|
import math |
|
from itertools import product |
|
|
|
import numpy as np |
|
from numpy.testing import assert_allclose, assert_equal, assert_ |
|
from pytest import raises as assert_raises |
|
|
|
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix |
|
|
|
from scipy.optimize._numdiff import ( |
|
_adjust_scheme_to_bounds, approx_derivative, check_derivative, |
|
group_columns, _eps_for_method, _compute_absolute_step) |
|
|
|
|
|
def test_group_columns(): |
|
structure = [ |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[0, 1, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 0, 1, 1], |
|
[0, 0, 0, 0, 0, 0] |
|
] |
|
for transform in [np.asarray, csr_matrix, csc_matrix, lil_matrix]: |
|
A = transform(structure) |
|
order = np.arange(6) |
|
groups_true = np.array([0, 1, 2, 0, 1, 2]) |
|
groups = group_columns(A, order) |
|
assert_equal(groups, groups_true) |
|
|
|
order = [1, 2, 4, 3, 5, 0] |
|
groups_true = np.array([2, 0, 1, 2, 0, 1]) |
|
groups = group_columns(A, order) |
|
assert_equal(groups, groups_true) |
|
|
|
|
|
groups_1 = group_columns(A) |
|
groups_2 = group_columns(A) |
|
assert_equal(groups_1, groups_2) |
|
|
|
|
|
def test_correct_fp_eps(): |
|
|
|
EPS = np.finfo(np.float64).eps |
|
relative_step = {"2-point": EPS**0.5, |
|
"3-point": EPS**(1/3), |
|
"cs": EPS**0.5} |
|
for method in ['2-point', '3-point', 'cs']: |
|
assert_allclose( |
|
_eps_for_method(np.float64, np.float64, method), |
|
relative_step[method]) |
|
assert_allclose( |
|
_eps_for_method(np.complex128, np.complex128, method), |
|
relative_step[method] |
|
) |
|
|
|
|
|
EPS = np.finfo(np.float32).eps |
|
relative_step = {"2-point": EPS**0.5, |
|
"3-point": EPS**(1/3), |
|
"cs": EPS**0.5} |
|
|
|
for method in ['2-point', '3-point', 'cs']: |
|
assert_allclose( |
|
_eps_for_method(np.float64, np.float32, method), |
|
relative_step[method] |
|
) |
|
assert_allclose( |
|
_eps_for_method(np.float32, np.float64, method), |
|
relative_step[method] |
|
) |
|
assert_allclose( |
|
_eps_for_method(np.float32, np.float32, method), |
|
relative_step[method] |
|
) |
|
|
|
|
|
class TestAdjustSchemeToBounds: |
|
def test_no_bounds(self): |
|
x0 = np.zeros(3) |
|
h = np.full(3, 1e-2) |
|
inf_lower = np.empty_like(x0) |
|
inf_upper = np.empty_like(x0) |
|
inf_lower.fill(-np.inf) |
|
inf_upper.fill(np.inf) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 1, '1-sided', inf_lower, inf_upper) |
|
assert_allclose(h_adjusted, h) |
|
assert_(np.all(one_sided)) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 2, '1-sided', inf_lower, inf_upper) |
|
assert_allclose(h_adjusted, h) |
|
assert_(np.all(one_sided)) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 1, '2-sided', inf_lower, inf_upper) |
|
assert_allclose(h_adjusted, h) |
|
assert_(np.all(~one_sided)) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 2, '2-sided', inf_lower, inf_upper) |
|
assert_allclose(h_adjusted, h) |
|
assert_(np.all(~one_sided)) |
|
|
|
def test_with_bound(self): |
|
x0 = np.array([0.0, 0.85, -0.85]) |
|
lb = -np.ones(3) |
|
ub = np.ones(3) |
|
h = np.array([1, 1, -1]) * 1e-1 |
|
|
|
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 1, '1-sided', lb, ub) |
|
assert_allclose(h_adjusted, h) |
|
