|
""" |
|
Unit test for DIRECT optimization algorithm. |
|
""" |
|
from numpy.testing import (assert_allclose, |
|
assert_array_less) |
|
import pytest |
|
import numpy as np |
|
from scipy.optimize import direct, Bounds |
|
import threading |
|
|
|
|
|
class TestDIRECT: |
|
|
|
def setup_method(self): |
|
self.fun_calls = threading.local() |
|
self.bounds_sphere = 4*[(-2, 3)] |
|
self.optimum_sphere_pos = np.zeros((4, )) |
|
self.optimum_sphere = 0.0 |
|
self.bounds_stylinski_tang = Bounds([-4., -4.], [4., 4.]) |
|
self.maxiter = 1000 |
|
|
|
|
|
def sphere(self, x): |
|
if not hasattr(self.fun_calls, 'c'): |
|
self.fun_calls.c = 0 |
|
self.fun_calls.c += 1 |
|
return np.square(x).sum() |
|
|
|
def inv(self, x): |
|
if np.sum(x) == 0: |
|
raise ZeroDivisionError() |
|
return 1/np.sum(x) |
|
|
|
def nan_fun(self, x): |
|
return np.nan |
|
|
|
def inf_fun(self, x): |
|
return np.inf |
|
|
|
def styblinski_tang(self, pos): |
|
x, y = pos |
|
return 0.5 * (x**4 - 16 * x**2 + 5 * x + y**4 - 16 * y**2 + 5 * y) |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_direct(self, locally_biased): |
|
res = direct(self.sphere, self.bounds_sphere, |
|
locally_biased=locally_biased) |
|
|
|
|
|
assert_allclose(res.x, self.optimum_sphere_pos, |
|
rtol=1e-3, atol=1e-3) |
|
assert_allclose(res.fun, self.optimum_sphere, atol=1e-5, rtol=1e-5) |
|
|
|
|
|
_bounds = np.asarray(self.bounds_sphere) |
|
assert_array_less(_bounds[:, 0], res.x) |
|
assert_array_less(res.x, _bounds[:, 1]) |
|
|
|
|
|
|
|
assert res.nfev <= 1000 * (len(self.bounds_sphere) + 1) |
|
|
|
assert res.nfev == self.fun_calls.c |
|
|
|
|
|
assert res.nit <= self.maxiter |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_direct_callback(self, locally_biased): |
|
|
|
res = direct(self.sphere, self.bounds_sphere, |
|
locally_biased=locally_biased) |
|
|
|
def callback(x): |
|
x = 2*x |
|
dummy = np.square(x) |
|
print("DIRECT minimization algorithm callback test") |
|
return dummy |
|
|
|
res_callback = direct(self.sphere, self.bounds_sphere, |
|
locally_biased=locally_biased, |
|
callback=callback) |
|
|
|
assert_allclose(res.x, res_callback.x) |
|
|
|
assert res.nit == res_callback.nit |
|
assert res.nfev == res_callback.nfev |
|
assert res.status == res_callback.status |
|
assert res.success == res_callback.success |
|
assert res.fun == res_callback.fun |
|
assert_allclose(res.x, res_callback.x) |
|
assert res.message == res_callback.message |
|
|
|
|
|
assert_allclose(res_callback.x, self.optimum_sphere_pos, |
|
rtol=1e-3, atol=1e-3) |
|
assert_allclose(res_callback.fun, self.optimum_sphere, |
|
atol=1e-5, rtol=1e-5) |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_exception(self, locally_biased): |
|
bounds = 4*[(-10, 10)] |
|
with pytest.raises(ZeroDivisionError): |
|
direct(self.inv, bounds=bounds, |
|
locally_biased=locally_biased) |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_nan(self, locally_biased): |
|
bounds = 4*[(-10, 10)] |
|
direct(self.nan_fun, bounds=bounds, |
|
locally_biased=locally_biased) |
|
|
|
@pytest.mark.parametrize("len_tol", [1e-3, 1e-4]) |
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_len_tol(self, len_tol, locally_biased): |
|
bounds = 4*[(-10., 10.)] |
|
res = direct(self.sphere, bounds=bounds, len_tol=len_tol, |
|
vol_tol=1e-30, locally_biased=locally_biased) |
|
assert res.status == 5 |
|
assert res.success |
|
assert_allclose(res.x, np.zeros((4, ))) |
