Sam Chaudry
Upload folder using huggingface_hub
7885a28 verified
raw
history blame
29.1 kB
import numpy as np
from numpy.testing import assert_equal
import pytest
from scipy.linalg import block_diag
from scipy.sparse import coo_array, random_array
from .._coo import _block_diag, _extract_block_diag
def test_shape_constructor():
empty1d = coo_array((3,))
assert empty1d.shape == (3,)
assert_equal(empty1d.toarray(), np.zeros((3,)))
empty2d = coo_array((3, 2))
assert empty2d.shape == (3, 2)
assert_equal(empty2d.toarray(), np.zeros((3, 2)))
empty_nd = coo_array((2,3,4,6,7))
assert empty_nd.shape == (2,3,4,6,7)
assert_equal(empty_nd.toarray(), np.zeros((2,3,4,6,7)))
def test_dense_constructor():
# 1d
res1d = coo_array([1, 2, 3])
assert res1d.shape == (3,)
assert_equal(res1d.toarray(), np.array([1, 2, 3]))
# 2d
res2d = coo_array([[1, 2, 3], [4, 5, 6]])
assert res2d.shape == (2, 3)
assert_equal(res2d.toarray(), np.array([[1, 2, 3], [4, 5, 6]]))
# 4d
arr4d = np.array([[[[3, 7], [1, 0]], [[6, 5], [9, 2]]],
[[[4, 3], [2, 8]], [[7, 5], [1, 6]]],
[[[0, 9], [4, 3]], [[2, 1], [7, 8]]]])
res4d = coo_array(arr4d)
assert res4d.shape == (3, 2, 2, 2)
assert_equal(res4d.toarray(), arr4d)
# 9d
np.random.seed(12)
arr9d = np.random.randn(2,3,4,7,6,5,3,2,4)
res9d = coo_array(arr9d)
assert res9d.shape == (2,3,4,7,6,5,3,2,4)
assert_equal(res9d.toarray(), arr9d)
# storing nan as element of sparse array
nan_3d = coo_array([[[1, np.nan]], [[3, 4]], [[5, 6]]])
assert nan_3d.shape == (3, 1, 2)
assert_equal(nan_3d.toarray(), np.array([[[1, np.nan]], [[3, 4]], [[5, 6]]]))
def test_dense_constructor_with_shape():
res1d = coo_array([1, 2, 3], shape=(3,))
assert res1d.shape == (3,)
assert_equal(res1d.toarray(), np.array([1, 2, 3]))
res2d = coo_array([[1, 2, 3], [4, 5, 6]], shape=(2, 3))
assert res2d.shape == (2, 3)
assert_equal(res2d.toarray(), np.array([[1, 2, 3], [4, 5, 6]]))
res3d = coo_array([[[3]], [[4]]], shape=(2, 1, 1))
assert res3d.shape == (2, 1, 1)
assert_equal(res3d.toarray(), np.array([[[3]], [[4]]]))
np.random.seed(12)
arr7d = np.random.randn(2,4,1,6,5,3,2)
res7d = coo_array((arr7d), shape=(2,4,1,6,5,3,2))
assert res7d.shape == (2,4,1,6,5,3,2)
assert_equal(res7d.toarray(), arr7d)
def test_dense_constructor_with_inconsistent_shape():
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([1, 2, 3], shape=(4,))
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([1, 2, 3], shape=(3, 1))
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([[1, 2, 3]], shape=(3,))
with pytest.raises(ValueError, match='inconsistent shapes'):
coo_array([[[3]], [[4]]], shape=(1, 1, 1))
with pytest.raises(ValueError,
match='axis 0 index 2 exceeds matrix dimension 2'):
coo_array(([1], ([2],)), shape=(2,))
with pytest.raises(ValueError,
match='axis 1 index 3 exceeds matrix dimension 3'):
coo_array(([1,3], ([0, 1], [0, 3], [1, 1])), shape=(2, 3, 2))
with pytest.raises(ValueError, match='negative axis 0 index: -1'):
coo_array(([1], ([-1],)))
with pytest.raises(ValueError, match='negative axis 2 index: -1'):
