Sam Chaudry
Upload folder using huggingface_hub
7885a28 verified
raw
history blame
39 kB
import math
import pytest
import numpy as np
from scipy import stats, special
import scipy._lib._elementwise_iterative_method as eim
from scipy.conftest import array_api_compatible
from scipy._lib._array_api import array_namespace, is_cupy, is_numpy, xp_ravel, xp_size
from scipy._lib._array_api_no_0d import (xp_assert_close, xp_assert_equal,
xp_assert_less)
from scipy.optimize.elementwise import find_minimum, find_root
from scipy.optimize._tstutils import _CHANDRUPATLA_TESTS
from itertools import permutations
from .test_zeros import TestScalarRootFinders
def _vectorize(xp):
# xp-compatible version of np.vectorize
# assumes arguments are all arrays of the same shape
def decorator(f):
def wrapped(*arg_arrays):
shape = arg_arrays[0].shape
arg_arrays = [xp_ravel(arg_array, xp=xp) for arg_array in arg_arrays]
res = []
for i in range(math.prod(shape)):
arg_scalars = [arg_array[i] for arg_array in arg_arrays]
res.append(f(*arg_scalars))
return res
return wrapped
return decorator
# These tests were originally written for the private `optimize._chandrupatla`
# interfaces, but now we want the tests to check the behavior of the public
# `optimize.elementwise` interfaces. Therefore, rather than importing
# `_chandrupatla`/`_chandrupatla_minimize` from `_chandrupatla.py`, we import
# `find_root`/`find_minimum` from `optimize.elementwise` and wrap those
# functions to conform to the private interface. This may look a little strange,
# since it effectively just inverts the interface transformation done within the
# `find_root`/`find_minimum` functions, but it allows us to run the original,
# unmodified tests on the public interfaces, simplifying the PR that adds
# the public interfaces. We'll refactor this when we want to @parametrize the
# tests over multiple `method`s.
def _wrap_chandrupatla(func):
def _chandrupatla_wrapper(f, *bracket, **kwargs):
# avoid passing arguments to `find_minimum` to this function
tol_keys = {'xatol', 'xrtol', 'fatol', 'frtol'}
tolerances = {key: kwargs.pop(key) for key in tol_keys if key in kwargs}
_callback = kwargs.pop('callback', None)
if callable(_callback):
def callback(res):
if func == find_root:
res.xl, res.xr = res.bracket
res.fl, res.fr = res.f_bracket
else:
res.xl, res.xm, res.xr = res.bracket
res.fl, res.fm, res.fr = res.f_bracket
res.fun = res.f_x
del res.bracket
del res.f_bracket
del res.f_x
return _callback(res)
else:
callback = _callback
res = func(f, bracket, tolerances=tolerances, callback=callback, **kwargs)
if func == find_root:
res.xl, res.xr = res.bracket
res.fl, res.fr = res.f_bracket
else:
res.xl, res.xm, res.xr = res.bracket
res.fl, res.fm, res.fr = res.f_bracket
res.fun = res.f_x
del res.bracket
del res.f_bracket
del res.f_x
return res
return _chandrupatla_wrapper
_chandrupatla_root = _wrap_chandrupatla(find_root)
_chandrupatla_minimize = _wrap_chandrupatla(find_minimum)
def f1(x):
return 100*(1 - x**3.)**2 + (1-x**2.) + 2*(1-x)**2.
def f2(x):
return 5 + (x - 2.)**6
def f3(x):
xp = array_namespace(x)
return xp.exp(x) - 5*x
def f4(x):
return x**5. - 5*x**3. - 20.*x + 5.
def f5(x):
return 8*x**3 - 2*x**2 - 7*x + 3
def _bracket_minimum(func, x1, x2):
phi = 1.61803398875
maxiter = 100
f1 = func(x1)
f2 = func(x2)
step = x2 - x1
x1, x2, f1, f2, step = ((x2, x1, f2, f1, -step) if f2 > f1
else (x1, x2, f1, f2, step))
for i in range(maxiter):
step *= phi
x3 = x2 + step
f3 = func(x3)
if f3 < f2:
x1, x2, f1, f2 = x2, x3, f2, f3
else:
break
return x1, x2, x3, f1, f2, f3
cases = [
(f1, -1, 11),
(f1, -2, 13),
(f1, -4, 13),
(f1, -8, 15),
(f1, -16, 16),
(f1, -32, 19),
(f1, -64, 20),
(f1, -128, 21),
(f1, -256, 21),
(f1, -512, 19),
(f1, -1024, 24),
(f2, -1, 8),
(f2, -2, 6),
(f2, -4, 6),
(f2, -8, 7),
(f2, -16, 8),
(f2, -32, 8),
(f2, -64, 9),
(f2, -128, 11),
(f2, -256, 13),
(f2, -512, 12),
(f2, -1024, 13),
(f3, -1, 11),
(f3, -2, 11),
(f3, -4, 11),
(f3, -8, 10),
(f3, -16, 14),
(f3, -32, 12),
(f3, -64, 15),
(f3, -128, 18),
(f3, -256, 18),
(f3, -512, 19),
(f3, -1024, 19),
(f4, -0.05, 9),
(f4, -0.10, 11),
(f4, -0.15, 11),
(f4, -0.20, 11),
(f4, -0.25, 11),
(f4, -0.30, 9),
(f4, -0.35, 9),
(f4, -0.40, 9),
(f4, -0.45, 10),
(f4, -0.50, 10),
(f4, -0.55, 10),
(f5, -0.05, 6),
(f5, -0.10, 7),
(f5, -0.15, 8),
(f5, -0.20, 10),
(f5, -0.25, 9),
(f5, -0.30, 8),
(f5, -0.35, 7),
(f5, -0.40, 7),
(f5, -0.45, 9),
(f5, -0.50, 9),
(f5, -0.55, 8)
]
@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
@pytest.mark.skip_xp_backends('jax.numpy',
reason='JAX arrays do not support item assignment.')
