper(func, args) |
|
|
|
|
|
with MapWrapper(pool=workers) as mapper: |
|
Jout = np.array(list(mapper(wrapped_func, grid))) |
|
if (N == 1): |
|
grid = (grid,) |
|
Jout = np.squeeze(Jout) |
|
elif (N > 1): |
|
Jout = np.reshape(Jout, inpt_shape[1:]) |
|
grid = np.reshape(grid.T, inpt_shape) |
|
|
|
Nshape = shape(Jout) |
|
|
|
indx = argmin(Jout.ravel(), axis=-1) |
|
Nindx = np.empty(N, int) |
|
xmin = np.empty(N, float) |
|
for k in range(N - 1, -1, -1): |
|
thisN = Nshape[k] |
|
Nindx[k] = indx % Nshape[k] |
|
indx = indx // thisN |
|
for k in range(N): |
|
xmin[k] = grid[k][tuple(Nindx)] |
|
|
|
Jmin = Jout[tuple(Nindx)] |
|
if (N == 1): |
|
grid = grid[0] |
|
xmin = xmin[0] |
|
|
|
if callable(finish): |
|
|
|
finish_args = _getfullargspec(finish).args |
|
finish_kwargs = dict() |
|
if 'full_output' in finish_args: |
|
finish_kwargs['full_output'] = 1 |
|
if 'disp' in finish_args: |
|
finish_kwargs['disp'] = disp |
|
elif 'options' in finish_args: |
|
|
|
|
|
finish_kwargs['options'] = {'disp': disp} |
|
|
|
|
|
res = finish(func, xmin, args=args, **finish_kwargs) |
|
|
|
if isinstance(res, OptimizeResult): |
|
xmin = res.x |
|
Jmin = res.fun |
|
success = res.success |
|
else: |
|
xmin = res[0] |
|
Jmin = res[1] |
|
success = res[-1] == 0 |
|
if not success: |
|
if disp: |
|
warnings.warn("Either final optimization did not succeed or `finish` " |
|
"does not return `statuscode` as its last argument.", |
|
RuntimeWarning, stacklevel=2) |
|
|
|
if full_output: |
|
return xmin, Jmin, grid, Jout |
|
else: |
|
return xmin |
|
|
|
|
|
class _Brute_Wrapper: |
|
""" |
|
Object to wrap user cost function for optimize.brute, allowing picklability |
|
""" |
|
|
|
def __init__(self, f, args): |
|
self.f = f |
|
self.args = [] if args is None else args |
|
|
|
def __call__(self, x): |
|
|
|
return self.f(np.asarray(x).flatten(), *self.args) |
|
|
|
|
|
def show_options(solver=None, method=None, disp=True): |
|
""" |
|
Show documentation for additional options of optimization solvers. |
|
|
|
These are method-specific options that can be supplied through the |
|
``options`` dict. |
|
|
|
Parameters |
|
---------- |
|
solver : str |
|
Type of optimization solver. One of 'minimize', 'minimize_scalar', |
|
'root', 'root_scalar', 'linprog', or 'quadratic_assignment'. |
|
method : str, optional |
|
If not given, shows all methods of the specified solver. Otherwise, |
|
show only the options for the specified method. Valid values |
|
corresponds to methods' names of respective solver (e.g., 'BFGS' for |
|
'minimize'). |
|
disp : bool, optional |
|
Whether to print the result rather than returning it. |
|
|
|
Returns |
|
------- |
|
text |
|
Either None (for disp=True) or the text string (disp=False) |
|
|
|
Notes |
|
----- |
|
The solver-specific methods are: |
|
|
|
`scipy.optimize.minimize` |
|
|
|
- :ref:`Nelder-Mead <optimize.minimize-neldermead>` |
|
- :ref:`Powell <optimize.minimize-powell>` |
|
- :ref:`CG <optimize.minimize-cg>` |
|
- :ref:`BFGS <optimize.minimize-bfgs>` |
|
- :ref:`Newton-CG <optimize.minimize-newtoncg>` |
|
- :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` |
|
- :ref:`TNC <optimize.minimize-tnc>` |
|
- :ref:`COBYLA <optimize.minimize-cobyla>` |
|
- :ref:`COBYQA <optimize.minimize-cobyqa>` |
|
- :ref:`SLSQP <optimize.minimize-slsqp>` |
|
- :ref:`dogleg <optimize.minimize-dogleg>` |
|