coo_array(([1], ([0], [2], [-1])))
def test_1d_sparse_constructor():
empty1d = coo_array((3,))
res = coo_array(empty1d)
assert res.shape == (3,)
assert_equal(res.toarray(), np.zeros((3,)))
def test_1d_tuple_constructor():
res = coo_array(([9,8], ([1,2],)))
assert res.shape == (3,)
assert_equal(res.toarray(), np.array([0, 9, 8]))
def test_1d_tuple_constructor_with_shape():
res = coo_array(([9,8], ([1,2],)), shape=(4,))
assert res.shape == (4,)
assert_equal(res.toarray(), np.array([0, 9, 8, 0]))
def test_non_subscriptability():
coo_2d = coo_array((2, 2))
with pytest.raises(TypeError,
match="'coo_array' object does not support item assignment"):
coo_2d[0, 0] = 1
with pytest.raises(TypeError,
match="'coo_array' object is not subscriptable"):
coo_2d[0, :]
def test_reshape_overflow():
# see gh-22353 : new idx_dtype can need to be int64 instead of int32
M, N = (1045507, 523266)
coords = (np.array([M - 1], dtype='int32'), np.array([N - 1], dtype='int32'))
A = coo_array(([3.3], coords), shape=(M, N))
# need new idx_dtype to not overflow
B = A.reshape((M * N, 1))
assert B.coords[0].dtype == np.dtype('int64')
assert B.coords[0][0] == (M * N) - 1
# need idx_dtype to stay int32 if before and after can be int32
C = A.reshape(N, M)
assert C.coords[0].dtype == np.dtype('int32')
assert C.coords[0][0] == N - 1
def test_reshape():
arr1d = coo_array([1, 0, 3])
assert arr1d.shape == (3,)
col_vec = arr1d.reshape((3, 1))
assert col_vec.shape == (3, 1)
assert_equal(col_vec.toarray(), np.array([[1], [0], [3]]))
row_vec = arr1d.reshape((1, 3))
assert row_vec.shape == (1, 3)
assert_equal(row_vec.toarray(), np.array([[1, 0, 3]]))
# attempting invalid reshape
with pytest.raises(ValueError, match="cannot reshape array"):
arr1d.reshape((3,3))
# attempting reshape with a size 0 dimension
with pytest.raises(ValueError, match="cannot reshape array"):
arr1d.reshape((3,0))
arr2d = coo_array([[1, 2, 0], [0, 0, 3]])
assert arr2d.shape == (2, 3)
flat = arr2d.reshape((6,))
assert flat.shape == (6,)
assert_equal(flat.toarray(), np.array([1, 2, 0, 0, 0, 3]))
# 2d to 3d
to_3d_arr = arr2d.reshape((2, 3, 1))
assert to_3d_arr.shape == (2, 3, 1)
assert_equal(to_3d_arr.toarray(), np.array([[[1], [2], [0]], [[0], [0], [3]]]))
# attempting invalid reshape
with pytest.raises(ValueError, match="cannot reshape array"):
arr2d.reshape((1,3))
def test_nnz():
arr1d = coo_array([1, 0, 3])
assert arr1d.shape == (3,)
assert arr1d.nnz == 2
arr2d = coo_array([[1, 2, 0], [0, 0, 3]])
assert arr2d.shape == (2, 3)
assert arr2d.nnz == 3
def test_transpose():
arr1d = coo_array([1, 0, 3]).T
assert arr1d.shape == (3,)
assert_equal(arr1d.toarray(), np.array([1, 0, 3]))
arr2d = coo_array([[1, 2, 0], [0, 0, 3]]).T
assert arr2d.shape == (3, 2)
assert_equal(arr2d.toarray(), np.array([[1, 0], [2, 0], [0, 3]]))
def test_transpose_with_axis():
arr1d = coo_array([1, 0, 3]).transpose(axes=(0,))
assert arr1d.shape == (3,)
assert_equal(arr1d.toarray(), np.array([1, 0, 3]))