|
|
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 2, '1-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.array([1, -1, 1]) * 1e-1) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 1, '2-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.abs(h)) |
|
assert_(np.all(~one_sided)) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 2, '2-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.array([1, -1, 1]) * 1e-1) |
|
assert_equal(one_sided, np.array([False, True, True])) |
|
|
|
def test_tight_bounds(self): |
|
lb = np.array([-0.03, -0.03]) |
|
ub = np.array([0.05, 0.05]) |
|
x0 = np.array([0.0, 0.03]) |
|
h = np.array([-0.1, -0.1]) |
|
|
|
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 1, '1-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.array([0.05, -0.06])) |
|
|
|
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 2, '1-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.array([0.025, -0.03])) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 1, '2-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.array([0.03, -0.03])) |
|
assert_equal(one_sided, np.array([False, True])) |
|
|
|
h_adjusted, one_sided = _adjust_scheme_to_bounds( |
|
x0, h, 2, '2-sided', lb, ub) |
|
assert_allclose(h_adjusted, np.array([0.015, -0.015])) |
|
assert_equal(one_sided, np.array([False, True])) |
|
|
|
|
|
class TestApproxDerivativesDense: |
|
def fun_scalar_scalar(self, x): |
|
return np.sinh(x) |
|
|
|
def jac_scalar_scalar(self, x): |
|
return np.cosh(x) |
|
|
|
def fun_scalar_vector(self, x): |
|
return np.array([x[0]**2, np.tan(x[0]), np.exp(x[0])]) |
|
|
|
def jac_scalar_vector(self, x): |
|
return np.array( |
|
[2 * x[0], np.cos(x[0]) ** -2, np.exp(x[0])]).reshape(-1, 1) |
|
|
|
def fun_vector_scalar(self, x): |
|
return np.sin(x[0] * x[1]) * np.log(x[0]) |
|
|
|
def wrong_dimensions_fun(self, x): |
|
return np.array([x**2, np.tan(x), np.exp(x)]) |
|
|
|
def jac_vector_scalar(self, x): |
|
return np.array([ |
|
x[1] * np.cos(x[0] * x[1]) * np.log(x[0]) + |
|
np.sin(x[0] * x[1]) / x[0], |
|
x[0] * np.cos(x[0] * x[1]) * np.log(x[0]) |
|
]) |
|
|
|
def fun_vector_vector(self, x): |
|
return np.array([ |
|
x[0] * np.sin(x[1]), |
|
x[1] * np.cos(x[0]), |
|
x[0] ** 3 * x[1] ** -0.5 |
|
]) |
|
|
|
def fun_vector_vector_with_arg(self, x, arg): |
|
"""Used to test passing custom arguments with check_derivative()""" |
|
assert arg == 42 |
|
return np.array([ |
|
x[0] * np.sin(x[1]), |
|
x[1] * np.cos(x[0]), |
|
x[0] ** 3 * x[1] ** -0.5 |
|
]) |
|
|
|
def jac_vector_vector(self, x): |
|
return np.array([ |
|
[np.sin(x[1]), x[0] * np.cos(x[1])], |
|
[-x[1] * np.sin(x[0]), np.cos(x[0])], |
|
[3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5] |
|
]) |
|
|
|
def jac_vector_vector_with_arg(self, x, arg): |
|
"""Used to test passing custom arguments with check_derivative()""" |
|
assert arg == 42 |
|
return np.array([ |
|
[np.sin(x[1]), x[0] * np.cos(x[1])], |
|
[-x[1] * np.sin(x[0]), np.cos(x[0])], |
|
[3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5] |
|
]) |
|
|
|
def fun_parametrized(self, x, c0, c1=1.0): |
|
return np.array([np.exp(c0 * x[0]), np.exp(c1 * x[1])]) |
|
|
|
def jac_parametrized(self, x, c0, c1=0.1): |
|
return np.array([ |