@pytest.mark.skip_xp_backends('array_api_strict',
reason='Currently uses fancy indexing assignment.')
class TestChandrupatlaMinimize:
def f(self, x, loc):
xp = array_namespace(x, loc)
res = -xp.exp(-1/2 * (x-loc)**2) / (2*xp.pi)**0.5
return xp.asarray(res, dtype=x.dtype)[()]
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('loc', [0.6, np.linspace(-1.05, 1.05, 10)])
def test_basic(self, loc, xp, dtype):
# Find mode of normal distribution. Compare mode against location
# parameter and value of pdf at mode against expected pdf.
rtol = {'float32': 5e-3, 'float64': 5e-7}[dtype]
dtype = getattr(xp, dtype)
bracket = (xp.asarray(xi, dtype=dtype) for xi in (-5, 0, 5))
loc = xp.asarray(loc, dtype=dtype)
fun = xp.broadcast_to(xp.asarray(-stats.norm.pdf(0), dtype=dtype), loc.shape)
res = _chandrupatla_minimize(self.f, *bracket, args=(loc,))
xp_assert_close(res.x, loc, rtol=rtol)
xp_assert_equal(res.fun, fun)
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
def test_vectorization(self, shape, xp):
# Test for correct functionality, output shapes, and dtypes for various
# input shapes.
loc = xp.linspace(-0.05, 1.05, 12).reshape(shape) if shape else xp.asarray(0.6)
args = (loc,)
bracket = xp.asarray(-5.), xp.asarray(0.), xp.asarray(5.)
xp_test = array_namespace(loc) # need xp.stack
@_vectorize(xp)
def chandrupatla_single(loc_single):
return _chandrupatla_minimize(self.f, *bracket, args=(loc_single,))
def f(*args, **kwargs):
f.f_evals += 1
return self.f(*args, **kwargs)
f.f_evals = 0
res = _chandrupatla_minimize(f, *bracket, args=args)
refs = chandrupatla_single(loc)
attrs = ['x', 'fun', 'success', 'status', 'nfev', 'nit',
'xl', 'xm', 'xr', 'fl', 'fm', 'fr']
for attr in attrs:
ref_attr = xp_test.stack([getattr(ref, attr) for ref in refs])
res_attr = xp_ravel(getattr(res, attr))
xp_assert_equal(res_attr, ref_attr)
assert getattr(res, attr).shape == shape
xp_assert_equal(res.fun, self.f(res.x, *args))
xp_assert_equal(res.fl, self.f(res.xl, *args))
xp_assert_equal(res.fm, self.f(res.xm, *args))
xp_assert_equal(res.fr, self.f(res.xr, *args))
assert xp.max(res.nfev) == f.f_evals
assert xp.max(res.nit) == f.f_evals - 3
assert xp_test.isdtype(res.success.dtype, 'bool')
assert xp_test.isdtype(res.status.dtype, 'integral')
assert xp_test.isdtype(res.nfev.dtype, 'integral')
assert xp_test.isdtype(res.nit.dtype, 'integral')
def test_flags(self, xp):
# Test cases that should produce different status flags; show that all
# can be produced simultaneously.
def f(xs, js):
funcs = [lambda x: (x - 2.5) ** 2,
lambda x: x - 10,
lambda x: (x - 2.5) ** 4,
lambda x: xp.full_like(x, xp.asarray(xp.nan))]
res = []
for i in range(xp_size(js)):
x = xs[i, ...]