arr2d = coo_array([[1, 2, 0], [0, 0, 3]]).transpose(axes=(0, 1))
assert arr2d.shape == (2, 3)
assert_equal(arr2d.toarray(), np.array([[1, 2, 0], [0, 0, 3]]))
with pytest.raises(ValueError, match="axes don't match matrix dimensions"):
coo_array([1, 0, 3]).transpose(axes=(0, 1))
with pytest.raises(ValueError, match="repeated axis in transpose"):
coo_array([[1, 2, 0], [0, 0, 3]]).transpose(axes=(1, 1))
def test_1d_row_and_col():
res = coo_array([1, -2, -3])
assert_equal(res.col, np.array([0, 1, 2]))
assert_equal(res.row, np.zeros_like(res.col))
assert res.row.dtype == res.col.dtype
assert res.row.flags.writeable is False
res.col = [1, 2, 3]
assert len(res.coords) == 1
assert_equal(res.col, np.array([1, 2, 3]))
assert res.row.dtype == res.col.dtype
with pytest.raises(ValueError, match="cannot set row attribute"):
res.row = [1, 2, 3]
def test_1d_toformats():
res = coo_array([1, -2, -3])
for f in [res.tobsr, res.tocsc, res.todia, res.tolil]:
with pytest.raises(ValueError, match='Cannot convert'):
f()
for f in [res.tocoo, res.tocsr, res.todok]:
assert_equal(f().toarray(), res.toarray())
@pytest.mark.parametrize('arg', [1, 2, 4, 5, 8])
def test_1d_resize(arg: int):
den = np.array([1, -2, -3])
res = coo_array(den)
den.resize(arg, refcheck=False)
res.resize(arg)
assert res.shape == den.shape
assert_equal(res.toarray(), den)
@pytest.mark.parametrize('arg', zip([1, 2, 3, 4], [1, 2, 3, 4]))
def test_1d_to_2d_resize(arg: tuple[int, int]):
den = np.array([1, 0, 3])
res = coo_array(den)
den.resize(arg, refcheck=False)
res.resize(arg)
assert res.shape == den.shape
assert_equal(res.toarray(), den)
@pytest.mark.parametrize('arg', [1, 4, 6, 8])
def test_2d_to_1d_resize(arg: int):
den = np.array([[1, 0, 3], [4, 0, 0]])
res = coo_array(den)
den.resize(arg, refcheck=False)
res.resize(arg)
assert res.shape == den.shape
assert_equal(res.toarray(), den)
def test_sum_duplicates():
# 1d case
arr1d = coo_array(([2, 2, 2], ([1, 0, 1],)))
assert arr1d.nnz == 3
assert_equal(arr1d.toarray(), np.array([2, 4]))
arr1d.sum_duplicates()
assert arr1d.nnz == 2
assert_equal(arr1d.toarray(), np.array([2, 4]))
# 4d case
arr4d = coo_array(([2, 3, 7], ([1, 0, 1], [0, 2, 0], [1, 2, 1], [1, 0, 1])))
assert arr4d.nnz == 3
expected = np.array( # noqa: E501
[[[[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [3, 0]]],
[[[0, 0], [0, 9], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]]]
)
assert_equal(arr4d.toarray(), expected)
arr4d.sum_duplicates()
assert arr4d.nnz == 2
assert_equal(arr4d.toarray(), expected)
# when there are no duplicates
arr_nodups = coo_array(([1, 2, 3, 4], ([0, 1, 2, 3],)))
assert arr_nodups.nnz == 4
arr_nodups.sum_duplicates()
assert arr_nodups.nnz == 4
def test_eliminate_zeros():
arr1d = coo_array(([0, 0, 1], ([1, 0, 1],)))
assert arr1d.nnz == 3
assert arr1d.count_nonzero() == 1
assert_equal(arr1d.toarray(), np.array([0, 1]))
arr1d.eliminate_zeros()
assert arr1d.nnz == 1
assert arr1d.count_nonzero() == 1
assert_equal(arr1d.toarray(), np.array([0, 1]))
assert_equal(arr1d.col, np.array([1]))