|
[c0 * np.exp(c0 * x[0]), 0], |
|
[0, c1 * np.exp(c1 * x[1])] |
|
]) |
|
|
|
def fun_with_nan(self, x): |
|
return x if np.abs(x) <= 1e-8 else np.nan |
|
|
|
def jac_with_nan(self, x): |
|
return 1.0 if np.abs(x) <= 1e-8 else np.nan |
|
|
|
def fun_zero_jacobian(self, x): |
|
return np.array([x[0] * x[1], np.cos(x[0] * x[1])]) |
|
|
|
def jac_zero_jacobian(self, x): |
|
return np.array([ |
|
[x[1], x[0]], |
|
[-x[1] * np.sin(x[0] * x[1]), -x[0] * np.sin(x[0] * x[1])] |
|
]) |
|
|
|
def jac_non_numpy(self, x): |
|
|
|
|
|
xp = np.asarray(x).item() |
|
return math.exp(xp) |
|
|
|
def test_scalar_scalar(self): |
|
x0 = 1.0 |
|
jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0, |
|
method='2-point') |
|
jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0) |
|
jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0, |
|
method='cs') |
|
jac_true = self.jac_scalar_scalar(x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-9) |
|
assert_allclose(jac_diff_4, jac_true, rtol=1e-12) |
|
|
|
def test_scalar_scalar_abs_step(self): |
|
|
|
x0 = 1.0 |
|
jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0, |
|
method='2-point', abs_step=1.49e-8) |
|
jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0, |
|
abs_step=1.49e-8) |
|
jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0, |
|
method='cs', abs_step=1.49e-8) |
|
jac_true = self.jac_scalar_scalar(x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-9) |
|
assert_allclose(jac_diff_4, jac_true, rtol=1e-12) |
|
|
|
def test_scalar_vector(self): |
|
x0 = 0.5 |
|
jac_diff_2 = approx_derivative(self.fun_scalar_vector, x0, |
|
method='2-point') |
|
jac_diff_3 = approx_derivative(self.fun_scalar_vector, x0) |
|
jac_diff_4 = approx_derivative(self.fun_scalar_vector, x0, |
|
method='cs') |
|
jac_true = self.jac_scalar_vector(np.atleast_1d(x0)) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-9) |
|
assert_allclose(jac_diff_4, jac_true, rtol=1e-12) |
|
|
|
def test_vector_scalar(self): |
|
x0 = np.array([100.0, -0.5]) |
|
jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0, |
|
method='2-point') |
|
jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0) |
|
jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0, |
|
method='cs') |
|
jac_true = self.jac_vector_scalar(x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-7) |
|
assert_allclose(jac_diff_4, jac_true, rtol=1e-12) |
|
|
|
def test_vector_scalar_abs_step(self): |
|
|
|
x0 = np.array([100.0, -0.5]) |
|
jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0, |
|
method='2-point', abs_step=1.49e-8) |
|
jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0, |
|
abs_step=1.49e-8, rel_step=np.inf) |
|
jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0, |
|
method='cs', abs_step=1.49e-8) |
|
jac_true = self.jac_vector_scalar(x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=3e-9) |
|
assert_allclose(jac_diff_4, jac_true, rtol=1e-12) |
|
|
|
def test_vector_vector(self): |
|
x0 = np.array([-100.0, 0.2]) |
|
jac_diff_2 = approx_derivative(self.fun_vector_vector, x0, |
|
method='2-point') |
|
jac_diff_3 = approx_derivative(self.fun_vector_vector, x0) |
|
jac_diff_4 = approx_derivative(self.fun_vector_vector, x0, |
|