j = int(xp_ravel(js)[i])
res.append(funcs[j](x))
return xp.stack(res)
args = (xp.arange(4, dtype=xp.int64),)
bracket = (xp.asarray([0]*4, dtype=xp.float64),
xp.asarray([2]*4, dtype=xp.float64),
xp.asarray([np.pi]*4, dtype=xp.float64))
res = _chandrupatla_minimize(f, *bracket, args=args, maxiter=10)
ref_flags = xp.asarray([eim._ECONVERGED, eim._ESIGNERR, eim._ECONVERR,
eim._EVALUEERR], dtype=xp.int32)
xp_assert_equal(res.status, ref_flags)
def test_convergence(self, xp):
# Test that the convergence tolerances behave as expected
rng = np.random.default_rng(2585255913088665241)
p = xp.asarray(rng.random(size=3))
bracket = (xp.asarray(-5), xp.asarray(0), xp.asarray(5))
args = (p,)
kwargs0 = dict(args=args, xatol=0, xrtol=0, fatol=0, frtol=0)
kwargs = kwargs0.copy()
kwargs['xatol'] = 1e-3
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
j1 = xp.abs(res1.xr - res1.xl)
tol = xp.asarray(4*kwargs['xatol'], dtype=p.dtype)
xp_assert_less(j1, xp.full((3,), tol, dtype=p.dtype))
kwargs['xatol'] = 1e-6
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
j2 = xp.abs(res2.xr - res2.xl)
tol = xp.asarray(4*kwargs['xatol'], dtype=p.dtype)
xp_assert_less(j2, xp.full((3,), tol, dtype=p.dtype))
xp_assert_less(j2, j1)
kwargs = kwargs0.copy()
kwargs['xrtol'] = 1e-3
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
j1 = xp.abs(res1.xr - res1.xl)
tol = xp.asarray(4*kwargs['xrtol']*xp.abs(res1.x), dtype=p.dtype)
xp_assert_less(j1, tol)
kwargs['xrtol'] = 1e-6
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
j2 = xp.abs(res2.xr - res2.xl)
tol = xp.asarray(4*kwargs['xrtol']*xp.abs(res2.x), dtype=p.dtype)
xp_assert_less(j2, tol)
xp_assert_less(j2, j1)
kwargs = kwargs0.copy()
kwargs['fatol'] = 1e-3
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
h1 = xp.abs(res1.fl - 2 * res1.fm + res1.fr)
tol = xp.asarray(2*kwargs['fatol'], dtype=p.dtype)
xp_assert_less(h1, xp.full((3,), tol, dtype=p.dtype))
kwargs['fatol'] = 1e-6
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
h2 = xp.abs(res2.fl - 2 * res2.fm + res2.fr)
tol = xp.asarray(2*kwargs['fatol'], dtype=p.dtype)
xp_assert_less(h2, xp.full((3,), tol, dtype=p.dtype))
xp_assert_less(h2, h1)
kwargs = kwargs0.copy()
kwargs['frtol'] = 1e-3
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
h1 = xp.abs(res1.fl - 2 * res1.fm + res1.fr)
tol = xp.asarray(2*kwargs['frtol']*xp.abs(res1.fun), dtype=p.dtype)
xp_assert_less(h1, tol)
kwargs['frtol'] = 1e-6
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
h2 = xp.abs(res2.fl - 2 * res2.fm + res2.fr)
tol = xp.asarray(2*kwargs['frtol']*abs(res2.fun), dtype=p.dtype)
xp_assert_less(h2, tol)
xp_assert_less(h2, h1)
def test_maxiter_callback(self, xp):
# Test behavior of `maxiter` parameter and `callback` interface
loc = xp.asarray(0.612814)
bracket = (xp.asarray(-5), xp.asarray(0), xp.asarray(5))
maxiter = 5
res = _chandrupatla_minimize(self.f, *bracket, args=(loc,),
maxiter=maxiter)
assert not xp.any(res.success)
assert xp.all(res.nfev == maxiter+3)
assert xp.all(res.nit == maxiter)
def callback(res):
callback.iter += 1
callback.res = res
assert hasattr(res, 'x')
if callback.iter == 0:
# callback is called once with initial bracket
assert (res.xl, res.xm, res.xr) == bracket
else:
changed_xr = (res.xl == callback.xl) & (res.xr != callback.xr)
changed_xl = (res.xl != callback.xl) & (res.xr == callback.xr)
assert xp.all(changed_xr | changed_xl)
callback.xl = res.xl
callback.xr = res.xr
assert res.status == eim._EINPROGRESS
xp_assert_equal(self.f(res.xl, loc), res.fl)
xp_assert_equal(self.f(res.xm, loc), res.fm)
xp_assert_equal(self.f(res.xr, loc), res.fr)
xp_assert_equal(self.f(res.x, loc), res.fun)
if callback.iter == maxiter:
raise StopIteration
callback.xl = xp.nan
callback.xr = xp.nan
callback.iter = -1 # callback called once before first iteration
callback.res = None
res2 = _chandrupatla_minimize(self.f, *bracket, args=(loc,),
callback=callback)
# terminating with callback is identical to terminating due to maxiter
# (except for `status`)
for key in res.keys():
if key == 'status':
assert res[key] == eim._ECONVERR
# assert callback.res[key] == eim._EINPROGRESS
assert res2[key] == eim._ECALLBACK
else:
assert res2[key] == callback.res[key] == res[key]
@pytest.mark.parametrize('case', cases)
def test_nit_expected(self, case, xp):