assert_equal(arr1d.row, np.array([0]))
def test_1d_add_dense():
den_a = np.array([0, -2, -3, 0])
den_b = np.array([0, 1, 2, 3])
exp = den_a + den_b
res = coo_array(den_a) + den_b
assert type(res) is type(exp)
assert_equal(res, exp)
def test_1d_add_sparse():
den_a = np.array([0, -2, -3, 0])
den_b = np.array([0, 1, 2, 3])
dense_sum = den_a + den_b
# this routes through CSR format
sparse_sum = coo_array(den_a) + coo_array(den_b)
assert_equal(dense_sum, sparse_sum.toarray())
def test_1d_matmul_vector():
den_a = np.array([0, -2, -3, 0])
den_b = np.array([0, 1, 2, 3])
exp = den_a @ den_b
res = coo_array(den_a) @ den_b
assert np.ndim(res) == 0
assert_equal(res, exp)
def test_1d_matmul_multivector():
den = np.array([0, -2, -3, 0])
other = np.array([[0, 1, 2, 3], [3, 2, 1, 0]]).T
exp = den @ other
res = coo_array(den) @ other
assert type(res) is type(exp)
assert_equal(res, exp)
def test_2d_matmul_multivector():
# sparse-sparse matmul
den = np.array([[0, 1, 2, 3], [3, 2, 1, 0]])
arr2d = coo_array(den)
exp = den @ den.T
res = arr2d @ arr2d.T
assert_equal(res.toarray(), exp)
# sparse-dense matmul for self.ndim = 2
den = np.array([[0, 4, 3, 0, 5], [1, 0, 7, 3, 4]])
arr2d = coo_array(den)
exp = den @ den.T
res = arr2d @ den.T
assert_equal(res, exp)
# sparse-dense matmul for self.ndim = 1
den_a = np.array([[0, 4, 3, 0, 5], [1, 0, 7, 3, 4]])
den_b = np.array([0, 1, 6, 0, 4])
arr1d = coo_array(den_b)
exp = den_b @ den_a.T
res = arr1d @ den_a.T
assert_equal(res, exp)
# sparse-dense matmul for self.ndim = 1 and other.ndim = 2
den_a = np.array([1, 0, 2])
den_b = np.array([[3], [4], [0]])
exp = den_a @ den_b
res = coo_array(den_a) @ den_b
assert_equal(res, exp)
res = coo_array(den_a) @ list(den_b)
assert_equal(res, exp)
def test_1d_diagonal():
den = np.array([0, -2, -3, 0])
with pytest.raises(ValueError, match='diagonal requires two dimensions'):
coo_array(den).diagonal()
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_todense(shape):
np.random.seed(12)
arr = np.random.randint(low=0, high=5, size=shape)
assert_equal(coo_array(arr).todense(), arr)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_sparse_constructor(shape):
empty_arr = coo_array(shape)
res = coo_array(empty_arr)
assert res.shape == (shape)
assert_equal(res.toarray(), np.zeros(shape))
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_tuple_constructor(shape):
np.random.seed(12)
arr = np.random.randn(*shape)
res = coo_array(arr)
assert res.shape == shape
assert_equal(res.toarray(), arr)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_tuple_constructor_with_shape(shape):
np.random.seed(12)
arr = np.random.randn(*shape)
res = coo_array(arr, shape=shape)
assert res.shape == shape
assert_equal(res.toarray(), arr)
def test_tuple_constructor_for_dim_size_zero():
# arrays with a dimension of size 0
with pytest.raises(ValueError, match='exceeds matrix dimension'):
coo_array(([9, 8], ([1, 2], [1, 0], [2, 1])), shape=(3,4,0))
empty_arr = coo_array(([], ([], [], [], [])), shape=(4,0,2,3))