method='cs') |
|
jac_true = self.jac_vector_vector(x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-5) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_4, jac_true, rtol=1e-12) |
|
|
|
def test_wrong_dimensions(self): |
|
x0 = 1.0 |
|
assert_raises(RuntimeError, approx_derivative, |
|
self.wrong_dimensions_fun, x0) |
|
f0 = self.wrong_dimensions_fun(np.atleast_1d(x0)) |
|
assert_raises(ValueError, approx_derivative, |
|
self.wrong_dimensions_fun, x0, f0=f0) |
|
|
|
def test_custom_rel_step(self): |
|
x0 = np.array([-0.1, 0.1]) |
|
jac_diff_2 = approx_derivative(self.fun_vector_vector, x0, |
|
method='2-point', rel_step=1e-4) |
|
jac_diff_3 = approx_derivative(self.fun_vector_vector, x0, |
|
rel_step=1e-4) |
|
jac_true = self.jac_vector_vector(x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-2) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-4) |
|
|
|
def test_options(self): |
|
x0 = np.array([1.0, 1.0]) |
|
c0 = -1.0 |
|
c1 = 1.0 |
|
lb = 0.0 |
|
ub = 2.0 |
|
f0 = self.fun_parametrized(x0, c0, c1=c1) |
|
rel_step = np.array([-1e-6, 1e-7]) |
|
jac_true = self.jac_parametrized(x0, c0, c1) |
|
jac_diff_2 = approx_derivative( |
|
self.fun_parametrized, x0, method='2-point', rel_step=rel_step, |
|
f0=f0, args=(c0,), kwargs=dict(c1=c1), bounds=(lb, ub)) |
|
jac_diff_3 = approx_derivative( |
|
self.fun_parametrized, x0, rel_step=rel_step, |
|
f0=f0, args=(c0,), kwargs=dict(c1=c1), bounds=(lb, ub)) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-9) |
|
|
|
def test_with_bounds_2_point(self): |
|
lb = -np.ones(2) |
|
ub = np.ones(2) |
|
|
|
x0 = np.array([-2.0, 0.2]) |
|
assert_raises(ValueError, approx_derivative, |
|
self.fun_vector_vector, x0, bounds=(lb, ub)) |
|
|
|
x0 = np.array([-1.0, 1.0]) |
|
jac_diff = approx_derivative(self.fun_vector_vector, x0, |
|
method='2-point', bounds=(lb, ub)) |
|
jac_true = self.jac_vector_vector(x0) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-6) |
|
|
|
def test_with_bounds_3_point(self): |
|
lb = np.array([1.0, 1.0]) |
|
ub = np.array([2.0, 2.0]) |
|
|
|
x0 = np.array([1.0, 2.0]) |
|
jac_true = self.jac_vector_vector(x0) |
|
|
|
jac_diff = approx_derivative(self.fun_vector_vector, x0) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-9) |
|
|
|
jac_diff = approx_derivative(self.fun_vector_vector, x0, |
|
bounds=(lb, np.inf)) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-9) |
|
|
|
jac_diff = approx_derivative(self.fun_vector_vector, x0, |
|
bounds=(-np.inf, ub)) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-9) |
|
|
|
jac_diff = approx_derivative(self.fun_vector_vector, x0, |
|
bounds=(lb, ub)) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-9) |
|
|
|
def test_tight_bounds(self): |
|
x0 = np.array([10.0, 10.0]) |
|
lb = x0 - 3e-9 |
|
ub = x0 + 2e-9 |
|
jac_true = self.jac_vector_vector(x0) |
|
jac_diff = approx_derivative( |
|
self.fun_vector_vector, x0, method='2-point', bounds=(lb, ub)) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-6) |
|
jac_diff = approx_derivative( |
|
self.fun_vector_vector, x0, method='2-point', |
|
rel_step=1e-6, bounds=(lb, ub)) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-6) |
|
|
|
jac_diff = approx_derivative( |
|