# Test that `_chandrupatla` implements Chandrupatla's algorithm:
# in all 55 test cases, the number of iterations performed
# matches the number reported in the original paper.
func, x1, nit = case
# Find bracket using the algorithm in the paper
step = 0.2
x2 = x1 + step
x1, x2, x3, f1, f2, f3 = _bracket_minimum(func, x1, x2)
# Use tolerances from original paper
xatol = 0.0001
fatol = 0.000001
xrtol = 1e-16
frtol = 1e-16
bracket = xp.asarray(x1), xp.asarray(x2), xp.asarray(x3, dtype=xp.float64)
res = _chandrupatla_minimize(func, *bracket, xatol=xatol,
fatol=fatol, xrtol=xrtol, frtol=frtol)
xp_assert_equal(res.nit, xp.asarray(nit, dtype=xp.int32))
@pytest.mark.parametrize("loc", (0.65, [0.65, 0.7]))
@pytest.mark.parametrize("dtype", ('float16', 'float32', 'float64'))
def test_dtype(self, loc, dtype, xp):
# Test that dtypes are preserved
dtype = getattr(xp, dtype)
loc = xp.asarray(loc, dtype=dtype)
bracket = (xp.asarray(-3, dtype=dtype),
xp.asarray(1, dtype=dtype),
xp.asarray(5, dtype=dtype))
xp_test = array_namespace(loc) # need astype
def f(x, loc):
assert x.dtype == dtype
return xp_test.astype((x - loc)**2, dtype)
res = _chandrupatla_minimize(f, *bracket, args=(loc,))
assert res.x.dtype == dtype
xp_assert_close(res.x, loc, rtol=math.sqrt(xp.finfo(dtype).eps))
def test_input_validation(self, xp):
# Test input validation for appropriate error messages
message = '`func` must be callable.'
bracket = xp.asarray(-4), xp.asarray(0), xp.asarray(4)
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(None, *bracket)
message = 'Abscissae and function output must be real numbers.'
bracket = xp.asarray(-4 + 1j), xp.asarray(0), xp.asarray(4)
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket)
message = "...be broadcast..."
bracket = xp.asarray([-2, -3]), xp.asarray([0, 0]), xp.asarray([3, 4, 5])
# raised by `np.broadcast, but the traceback is readable IMO
with pytest.raises((ValueError, RuntimeError), match=message):
_chandrupatla_minimize(lambda x: x, *bracket)
message = "The shape of the array returned by `func` must be the same"
bracket = xp.asarray([-3, -3]), xp.asarray([0, 0]), xp.asarray([5, 5])
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: [x[0, ...], x[1, ...], x[1, ...]],
*bracket)
message = 'Tolerances must be non-negative scalars.'
bracket = xp.asarray(-4), xp.asarray(0), xp.asarray(4)
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, xatol=-1)
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, xrtol=xp.nan)
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, fatol='ekki')
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, frtol=xp.nan)
message = '`maxiter` must be a non-negative integer.'
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, maxiter=1.5)
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, maxiter=-1)
message = '`callback` must be callable.'
with pytest.raises(ValueError, match=message):
_chandrupatla_minimize(lambda x: x, *bracket, callback='shrubbery')
def test_bracket_order(self, xp):
# Confirm that order of points in bracket doesn't
xp_test = array_namespace(xp.asarray(1.)) # need `xp.newaxis`
loc = xp.linspace(-1, 1, 6)[:, xp_test.newaxis]
brackets = xp.asarray(list(permutations([-5, 0, 5]))).T
res = _chandrupatla_minimize(self.f, *brackets, args=(loc,))
assert xp.all(xp.isclose(res.x, loc) | (res.fun == self.f(loc, loc)))
ref = res.x[:, 0] # all columns should be the same
xp_test = array_namespace(loc) # need `xp.broadcast_arrays
xp_assert_close(*xp_test.broadcast_arrays(res.x.T, ref), rtol=1e-15)
def test_special_cases(self, xp):
# Test edge cases and other special cases
# Test that integers are not passed to `f`
xp_test = array_namespace(xp.asarray(1.)) # need `xp.isdtype`
def f(x):
assert xp_test.isdtype(x.dtype, "real floating")
return (x - 1)**2
bracket = xp.asarray(-7), xp.asarray(0), xp.asarray(8)
with np.errstate(invalid='ignore'):
res = _chandrupatla_minimize(f, *bracket, fatol=0, frtol=0)
assert res.success
xp_assert_close(res.x, xp.asarray(1.), rtol=1e-3)
xp_assert_close(res.fun, xp.asarray(0.), atol=1e-200)
# Test that if all elements of bracket equal minimizer, algorithm
# reports convergence
def f(x):
return (x-1)**2
bracket = xp.asarray(1), xp.asarray(1), xp.asarray(1)
res = _chandrupatla_minimize(f, *bracket)
assert res.success
xp_assert_equal(res.x, xp.asarray(1.))