assert_equal(empty_arr.toarray(), np.empty((4,0,2,3)))
@pytest.mark.parametrize(('shape', 'new_shape'), [((4,9,6,5), (3,6,15,4)),
((4,9,6,5), (36,30)),
((4,9,6,5), (1080,)),
((4,9,6,5), (2,3,2,2,3,5,3)),])
def test_nd_reshape(shape, new_shape):
# reshaping a 4d sparse array
rng = np.random.default_rng(23409823)
arr4d = random_array(shape, density=0.6, rng=rng, dtype=int)
assert arr4d.shape == shape
den4d = arr4d.toarray()
exp_arr = den4d.reshape(new_shape)
res_arr = arr4d.reshape(new_shape)
assert res_arr.shape == new_shape
assert_equal(res_arr.toarray(), exp_arr)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_nnz(shape):
rng = np.random.default_rng(23409823)
arr = random_array(shape, density=0.6, rng=rng, dtype=int)
assert arr.nnz == np.count_nonzero(arr.toarray())
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_transpose(shape):
rng = np.random.default_rng(23409823)
arr = random_array(shape, density=0.6, rng=rng, dtype=int)
exp_arr = arr.toarray().T
trans_arr = arr.transpose()
assert trans_arr.shape == shape[::-1]
assert_equal(exp_arr, trans_arr.toarray())
@pytest.mark.parametrize(('shape', 'axis_perm'), [((3,), (0,)),
((2,3), (0,1)),
((2,4,3,6,5,3), (1,2,0,5,3,4)),])
def test_nd_transpose_with_axis(shape, axis_perm):
rng = np.random.default_rng(23409823)
arr = random_array(shape, density=0.6, rng=rng, dtype=int)
trans_arr = arr.transpose(axes=axis_perm)
assert_equal(trans_arr.toarray(), np.transpose(arr.toarray(), axes=axis_perm))
def test_transpose_with_inconsistent_axis():
with pytest.raises(ValueError, match="axes don't match matrix dimensions"):
coo_array([1, 0, 3]).transpose(axes=(0, 1))
with pytest.raises(ValueError, match="repeated axis in transpose"):
coo_array([[1, 2, 0], [0, 0, 3]]).transpose(axes=(1, 1))
def test_nd_eliminate_zeros():
# for 3d sparse arrays
arr3d = coo_array(([1, 0, 0, 4], ([0, 1, 1, 2], [0, 1, 0, 1], [1, 1, 2, 0])))
assert arr3d.nnz == 4
assert arr3d.count_nonzero() == 2
assert_equal(arr3d.toarray(), np.array([[[0, 1, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [4, 0, 0]]]))
arr3d.eliminate_zeros()
assert arr3d.nnz == 2
assert arr3d.count_nonzero() == 2
assert_equal(arr3d.toarray(), np.array([[[0, 1, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [4, 0, 0]]]))
# for a 5d sparse array when all elements of data array are 0
coords = ([0, 1, 1, 2], [0, 1, 0, 1], [1, 1, 2, 0], [0, 0, 2, 3], [1, 0, 0, 2])
arr5d = coo_array(([0, 0, 0, 0], coords))
assert arr5d.nnz == 4
assert arr5d.count_nonzero() == 0
arr5d.eliminate_zeros()
assert arr5d.nnz == 0
assert arr5d.count_nonzero() == 0
assert_equal(arr5d.col, np.array([]))
assert_equal(arr5d.row, np.array([]))
assert_equal(arr5d.coords, ([], [], [], [], []))
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_add_dense(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x + den_y
res = sp_x + den_y
assert type(res) is type(exp)
assert_equal(res, exp)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_add_sparse(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array((shape), density=0.6, rng=rng, dtype=int)