self.fun_vector_vector, x0, bounds=(lb, ub)) |
|
assert_allclose(jac_diff, jac_true, rtol=1e-6) |
|
jac_diff = approx_derivative( |
|
self.fun_vector_vector, x0, rel_step=1e-6, bounds=(lb, ub)) |
|
assert_allclose(jac_true, jac_diff, rtol=1e-6) |
|
|
|
def test_bound_switches(self): |
|
lb = -1e-8 |
|
ub = 1e-8 |
|
x0 = 0.0 |
|
jac_true = self.jac_with_nan(x0) |
|
jac_diff_2 = approx_derivative( |
|
self.fun_with_nan, x0, method='2-point', rel_step=1e-6, |
|
bounds=(lb, ub)) |
|
jac_diff_3 = approx_derivative( |
|
self.fun_with_nan, x0, rel_step=1e-6, bounds=(lb, ub)) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-9) |
|
|
|
x0 = 1e-8 |
|
jac_true = self.jac_with_nan(x0) |
|
jac_diff_2 = approx_derivative( |
|
self.fun_with_nan, x0, method='2-point', rel_step=1e-6, |
|
bounds=(lb, ub)) |
|
jac_diff_3 = approx_derivative( |
|
self.fun_with_nan, x0, rel_step=1e-6, bounds=(lb, ub)) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-9) |
|
|
|
def test_non_numpy(self): |
|
x0 = 1.0 |
|
jac_true = self.jac_non_numpy(x0) |
|
jac_diff_2 = approx_derivative(self.jac_non_numpy, x0, |
|
method='2-point') |
|
jac_diff_3 = approx_derivative(self.jac_non_numpy, x0) |
|
assert_allclose(jac_diff_2, jac_true, rtol=1e-6) |
|
assert_allclose(jac_diff_3, jac_true, rtol=1e-8) |
|
|
|
|
|
assert_raises(TypeError, approx_derivative, self.jac_non_numpy, x0, |
|
**dict(method='cs')) |
|
|
|
def test_fp(self): |
|
|
|
|
|
np.random.seed(1) |
|
|
|
def func(p, x): |
|
return p[0] + p[1] * x |
|
|
|
def err(p, x, y): |
|
return func(p, x) - y |
|
|
|
x = np.linspace(0, 1, 100, dtype=np.float64) |
|
y = np.random.random(100).astype(np.float64) |
|
p0 = np.array([-1.0, -1.0]) |
|
|
|
jac_fp64 = approx_derivative(err, p0, method='2-point', args=(x, y)) |
|
|
|
|
|
jac_fp = approx_derivative(err, p0.astype(np.float32), |
|
method='2-point', args=(x, y)) |
|
assert err(p0, x, y).dtype == np.float64 |
|
assert_allclose(jac_fp, jac_fp64, atol=1e-3) |
|
|
|
|
|
def err_fp32(p): |
|
assert p.dtype == np.float32 |
|
return err(p, x, y).astype(np.float32) |
|
|
|
jac_fp = approx_derivative(err_fp32, p0.astype(np.float32), |
|
method='2-point') |
|
assert_allclose(jac_fp, jac_fp64, atol=1e-3) |
|
|
|
|
|
def f(x): |
|
return np.sin(x) |
|
def g(x): |
|
return np.cos(x) |
|
def hess(x): |
|
return -np.sin(x) |
|
|
|
def calc_atol(h, x0, f, hess, EPS): |
|
|
|
t0 = h / 2 * max(np.abs(hess(x0)), np.abs(hess(x0 + h))) |
|
|
|
|
|
|
|
t1 = EPS / h * max(np.abs(f(x0)), np.abs(f(x0 + h))) |
|
return t0 + t1 |
|
|
|
for dtype in [np.float16, np.float32, np.float64]: |
|
EPS = np.finfo(dtype).eps |
|
x0 = np.array(1.0).astype(dtype) |
|
h = _compute_absolute_step(None, x0, f(x0), '2-point') |
|
atol = calc_atol(h, x0, f, hess, EPS) |
|
err = approx_derivative(f, x0, method='2-point', |
|
abs_step=h) - g(x0) |
|
assert abs(err) < atol |
|
|
|
def test_check_derivative(self): |
|
x0 = np.array([-10.0, 10]) |
|
accuracy = check_derivative(self.fun_vector_vector, |
|
self.jac_vector_vector, x0) |
|
assert_(accuracy < 1e-9) |
|
accuracy = check_derivative(self.fun_vector_vector, |
|
self.jac_vector_vector, x0) |
|
assert_(accuracy < 1e-6) |
|
|
|
x0 = np.array([0.0, 0.0]) |
|
accuracy = check_derivative(self.fun_zero_jacobian, |