# Test maxiter = 0. Should do nothing to bracket.
def f(x):
return (x-1)**2
bracket = xp.asarray(-3), xp.asarray(1.1), xp.asarray(5)
res = _chandrupatla_minimize(f, *bracket, maxiter=0)
assert res.xl, res.xr == bracket
assert res.nit == 0
assert res.nfev == 3
assert res.status == -2
assert res.x == 1.1 # best so far
# Test scalar `args` (not in tuple)
def f(x, c):
return (x-c)**2 - 1
bracket = xp.asarray(-1), xp.asarray(0), xp.asarray(1)
c = xp.asarray(1/3)
res = _chandrupatla_minimize(f, *bracket, args=(c,))
xp_assert_close(res.x, c)
# Test zero tolerances
def f(x):
return -xp.sin(x)
bracket = xp.asarray(0), xp.asarray(1), xp.asarray(xp.pi)
res = _chandrupatla_minimize(f, *bracket, xatol=0, xrtol=0, fatol=0, frtol=0)
assert res.success
# found a minimum exactly (according to floating point arithmetic)
assert res.xl < res.xm < res.xr
assert f(res.xl) == f(res.xm) == f(res.xr)
@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
@pytest.mark.skip_xp_backends('array_api_strict',
reason='Currently uses fancy indexing assignment.')
@pytest.mark.skip_xp_backends('jax.numpy',
reason='JAX arrays do not support item assignment.')
@pytest.mark.skip_xp_backends('cupy',
reason='cupy/cupy#8391')
class TestChandrupatla(TestScalarRootFinders):
def f(self, q, p):
return special.ndtr(q) - p
@pytest.mark.parametrize('p', [0.6, np.linspace(-0.05, 1.05, 10)])
def test_basic(self, p, xp):
# Invert distribution CDF and compare against distribution `ppf`
a, b = xp.asarray(-5.), xp.asarray(5.)
res = _chandrupatla_root(self.f, a, b, args=(xp.asarray(p),))
ref = xp.asarray(stats.norm().ppf(p), dtype=xp.asarray(p).dtype)
xp_assert_close(res.x, ref)
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
def test_vectorization(self, shape, xp):
# Test for correct functionality, output shapes, and dtypes for various
# input shapes.
p = (np.linspace(-0.05, 1.05, 12).reshape(shape) if shape
else np.float64(0.6))
p_xp = xp.asarray(p)
args_xp = (p_xp,)
dtype = p_xp.dtype
xp_test = array_namespace(p_xp) # need xp.bool
@np.vectorize
def chandrupatla_single(p):
return _chandrupatla_root(self.f, -5, 5, args=(p,))
def f(*args, **kwargs):
f.f_evals += 1
return self.f(*args, **kwargs)
f.f_evals = 0
res = _chandrupatla_root(f, xp.asarray(-5.), xp.asarray(5.), args=args_xp)
refs = chandrupatla_single(p).ravel()
ref_x = [ref.x for ref in refs]
ref_x = xp.reshape(xp.asarray(ref_x, dtype=dtype), shape)
xp_assert_close(res.x, ref_x)
ref_fun = [ref.fun for ref in refs]
ref_fun = xp.reshape(xp.asarray(ref_fun, dtype=dtype), shape)
xp_assert_close(res.fun, ref_fun, atol=1e-15)
xp_assert_equal(res.fun, self.f(res.x, *args_xp))
ref_success = [bool(ref.success) for ref in refs]
ref_success = xp.reshape(xp.asarray(ref_success, dtype=xp_test.bool), shape)
xp_assert_equal(res.success, ref_success)
ref_flag = [ref.status for ref in refs]
ref_flag = xp.reshape(xp.asarray(ref_flag, dtype=xp.int32), shape)
xp_assert_equal(res.status, ref_flag)
ref_nfev = [ref.nfev for ref in refs]
ref_nfev = xp.reshape(xp.asarray(ref_nfev, dtype=xp.int32), shape)
if is_numpy(xp):
xp_assert_equal(res.nfev, ref_nfev)
assert xp.max(res.nfev) == f.f_evals
else: # different backend may lead to different nfev
assert res.nfev.shape == shape
assert res.nfev.dtype == xp.int32
ref_nit = [ref.nit for ref in refs]
ref_nit = xp.reshape(xp.asarray(ref_nit, dtype=xp.int32), shape)
if is_numpy(xp):
xp_assert_equal(res.nit, ref_nit)
assert xp.max(res.nit) == f.f_evals-2
else:
assert res.nit.shape == shape
assert res.nit.dtype == xp.int32
ref_xl = [ref.xl for ref in refs]
ref_xl = xp.reshape(xp.asarray(ref_xl, dtype=dtype), shape)
xp_assert_close(res.xl, ref_xl)
ref_xr = [ref.xr for ref in refs]
ref_xr = xp.reshape(xp.asarray(ref_xr, dtype=dtype), shape)
xp_assert_close(res.xr, ref_xr)
xp_assert_less(res.xl, res.xr)
finite = xp.isfinite(res.x)
assert xp.all((res.x[finite] == res.xl[finite])
| (res.x[finite] == res.xr[finite]))