- :ref:`trust-ncg <optimize.minimize-trustncg>` |
|
|
|
`scipy.optimize.root` |
|
|
|
- :ref:`hybr <optimize.root-hybr>` |
|
- :ref:`lm <optimize.root-lm>` |
|
- :ref:`broyden1 <optimize.root-broyden1>` |
|
- :ref:`broyden2 <optimize.root-broyden2>` |
|
- :ref:`anderson <optimize.root-anderson>` |
|
- :ref:`linearmixing <optimize.root-linearmixing>` |
|
- :ref:`diagbroyden <optimize.root-diagbroyden>` |
|
- :ref:`excitingmixing <optimize.root-excitingmixing>` |
|
- :ref:`krylov <optimize.root-krylov>` |
|
- :ref:`df-sane <optimize.root-dfsane>` |
|
|
|
`scipy.optimize.minimize_scalar` |
|
|
|
- :ref:`brent <optimize.minimize_scalar-brent>` |
|
- :ref:`golden <optimize.minimize_scalar-golden>` |
|
- :ref:`bounded <optimize.minimize_scalar-bounded>` |
|
|
|
`scipy.optimize.root_scalar` |
|
|
|
- :ref:`bisect <optimize.root_scalar-bisect>` |
|
- :ref:`brentq <optimize.root_scalar-brentq>` |
|
- :ref:`brenth <optimize.root_scalar-brenth>` |
|
- :ref:`ridder <optimize.root_scalar-ridder>` |
|
- :ref:`toms748 <optimize.root_scalar-toms748>` |
|
- :ref:`newton <optimize.root_scalar-newton>` |
|
- :ref:`secant <optimize.root_scalar-secant>` |
|
- :ref:`halley <optimize.root_scalar-halley>` |
|
|
|
`scipy.optimize.linprog` |
|
|
|
- :ref:`simplex <optimize.linprog-simplex>` |
|
- :ref:`interior-point <optimize.linprog-interior-point>` |
|
- :ref:`revised simplex <optimize.linprog-revised_simplex>` |
|
- :ref:`highs <optimize.linprog-highs>` |
|
- :ref:`highs-ds <optimize.linprog-highs-ds>` |
|
- :ref:`highs-ipm <optimize.linprog-highs-ipm>` |
|
|
|
`scipy.optimize.quadratic_assignment` |
|
|
|
- :ref:`faq <optimize.qap-faq>` |
|
- :ref:`2opt <optimize.qap-2opt>` |
|
|
|
Examples |
|
-------- |
|
We can print documentations of a solver in stdout: |
|
|
|
>>> from scipy.optimize import show_options |
|
>>> show_options(solver="minimize") |
|
... |
|
|
|
Specifying a method is possible: |
|
|
|
>>> show_options(solver="minimize", method="Nelder-Mead") |
|
... |
|
|
|
We can also get the documentations as a string: |
|
|
|
>>> show_options(solver="minimize", method="Nelder-Mead", disp=False) |
|
Minimization of scalar function of one or more variables using the ... |
|
|
|
""" |
|
import textwrap |
|
|
|
doc_routines = { |
|
'minimize': ( |
|
('bfgs', 'scipy.optimize._optimize._minimize_bfgs'), |
|
('cg', 'scipy.optimize._optimize._minimize_cg'), |
|
('cobyla', 'scipy.optimize._cobyla_py._minimize_cobyla'), |
|
('cobyqa', 'scipy.optimize._cobyqa_py._minimize_cobyqa'), |
|
('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'), |
|
('l-bfgs-b', 'scipy.optimize._lbfgsb_py._minimize_lbfgsb'), |
|
('nelder-mead', 'scipy.optimize._optimize._minimize_neldermead'), |
|
('newton-cg', 'scipy.optimize._optimize._minimize_newtoncg'), |
|
('powell', 'scipy.optimize._optimize._minimize_powell'), |
|
('slsqp', 'scipy.optimize._slsqp_py._minimize_slsqp'), |
|
('tnc', 'scipy.optimize._tnc._minimize_tnc'), |
|
('trust-ncg', |
|
'scipy.optimize._trustregion_ncg._minimize_trust_ncg'), |
|
('trust-constr', |
|
'scipy.optimize._trustregion_constr.' |
|
'_minimize_trustregion_constr'), |
|
('trust-exact', |
|
'scipy.optimize._trustregion_exact._minimize_trustregion_exact'), |
|
('trust-krylov', |
|
'scipy.optimize._trustregion_krylov._minimize_trust_krylov'), |
|
), |
|
'root': ( |
|
('hybr', 'scipy.optimize._minpack_py._root_hybr'), |
|