|
self.jac_zero_jacobian, x0) |
|
assert_(accuracy == 0) |
|
accuracy = check_derivative(self.fun_zero_jacobian, |
|
self.jac_zero_jacobian, x0) |
|
assert_(accuracy == 0) |
|
|
|
def test_check_derivative_with_kwargs(self): |
|
x0 = np.array([-10.0, 10]) |
|
accuracy = check_derivative(self.fun_vector_vector_with_arg, |
|
self.jac_vector_vector_with_arg, |
|
x0, |
|
kwargs={'arg': 42}) |
|
assert_(accuracy < 1e-9) |
|
|
|
|
|
class TestApproxDerivativeSparse: |
|
|
|
def setup_method(self): |
|
np.random.seed(0) |
|
self.n = 50 |
|
self.lb = -0.1 * (1 + np.arange(self.n)) |
|
self.ub = 0.1 * (1 + np.arange(self.n)) |
|
self.x0 = np.empty(self.n) |
|
self.x0[::2] = (1 - 1e-7) * self.lb[::2] |
|
self.x0[1::2] = (1 - 1e-7) * self.ub[1::2] |
|
|
|
self.J_true = self.jac(self.x0) |
|
|
|
def fun(self, x): |
|
e = x[1:]**3 - x[:-1]**2 |
|
return np.hstack((0, 3 * e)) + np.hstack((2 * e, 0)) |
|
|
|
def jac(self, x): |
|
n = x.size |
|
J = np.zeros((n, n)) |
|
J[0, 0] = -4 * x[0] |
|
J[0, 1] = 6 * x[1]**2 |
|
for i in range(1, n - 1): |
|
J[i, i - 1] = -6 * x[i-1] |
|
J[i, i] = 9 * x[i]**2 - 4 * x[i] |
|
J[i, i + 1] = 6 * x[i+1]**2 |
|
J[-1, -1] = 9 * x[-1]**2 |
|
J[-1, -2] = -6 * x[-2] |
|
|
|
return J |
|
|
|
def structure(self, n): |
|
A = np.zeros((n, n), dtype=int) |
|
A[0, 0] = 1 |
|
A[0, 1] = 1 |
|
for i in range(1, n - 1): |
|
A[i, i - 1: i + 2] = 1 |
|
A[-1, -1] = 1 |
|
A[-1, -2] = 1 |
|
|
|
return A |
|
|
|
def test_all(self): |
|
A = self.structure(self.n) |
|
order = np.arange(self.n) |
|
groups_1 = group_columns(A, order) |
|
np.random.shuffle(order) |
|
groups_2 = group_columns(A, order) |
|
|
|
for method, groups, l, u in product( |
|
['2-point', '3-point', 'cs'], [groups_1, groups_2], |
|
[-np.inf, self.lb], [np.inf, self.ub]): |
|
J = approx_derivative(self.fun, self.x0, method=method, |
|
bounds=(l, u), sparsity=(A, groups)) |
|
assert_(isinstance(J, csr_matrix)) |
|
assert_allclose(J.toarray(), self.J_true, rtol=1e-6) |
|
|
|
rel_step = np.full_like(self.x0, 1e-8) |
|
rel_step[::2] *= -1 |
|
J = approx_derivative(self.fun, self.x0, method=method, |
|
rel_step=rel_step, sparsity=(A, groups)) |
|
assert_allclose(J.toarray(), self.J_true, rtol=1e-5) |
|
|
|
def test_no_precomputed_groups(self): |
|
A = self.structure(self.n) |
|
J = approx_derivative(self.fun, self.x0, sparsity=A) |
|
assert_allclose(J.toarray(), self.J_true, rtol=1e-6) |
|
|
|
def test_equivalence(self): |
|
structure = np.ones((self.n, self.n), dtype=int) |
|
groups = np.arange(self.n) |
|
for method in ['2-point', '3-point', 'cs']: |
|
J_dense = approx_derivative(self.fun, self.x0, method=method) |
|
J_sparse = approx_derivative( |
|
self.fun, self.x0, sparsity=(structure, groups), method=method) |
|
assert_allclose(J_dense, J_sparse.toarray(), |
|
rtol=5e-16, atol=7e-15) |
|
|
|
def test_check_derivative(self): |
|
def jac(x): |
|
return csr_matrix(self.jac(x)) |
|
|
|
accuracy = check_derivative(self.fun, jac, self.x0, |
|
bounds=(self.lb, self.ub)) |
|
assert_(accuracy < 1e-9) |
|
|
|
accuracy = check_derivative(self.fun, jac, self.x0, |
|
bounds=(self.lb, self.ub)) |
|
assert_(accuracy < 1e-9) |
|
|
|
|
|
class TestApproxDerivativeLinearOperator: |
|
|
|
def fun_scalar_scalar(self, x): |