# PyTorch and CuPy don't solve to the same accuracy as NumPy - that's OK.
atol = 1e-15 if is_numpy(xp) else 1e-9
ref_fl = [ref.fl for ref in refs]
ref_fl = xp.reshape(xp.asarray(ref_fl, dtype=dtype), shape)
xp_assert_close(res.fl, ref_fl, atol=atol)
xp_assert_equal(res.fl, self.f(res.xl, *args_xp))
ref_fr = [ref.fr for ref in refs]
ref_fr = xp.reshape(xp.asarray(ref_fr, dtype=dtype), shape)
xp_assert_close(res.fr, ref_fr, atol=atol)
xp_assert_equal(res.fr, self.f(res.xr, *args_xp))
assert xp.all(xp.abs(res.fun[finite]) ==
xp.minimum(xp.abs(res.fl[finite]),
xp.abs(res.fr[finite])))
def test_flags(self, xp):
# Test cases that should produce different status flags; show that all
# can be produced simultaneously.
def f(xs, js):
# Note that full_like and int(j) shouldn't really be required. CuPy
# is just really picky here, so I'm making it a special case to
# make sure the other backends work when the user is less careful.
assert js.dtype == xp.int64
if is_cupy(xp):
funcs = [lambda x: x - 2.5,
lambda x: x - 10,
lambda x: (x - 0.1)**3,
lambda x: xp.full_like(x, xp.asarray(xp.nan))]
return [funcs[int(j)](x) for x, j in zip(xs, js)]
funcs = [lambda x: x - 2.5,
lambda x: x - 10,
lambda x: (x - 0.1) ** 3,
lambda x: xp.nan]
return [funcs[j](x) for x, j in zip(xs, js)]
args = (xp.arange(4, dtype=xp.int64),)
a, b = xp.asarray([0.]*4), xp.asarray([xp.pi]*4)
res = _chandrupatla_root(f, a, b, args=args, maxiter=2)
ref_flags = xp.asarray([eim._ECONVERGED,
eim._ESIGNERR,
eim._ECONVERR,
eim._EVALUEERR], dtype=xp.int32)
xp_assert_equal(res.status, ref_flags)
def test_convergence(self, xp):
# Test that the convergence tolerances behave as expected
rng = np.random.default_rng(2585255913088665241)
p = xp.asarray(rng.random(size=3))
bracket = (-xp.asarray(5.), xp.asarray(5.))
args = (p,)
kwargs0 = dict(args=args, xatol=0, xrtol=0, fatol=0, frtol=0)
kwargs = kwargs0.copy()
kwargs['xatol'] = 1e-3
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(res1.xr - res1.xl, xp.full_like(p, xp.asarray(1e-3)))
kwargs['xatol'] = 1e-6
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(res2.xr - res2.xl, xp.full_like(p, xp.asarray(1e-6)))
xp_assert_less(res2.xr - res2.xl, res1.xr - res1.xl)
kwargs = kwargs0.copy()
kwargs['xrtol'] = 1e-3
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(res1.xr - res1.xl, 1e-3 * xp.abs(res1.x))
kwargs['xrtol'] = 1e-6
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(res2.xr - res2.xl, 1e-6 * xp.abs(res2.x))
xp_assert_less(res2.xr - res2.xl, res1.xr - res1.xl)
kwargs = kwargs0.copy()
kwargs['fatol'] = 1e-3
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(xp.abs(res1.fun), xp.full_like(p, xp.asarray(1e-3)))
kwargs['fatol'] = 1e-6
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(xp.abs(res2.fun), xp.full_like(p, xp.asarray(1e-6)))
xp_assert_less(xp.abs(res2.fun), xp.abs(res1.fun))
kwargs = kwargs0.copy()
kwargs['frtol'] = 1e-3
x1, x2 = bracket
f0 = xp.minimum(xp.abs(self.f(x1, *args)), xp.abs(self.f(x2, *args)))
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(xp.abs(res1.fun), 1e-3*f0)
kwargs['frtol'] = 1e-6
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
xp_assert_less(xp.abs(res2.fun), 1e-6*f0)
xp_assert_less(xp.abs(res2.fun), xp.abs(res1.fun))
def test_maxiter_callback(self, xp):
# Test behavior of `maxiter` parameter and `callback` interface
p = xp.asarray(0.612814)
bracket = (xp.asarray(-5.), xp.asarray(5.))