sp_y = random_array((shape), density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
dense_sum = den_x + den_y
sparse_sum = sp_x + sp_y
assert_equal(dense_sum, sparse_sum.toarray())
def test_add_sparse_with_inf():
# addition of sparse arrays with an inf element
den_a = np.array([[[0], [np.inf]], [[-3], [0]]])
den_b = np.array([[[0], [1]], [[2], [3]]])
dense_sum = den_a + den_b
sparse_sum = coo_array(den_a) + coo_array(den_b)
assert_equal(dense_sum, sparse_sum.toarray())
@pytest.mark.parametrize(('a_shape', 'b_shape'), [((7,), (12,)),
((6,4), (6,5)),
((5,9,3,2), (9,5,2,3)),])
def test_nd_add_sparse_with_inconsistent_shapes(a_shape, b_shape):
rng = np.random.default_rng(23409823)
arr_a = random_array((a_shape), density=0.6, rng=rng, dtype=int)
arr_b = random_array((b_shape), density=0.6, rng=rng, dtype=int)
with pytest.raises(ValueError,
match="(Incompatible|inconsistent) shapes|cannot be broadcast"):
arr_a + arr_b
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_sub_dense(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x - den_y
res = sp_x - den_y
assert type(res) is type(exp)
assert_equal(res, exp)
@pytest.mark.parametrize('shape', [(0,), (7,), (4,7), (0,0,0), (3,6,2),
(1,0,3), (7,9,3,2,4,5)])
def test_nd_sub_sparse(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
dense_sum = den_x - den_y
sparse_sum = sp_x - sp_y
assert_equal(dense_sum, sparse_sum.toarray())
def test_nd_sub_sparse_with_nan():
# subtraction of sparse arrays with a nan element
den_a = np.array([[[0], [np.nan]], [[-3], [0]]])
den_b = np.array([[[0], [1]], [[2], [3]]])
dense_sum = den_a - den_b
sparse_sum = coo_array(den_a) - coo_array(den_b)
assert_equal(dense_sum, sparse_sum.toarray())
@pytest.mark.parametrize(('a_shape', 'b_shape'), [((7,), (12,)),
((6,4), (6,5)),
((5,9,3,2), (9,5,2,3)),])
def test_nd_sub_sparse_with_inconsistent_shapes(a_shape, b_shape):
rng = np.random.default_rng(23409823)
arr_a = random_array((a_shape), density=0.6, rng=rng, dtype=int)
arr_b = random_array((b_shape), density=0.6, rng=rng, dtype=int)
with pytest.raises(ValueError, match="inconsistent shapes"):
arr_a - arr_b
mat_vec_shapes = [
((2, 3, 4, 5), (5,)),
((0, 0), (0,)),
((2, 3, 4, 7, 8), (8,)),
((4, 4, 2, 0), (0,)),
((6, 5, 3, 2, 4), (4, 1)),
((2,5), (5,)),
((2, 5), (5, 1)),
((3,), (3, 1)),
((4,), (4,))
]
@pytest.mark.parametrize(('mat_shape', 'vec_shape'), mat_vec_shapes)
def test_nd_matmul_vector(mat_shape, vec_shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(mat_shape, density=0.6, rng=rng, dtype=int)
sp_y = random_array(vec_shape, density=0.6, rng=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x @ den_y
res = sp_x @ den_y
assert_equal(res,exp)
res = sp_x @ list(den_y)
assert_equal(res,exp)
mat_mat_shapes = [
((2, 3, 4, 5), (2, 3, 5, 7)),
((0, 0), (0,)),
((4, 4, 2, 0), (0,)),
((7, 8, 3), (3,)),
((7, 8, 3), (3, 1)),
((6, 5, 3, 2, 4), (4, 3)),
((1, 3, 2, 4), (6, 5, 1, 4, 3)),