|
message = ("The side length measure of the hyperrectangle containing " |
|
"the lowest function value found is below " |
|
f"len_tol={len_tol}") |
|
assert res.message == message |
|
|
|
@pytest.mark.parametrize("vol_tol", [1e-6, 1e-8]) |
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_vol_tol(self, vol_tol, locally_biased): |
|
bounds = 4*[(-10., 10.)] |
|
res = direct(self.sphere, bounds=bounds, vol_tol=vol_tol, |
|
len_tol=0., locally_biased=locally_biased) |
|
assert res.status == 4 |
|
assert res.success |
|
assert_allclose(res.x, np.zeros((4, ))) |
|
message = ("The volume of the hyperrectangle containing the lowest " |
|
f"function value found is below vol_tol={vol_tol}") |
|
assert res.message == message |
|
|
|
@pytest.mark.parametrize("f_min_rtol", [1e-3, 1e-5, 1e-7]) |
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_f_min(self, f_min_rtol, locally_biased): |
|
|
|
|
|
f_min = 1. |
|
bounds = 4*[(-2., 10.)] |
|
res = direct(self.sphere, bounds=bounds, f_min=f_min, |
|
f_min_rtol=f_min_rtol, |
|
locally_biased=locally_biased) |
|
assert res.status == 3 |
|
assert res.success |
|
assert res.fun < f_min * (1. + f_min_rtol) |
|
message = ("The best function value found is within a relative " |
|
f"error={f_min_rtol} of the (known) global optimum f_min") |
|
assert res.message == message |
|
|
|
def circle_with_args(self, x, a, b): |
|
return np.square(x[0] - a) + np.square(x[1] - b).sum() |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_f_circle_with_args(self, locally_biased): |
|
bounds = 2*[(-2.0, 2.0)] |
|
|
|
res = direct(self.circle_with_args, bounds, args=(1, 1), maxfun=1250, |
|
locally_biased=locally_biased) |
|
assert_allclose(res.x, np.array([1., 1.]), rtol=1e-5) |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_failure_maxfun(self, locally_biased): |
|
|
|
|
|
|
|
maxfun = 100 |
|
result = direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
maxfun=maxfun, locally_biased=locally_biased) |
|
assert result.success is False |
|
assert result.status == 1 |
|
assert result.nfev >= maxfun |
|
message = ("Number of function evaluations done is " |
|
f"larger than maxfun={maxfun}") |
|
assert result.message == message |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_failure_maxiter(self, locally_biased): |
|
|
|
|
|
|
|
maxiter = 10 |
|
result = direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
maxiter=maxiter, locally_biased=locally_biased) |
|
assert result.success is False |
|
assert result.status == 2 |
|
assert result.nit >= maxiter |
|
message = f"Number of iterations is larger than maxiter={maxiter}" |
|
assert result.message == message |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_bounds_variants(self, locally_biased): |
|
|
|
|
|
lb = [-6., 1., -5.] |
|
ub = [-1., 3., 5.] |
|
x_opt = np.array([-1., 1., 0.]) |
|
bounds_old = list(zip(lb, ub)) |
|
bounds_new = Bounds(lb, ub) |
|
|
|
res_old_bounds = direct(self.sphere, bounds_old, |
|
locally_biased=locally_biased) |
|
res_new_bounds = direct(self.sphere, bounds_new, |
|
locally_biased=locally_biased) |
|
|
|
assert res_new_bounds.nfev == res_old_bounds.nfev |
|
assert res_new_bounds.message == res_old_bounds.message |
|
assert res_new_bounds.success == res_old_bounds.success |
|
assert res_new_bounds.nit == res_old_bounds.nit |
|
assert_allclose(res_new_bounds.x, res_old_bounds.x) |
|