maxiter = 5
def f(q, p):
res = special.ndtr(q) - p
f.x = q
f.fun = res
return res
f.x = None
f.fun = None
res = _chandrupatla_root(f, *bracket, args=(p,), maxiter=maxiter)
assert not xp.any(res.success)
assert xp.all(res.nfev == maxiter+2)
assert xp.all(res.nit == maxiter)
def callback(res):
callback.iter += 1
callback.res = res
assert hasattr(res, 'x')
if callback.iter == 0:
# callback is called once with initial bracket
assert (res.xl, res.xr) == bracket
else:
changed = (((res.xl == callback.xl) & (res.xr != callback.xr))
| ((res.xl != callback.xl) & (res.xr == callback.xr)))
assert xp.all(changed)
callback.xl = res.xl
callback.xr = res.xr
assert res.status == eim._EINPROGRESS
xp_assert_equal(self.f(res.xl, p), res.fl)
xp_assert_equal(self.f(res.xr, p), res.fr)
xp_assert_equal(self.f(res.x, p), res.fun)
if callback.iter == maxiter:
raise StopIteration
callback.iter = -1 # callback called once before first iteration
callback.res = None
callback.xl = None
callback.xr = None
res2 = _chandrupatla_root(f, *bracket, args=(p,), callback=callback)
# terminating with callback is identical to terminating due to maxiter
# (except for `status`)
for key in res.keys():
if key == 'status':
xp_assert_equal(res[key], xp.asarray(eim._ECONVERR, dtype=xp.int32))
xp_assert_equal(res2[key], xp.asarray(eim._ECALLBACK, dtype=xp.int32))
elif key.startswith('_'):
continue
else:
xp_assert_equal(res2[key], res[key])
@pytest.mark.parametrize('case', _CHANDRUPATLA_TESTS)
def test_nit_expected(self, case, xp):
# Test that `_chandrupatla` implements Chandrupatla's algorithm:
# in all 40 test cases, the number of iterations performed
# matches the number reported in the original paper.
f, bracket, root, nfeval, id = case
# Chandrupatla's criterion is equivalent to
# abs(x2-x1) < 4*abs(xmin)*xrtol + xatol, but we use the more standard
# abs(x2-x1) < abs(xmin)*xrtol + xatol. Therefore, set xrtol to 4x
# that used by Chandrupatla in tests.
bracket = (xp.asarray(bracket[0], dtype=xp.float64),
xp.asarray(bracket[1], dtype=xp.float64))
root = xp.asarray(root, dtype=xp.float64)
res = _chandrupatla_root(f, *bracket, xrtol=4e-10, xatol=1e-5)
xp_assert_close(res.fun, xp.asarray(f(root), dtype=xp.float64),
rtol=1e-8, atol=2e-3)
xp_assert_equal(res.nfev, xp.asarray(nfeval, dtype=xp.int32))
@pytest.mark.parametrize("root", (0.622, [0.622, 0.623]))
@pytest.mark.parametrize("dtype", ('float16', 'float32', 'float64'))
def test_dtype(self, root, dtype, xp):
# Test that dtypes are preserved
not_numpy = not is_numpy(xp)
if not_numpy and dtype == 'float16':
pytest.skip("`float16` dtype only supported for NumPy arrays.")
dtype = getattr(xp, dtype, None)
if dtype is None:
pytest.skip(f"{xp} does not support {dtype}")
def f(x, root):
res = (x - root) ** 3.
if is_numpy(xp): # NumPy does not preserve dtype
return xp.asarray(res, dtype=dtype)
return res
a, b = xp.asarray(-3, dtype=dtype), xp.asarray(3, dtype=dtype)
root = xp.asarray(root, dtype=dtype)
res = _chandrupatla_root(f, a, b, args=(root,), xatol=1e-3)
try:
xp_assert_close(res.x, root, atol=1e-3)
except AssertionError:
assert res.x.dtype == dtype
xp.all(res.fun == 0)
def test_input_validation(self, xp):
# Test input validation for appropriate error messages
def func(x):
return x
message = '`func` must be callable.'
with pytest.raises(ValueError, match=message):
bracket = xp.asarray(-4), xp.asarray(4)
_chandrupatla_root(None, *bracket)
message = 'Abscissae and function output must be real numbers.'