|
return np.sinh(x) |
|
|
|
def jac_scalar_scalar(self, x): |
|
return np.cosh(x) |
|
|
|
def fun_scalar_vector(self, x): |
|
return np.array([x[0]**2, np.tan(x[0]), np.exp(x[0])]) |
|
|
|
def jac_scalar_vector(self, x): |
|
return np.array( |
|
[2 * x[0], np.cos(x[0]) ** -2, np.exp(x[0])]).reshape(-1, 1) |
|
|
|
def fun_vector_scalar(self, x): |
|
return np.sin(x[0] * x[1]) * np.log(x[0]) |
|
|
|
def jac_vector_scalar(self, x): |
|
return np.array([ |
|
x[1] * np.cos(x[0] * x[1]) * np.log(x[0]) + |
|
np.sin(x[0] * x[1]) / x[0], |
|
x[0] * np.cos(x[0] * x[1]) * np.log(x[0]) |
|
]) |
|
|
|
def fun_vector_vector(self, x): |
|
return np.array([ |
|
x[0] * np.sin(x[1]), |
|
x[1] * np.cos(x[0]), |
|
x[0] ** 3 * x[1] ** -0.5 |
|
]) |
|
|
|
def jac_vector_vector(self, x): |
|
return np.array([ |
|
[np.sin(x[1]), x[0] * np.cos(x[1])], |
|
[-x[1] * np.sin(x[0]), np.cos(x[0])], |
|
[3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5] |
|
]) |
|
|
|
def test_scalar_scalar(self): |
|
x0 = 1.0 |
|
jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0, |
|
method='2-point', |
|
as_linear_operator=True) |
|
jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0, |
|
as_linear_operator=True) |
|
jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0, |
|
method='cs', |
|
as_linear_operator=True) |
|
jac_true = self.jac_scalar_scalar(x0) |
|
np.random.seed(1) |
|
for i in range(10): |
|
p = np.random.uniform(-10, 10, size=(1,)) |
|
assert_allclose(jac_diff_2.dot(p), jac_true*p, |
|
rtol=1e-5) |
|
assert_allclose(jac_diff_3.dot(p), jac_true*p, |
|
rtol=5e-6) |
|
assert_allclose(jac_diff_4.dot(p), jac_true*p, |
|
rtol=5e-6) |
|
|
|
def test_scalar_vector(self): |
|
x0 = 0.5 |
|
jac_diff_2 = approx_derivative(self.fun_scalar_vector, x0, |
|
method='2-point', |
|
as_linear_operator=True) |
|
jac_diff_3 = approx_derivative(self.fun_scalar_vector, x0, |
|
as_linear_operator=True) |
|
jac_diff_4 = approx_derivative(self.fun_scalar_vector, x0, |
|
method='cs', |
|
as_linear_operator=True) |
|
jac_true = self.jac_scalar_vector(np.atleast_1d(x0)) |
|
np.random.seed(1) |
|
for i in range(10): |
|
p = np.random.uniform(-10, 10, size=(1,)) |
|
assert_allclose(jac_diff_2.dot(p), jac_true.dot(p), |
|
rtol=1e-5) |
|
assert_allclose(jac_diff_3.dot(p), jac_true.dot(p), |
|
rtol=5e-6) |
|
assert_allclose(jac_diff_4.dot(p), jac_true.dot(p), |
|
rtol=5e-6) |
|
|
|
def test_vector_scalar(self): |
|
x0 = np.array([100.0, -0.5]) |
|
jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0, |
|
method='2-point', |
|
as_linear_operator=True) |
|
jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0, |
|
as_linear_operator=True) |
|
jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0, |
|
method='cs', |
|
as_linear_operator=True) |
|
jac_true = self.jac_vector_scalar(x0) |
|
np.random.seed(1) |
|
for i in range(10): |
|
p = np.random.uniform(-10, 10, size=x0.shape) |
|
assert_allclose(jac_diff_2.dot(p), np.atleast_1d(jac_true.dot(p)), |
|
rtol=1e-5) |
|
assert_allclose(jac_diff_3.dot(p), np.atleast_1d(jac_true.dot(p)), |
|
rtol=5e-6) |
|
assert_allclose(jac_diff_4.dot(p), np.atleast_1d(jac_true.dot(p)), |
|
rtol=1e-7) |
|
|
|
def test_vector_vector(self): |
|