assert_allclose(res_new_bounds.x, x_opt, rtol=1e-2) |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
@pytest.mark.parametrize("eps", [1e-5, 1e-4, 1e-3]) |
|
def test_epsilon(self, eps, locally_biased): |
|
result = direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
eps=eps, vol_tol=1e-6, |
|
locally_biased=locally_biased) |
|
assert result.status == 4 |
|
assert result.success |
|
|
|
@pytest.mark.xslow |
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_no_segmentation_fault(self, locally_biased): |
|
|
|
|
|
bounds = [(-5., 20.)] * 100 |
|
result = direct(self.sphere, bounds, maxfun=10000000, |
|
maxiter=1000000, locally_biased=locally_biased) |
|
assert result is not None |
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False]) |
|
def test_inf_fun(self, locally_biased): |
|
|
|
bounds = [(-5., 5.)] * 2 |
|
result = direct(self.inf_fun, bounds, |
|
locally_biased=locally_biased) |
|
assert result is not None |
|
|
|
@pytest.mark.parametrize("len_tol", [-1, 2]) |
|
def test_len_tol_validation(self, len_tol): |
|
error_msg = "len_tol must be between 0 and 1." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
len_tol=len_tol) |
|
|
|
@pytest.mark.parametrize("vol_tol", [-1, 2]) |
|
def test_vol_tol_validation(self, vol_tol): |
|
error_msg = "vol_tol must be between 0 and 1." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
vol_tol=vol_tol) |
|
|
|
@pytest.mark.parametrize("f_min_rtol", [-1, 2]) |
|
def test_fmin_rtol_validation(self, f_min_rtol): |
|
error_msg = "f_min_rtol must be between 0 and 1." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
f_min_rtol=f_min_rtol, f_min=0.) |
|
|
|
@pytest.mark.parametrize("maxfun", [1.5, "string", (1, 2)]) |
|
def test_maxfun_wrong_type(self, maxfun): |
|
error_msg = "maxfun must be of type int." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
maxfun=maxfun) |
|
|
|
@pytest.mark.parametrize("maxiter", [1.5, "string", (1, 2)]) |
|
def test_maxiter_wrong_type(self, maxiter): |
|
error_msg = "maxiter must be of type int." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
maxiter=maxiter) |
|
|
|
def test_negative_maxiter(self): |
|
error_msg = "maxiter must be > 0." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
maxiter=-1) |
|
|
|
def test_negative_maxfun(self): |
|
error_msg = "maxfun must be > 0." |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
maxfun=-1) |
|
|
|
@pytest.mark.parametrize("bounds", ["bounds", 2., 0]) |
|
def test_invalid_bounds_type(self, bounds): |
|
error_msg = ("bounds must be a sequence or " |
|
"instance of Bounds class") |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, bounds) |
|
|
|
@pytest.mark.parametrize("bounds", |
|
[Bounds([-1., -1], [-2, 1]), |
|
Bounds([-np.nan, -1], [-2, np.nan]), |
|
] |
|
) |
|
def test_incorrect_bounds(self, bounds): |
|
error_msg = 'Bounds are not consistent min < max' |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, bounds) |
|
|
|
def test_inf_bounds(self): |
|
error_msg = 'Bounds must not be inf.' |
|
bounds = Bounds([-np.inf, -1], [-2, np.inf]) |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, bounds) |
|
|
|
@pytest.mark.parametrize("locally_biased", ["bias", [0, 0], 2.]) |
|
def test_locally_biased_validation(self, locally_biased): |
|
error_msg = 'locally_biased must be True or False.' |
|
with pytest.raises(ValueError, match=error_msg): |
|
direct(self.styblinski_tang, self.bounds_stylinski_tang, |
|
locally_biased=locally_biased) |
|
|