with pytest.raises(ValueError, match=message):
bracket = xp.asarray(-4+1j), xp.asarray(4)
_chandrupatla_root(func, *bracket)
# raised by `np.broadcast, but the traceback is readable IMO
message = "...not be broadcast..." # all messages include this part
with pytest.raises((ValueError, RuntimeError), match=message):
bracket = xp.asarray([-2, -3]), xp.asarray([3, 4, 5])
_chandrupatla_root(func, *bracket)
message = "The shape of the array returned by `func`..."
with pytest.raises(ValueError, match=message):
bracket = xp.asarray([-3, -3]), xp.asarray([5, 5])
_chandrupatla_root(lambda x: [x[0], x[1], x[1]], *bracket)
message = 'Tolerances must be non-negative scalars.'
bracket = xp.asarray(-4), xp.asarray(4)
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, xatol=-1)
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, xrtol=xp.nan)
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, fatol='ekki')
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, frtol=xp.nan)
message = '`maxiter` must be a non-negative integer.'
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, maxiter=1.5)
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, maxiter=-1)
message = '`callback` must be callable.'
with pytest.raises(ValueError, match=message):
_chandrupatla_root(func, *bracket, callback='shrubbery')
def test_special_cases(self, xp):
# Test edge cases and other special cases
# Test infinite function values
def f(x):
return 1 / x + 1 - 1 / (-x + 1)
a, b = xp.asarray([0.1, 0., 0., 0.1]), xp.asarray([0.9, 1.0, 0.9, 1.0])
with np.errstate(divide='ignore', invalid='ignore'):
res = _chandrupatla_root(f, a, b)
assert xp.all(res.success)
xp_assert_close(res.x[1:], xp.full((3,), res.x[0]))
# Test that integers are not passed to `f`
# (otherwise this would overflow)
xp_test = array_namespace(a) # need isdtype
def f(x):
assert xp_test.isdtype(x.dtype, "real floating")
# this would overflow if x were an xp integer dtype
return x ** 31 - 1
# note that all inputs are integer type; result is automatically default float
res = _chandrupatla_root(f, xp.asarray(-7), xp.asarray(5))
assert res.success
xp_assert_close(res.x, xp.asarray(1.))
# Test that if both ends of bracket equal root, algorithm reports
# convergence.
def f(x, root):
return x**2 - root
root = xp.asarray([0, 1])
res = _chandrupatla_root(f, xp.asarray(1), xp.asarray(1), args=(root,))
xp_assert_equal(res.success, xp.asarray([False, True]))
xp_assert_equal(res.x, xp.asarray([xp.nan, 1.]))
def f(x):
return 1/x
with np.errstate(invalid='ignore'):
inf = xp.asarray(xp.inf)
res = _chandrupatla_root(f, inf, inf)
assert res.success
xp_assert_equal(res.x, xp.asarray(xp.inf))
# Test maxiter = 0. Should do nothing to bracket.
def f(x):
return x**3 - 1
a, b = xp.asarray(-3.), xp.asarray(5.)
res = _chandrupatla_root(f, a, b, maxiter=0)
xp_assert_equal(res.success, xp.asarray(False))
xp_assert_equal(res.status, xp.asarray(-2, dtype=xp.int32))
xp_assert_equal(res.nit, xp.asarray(0, dtype=xp.int32))
xp_assert_equal(res.nfev, xp.asarray(2, dtype=xp.int32))
xp_assert_equal(res.xl, a)
xp_assert_equal(res.xr, b)
# The `x` attribute is the one with the smaller function value
xp_assert_equal(res.x, a)
# Reverse bracket; check that this is still true
res = _chandrupatla_root(f, -b, -a, maxiter=0)
xp_assert_equal(res.x, -a)
# Test maxiter = 1
res = _chandrupatla_root(f, a, b, maxiter=1)
xp_assert_equal(res.success, xp.asarray(True))
xp_assert_equal(res.status, xp.asarray(0, dtype=xp.int32))
xp_assert_equal(res.nit, xp.asarray(1, dtype=xp.int32))
xp_assert_equal(res.nfev, xp.asarray(3, dtype=xp.int32))
xp_assert_close(res.x, xp.asarray(1.))
# Test scalar `args` (not in tuple)
def f(x, c):
return c*x - 1
res = _chandrupatla_root(f, xp.asarray(-1), xp.asarray(1), args=xp.asarray(3))
xp_assert_close(res.x, xp.asarray(1/3))
# # TODO: Test zero tolerance
# # ~~What's going on here - why are iterations repeated?~~
# # tl goes to zero when xatol=xrtol=0. When function is nearly linear,
# # this causes convergence issues.
# def f(x):
# return np.cos(x)
#
# res = _chandrupatla_root(f, 0, np.pi, xatol=0, xrtol=0)
# assert res.nit < 100
# xp = np.nextafter(res.x, np.inf)
# xm = np.nextafter(res.x, -np.inf)
# assert np.abs(res.fun) < np.abs(f(xp))
# assert np.abs(res.fun) < np.abs(f(xm))