('lm', 'scipy.optimize._root._root_leastsq'), |
|
('broyden1', 'scipy.optimize._root._root_broyden1_doc'), |
|
('broyden2', 'scipy.optimize._root._root_broyden2_doc'), |
|
('anderson', 'scipy.optimize._root._root_anderson_doc'), |
|
('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'), |
|
('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'), |
|
('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'), |
|
('krylov', 'scipy.optimize._root._root_krylov_doc'), |
|
('df-sane', 'scipy.optimize._spectral._root_df_sane'), |
|
), |
|
'root_scalar': ( |
|
('bisect', 'scipy.optimize._root_scalar._root_scalar_bisect_doc'), |
|
('brentq', 'scipy.optimize._root_scalar._root_scalar_brentq_doc'), |
|
('brenth', 'scipy.optimize._root_scalar._root_scalar_brenth_doc'), |
|
('ridder', 'scipy.optimize._root_scalar._root_scalar_ridder_doc'), |
|
('toms748', 'scipy.optimize._root_scalar._root_scalar_toms748_doc'), |
|
('secant', 'scipy.optimize._root_scalar._root_scalar_secant_doc'), |
|
('newton', 'scipy.optimize._root_scalar._root_scalar_newton_doc'), |
|
('halley', 'scipy.optimize._root_scalar._root_scalar_halley_doc'), |
|
), |
|
'linprog': ( |
|
('simplex', 'scipy.optimize._linprog._linprog_simplex_doc'), |
|
('interior-point', 'scipy.optimize._linprog._linprog_ip_doc'), |
|
('revised simplex', 'scipy.optimize._linprog._linprog_rs_doc'), |
|
('highs-ipm', 'scipy.optimize._linprog._linprog_highs_ipm_doc'), |
|
('highs-ds', 'scipy.optimize._linprog._linprog_highs_ds_doc'), |
|
('highs', 'scipy.optimize._linprog._linprog_highs_doc'), |
|
), |
|
'quadratic_assignment': ( |
|
('faq', 'scipy.optimize._qap._quadratic_assignment_faq'), |
|
('2opt', 'scipy.optimize._qap._quadratic_assignment_2opt'), |
|
), |
|
'minimize_scalar': ( |
|
('brent', 'scipy.optimize._optimize._minimize_scalar_brent'), |
|
('bounded', 'scipy.optimize._optimize._minimize_scalar_bounded'), |
|
('golden', 'scipy.optimize._optimize._minimize_scalar_golden'), |
|
), |
|
} |
|
|
|
if solver is None: |
|
text = ["\n\n\n========\n", "minimize\n", "========\n"] |
|
text.append(show_options('minimize', disp=False)) |
|
text.extend(["\n\n===============\n", "minimize_scalar\n", |
|
"===============\n"]) |
|
text.append(show_options('minimize_scalar', disp=False)) |
|
text.extend(["\n\n\n====\n", "root\n", |
|
"====\n"]) |
|
text.append(show_options('root', disp=False)) |
|
text.extend(['\n\n\n=======\n', 'linprog\n', |
|
'=======\n']) |
|
text.append(show_options('linprog', disp=False)) |
|
text = "".join(text) |
|
else: |
|
solver = solver.lower() |
|
if solver not in doc_routines: |
|
raise ValueError(f'Unknown solver {solver!r}') |
|
|
|
if method is None: |
|
text = [] |
|
for name, _ in doc_routines[solver]: |
|
text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"]) |
|
text.append(show_options(solver, name, disp=False)) |
|
text = "".join(text) |
|
else: |
|
method = method.lower() |
|
methods = dict(doc_routines[solver]) |
|
if method not in methods: |
|
raise ValueError(f"Unknown method {method!r}") |
|
name = methods[method] |
|
|
|
|
|
parts = name.split('.') |
|
mod_name = ".".join(parts[:-1]) |
|
__import__(mod_name) |
|
obj = getattr(sys.modules[mod_name], parts[-1]) |
|
|
|
|
|
doc = obj.__doc__ |
|
if doc is not None: |
|
text = textwrap.dedent(doc).strip() |
|
else: |
|
text = "" |
|
|
|
if disp: |
|
print(text) |
|
return |
|
else: |
|
return text |
|
|