x0 = np.array([-100.0, 0.2]) |
|
jac_diff_2 = approx_derivative(self.fun_vector_vector, x0, |
|
method='2-point', |
|
as_linear_operator=True) |
|
jac_diff_3 = approx_derivative(self.fun_vector_vector, x0, |
|
as_linear_operator=True) |
|
jac_diff_4 = approx_derivative(self.fun_vector_vector, x0, |
|
method='cs', |
|
as_linear_operator=True) |
|
jac_true = self.jac_vector_vector(x0) |
|
np.random.seed(1) |
|
for i in range(10): |
|
p = np.random.uniform(-10, 10, size=x0.shape) |
|
assert_allclose(jac_diff_2.dot(p), jac_true.dot(p), rtol=1e-5) |
|
assert_allclose(jac_diff_3.dot(p), jac_true.dot(p), rtol=1e-6) |
|
assert_allclose(jac_diff_4.dot(p), jac_true.dot(p), rtol=1e-7) |
|
|
|
def test_exception(self): |
|
x0 = np.array([-100.0, 0.2]) |
|
assert_raises(ValueError, approx_derivative, |
|
self.fun_vector_vector, x0, |
|
method='2-point', bounds=(1, np.inf)) |
|
|
|
|
|
def test_absolute_step_sign(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def f(x): |
|
return -np.abs(x[0] + 1) + np.abs(x[1] + 1) |
|
|
|
|
|
grad = approx_derivative(f, [-1, -1], method='2-point', abs_step=1e-8) |
|
assert_allclose(grad, [-1.0, 1.0]) |
|
|
|
|
|
grad = approx_derivative(f, [-1, -1], method='2-point', abs_step=-1e-8) |
|
assert_allclose(grad, [1.0, -1.0]) |
|
|
|
|
|
|
|
grad = approx_derivative( |
|
f, [-1, -1], method='2-point', abs_step=[1e-8, 1e-8] |
|
) |
|
assert_allclose(grad, [-1.0, 1.0]) |
|
|
|
|
|
grad = approx_derivative( |
|
f, [-1, -1], method='2-point', abs_step=[1e-8, -1e-8] |
|
) |
|
assert_allclose(grad, [-1.0, -1.0]) |
|
grad = approx_derivative( |
|
f, [-1, -1], method='2-point', abs_step=[-1e-8, 1e-8] |
|
) |
|
assert_allclose(grad, [1.0, 1.0]) |
|
|
|
|
|
|
|
|
|
|
|
grad = approx_derivative( |
|
f, [-1, -1], method='2-point', abs_step=1e-8, |
|
bounds=(-np.inf, -1) |
|
) |
|
assert_allclose(grad, [1.0, -1.0]) |
|
|
|
grad = approx_derivative( |
|
f, [-1, -1], method='2-point', abs_step=-1e-8, bounds=(-1, np.inf) |
|
) |
|
assert_allclose(grad, [-1.0, 1.0]) |
|
|
|
|
|
def test__compute_absolute_step(): |
|
|
|
methods = ['2-point', '3-point', 'cs'] |
|
|
|
x0 = np.array([1e-5, 0, 1, 1e5]) |
|
|
|
EPS = np.finfo(np.float64).eps |
|
relative_step = { |
|
"2-point": EPS**0.5, |
|
"3-point": EPS**(1/3), |
|
"cs": EPS**0.5 |
|
} |
|
f0 = np.array(1.0) |
|
|
|
for method in methods: |
|
rel_step = relative_step[method] |
|
correct_step = np.array([rel_step, |
|
rel_step * 1., |
|
rel_step * 1., |
|
rel_step * np.abs(x0[3])]) |
|
|
|
abs_step = _compute_absolute_step(None, x0, f0, method) |
|
assert_allclose(abs_step, correct_step) |
|
|
|
sign_x0 = (-x0 >= 0).astype(float) * 2 - 1 |
|
abs_step = _compute_absolute_step(None, -x0, f0, method) |
|
assert_allclose(abs_step, sign_x0 * correct_step) |
|
|
|
|
|
rel_step = np.array([0.1, 1, 10, 100]) |
|
correct_step = np.array([rel_step[0] * x0[0], |
|
relative_step['2-point'], |
|
rel_step[2] * 1., |
|
rel_step[3] * np.abs(x0[3])]) |
|
|
|
abs_step = _compute_absolute_step(rel_step, x0, f0, '2-point') |
|
assert_allclose(abs_step, correct_step) |
|
|
|
sign_x0 = (-x0 >= 0).astype(float) * 2 - 1 |
|
abs_step = _compute_absolute_step(rel_step, -x0, f0, '2-point') |
|
assert_allclose(abs_step, sign_x0 * correct_step) |
|
|