((6, 1, 1, 2, 4), (1, 3, 4, 3)),
((4,), (2, 4, 3)),
((3,), (5, 6, 7, 3, 2)),
((4,), (4, 3)),
((2, 5), (5, 1)),
]
@pytest.mark.parametrize(('mat_shape1', 'mat_shape2'), mat_mat_shapes)
def test_nd_matmul(mat_shape1, mat_shape2):
rng = np.random.default_rng(23409823)
sp_x = random_array(mat_shape1, density=0.6, random_state=rng, dtype=int)
sp_y = random_array(mat_shape2, density=0.6, random_state=rng, dtype=int)
den_x, den_y = sp_x.toarray(), sp_y.toarray()
exp = den_x @ den_y
# sparse-sparse
res = sp_x @ sp_y
assert_equal(res.toarray(), exp)
# sparse-dense
res = sp_x @ den_y
assert_equal(res, exp)
res = sp_x @ list(den_y)
assert_equal(res, exp)
# dense-sparse
res = den_x @ sp_y
assert_equal(res, exp)
def test_nd_matmul_sparse_with_inconsistent_arrays():
rng = np.random.default_rng(23409823)
sp_x = random_array((4,5,7,6,3), density=0.6, random_state=rng, dtype=int)
sp_y = random_array((1,5,3,2,5), density=0.6, random_state=rng, dtype=int)
with pytest.raises(ValueError, match="matmul: dimension mismatch with signature"):
sp_x @ sp_y
with pytest.raises(ValueError, match="matmul: dimension mismatch with signature"):
sp_x @ (sp_y.toarray())
sp_z = random_array((1,5,3,2), density=0.6, random_state=rng, dtype=int)
with pytest.raises(ValueError, match="Batch dimensions are not broadcastable"):
sp_x @ sp_z
with pytest.raises(ValueError, match="Batch dimensions are not broadcastable"):
sp_x @ (sp_z.toarray())
def test_dot_1d_1d(): # 1-D inner product
a = coo_array([1,2,3])
b = coo_array([4,5,6])
exp = np.dot(a.toarray(), b.toarray())
res = a.dot(b)
assert_equal(res, exp)
res = a.dot(b.toarray())
assert_equal(res, exp)
def test_dot_sparse_scalar():
a = coo_array([[1, 2], [3, 4], [5, 6]])
b = 3
res = a.dot(b)
exp = np.dot(a.toarray(), b)
assert_equal(res.toarray(), exp)
def test_dot_with_inconsistent_shapes():
arr_a = coo_array([[[1, 2]], [[3, 4]]])
arr_b = coo_array([4, 5, 6])
with pytest.raises(ValueError, match="not aligned for n-D dot"):
arr_a.dot(arr_b)
def test_matmul_dot_not_implemented():
arr_a = coo_array([[1, 2], [3, 4]])
with pytest.raises(TypeError, match="argument not supported type"):
arr_a.dot(None)
with pytest.raises(TypeError, match="arg not supported type"):
arr_a.tensordot(None)
with pytest.raises(TypeError, match="unsupported operand type"):
arr_a @ None
with pytest.raises(TypeError, match="unsupported operand type"):
None @ arr_a
dot_shapes = [
((3,3), (3,3)), ((4,6), (6,7)), ((1,4), (4,1)), # matrix multiplication 2-D
((3,2,4,7), (7,)), ((5,), (6,3,5,2)), # dot of n-D and 1-D arrays
((3,2,4,7), (7,1)), ((1,5,), (6,3,5,2)),
((4,6), (3,2,6,4)), ((2,8,7), (4,5,7,7,2)), # dot of n-D and m-D arrays
((4,5,7,6), (3,2,6,4)),
]
@pytest.mark.parametrize(('a_shape', 'b_shape'), dot_shapes)
def test_dot_nd(a_shape, b_shape):
rng = np.random.default_rng(23409823)
arr_a = random_array(a_shape, density=0.6, random_state=rng, dtype=int)
arr_b = random_array(b_shape, density=0.6, random_state=rng, dtype=int)
exp = np.dot(arr_a.toarray(), arr_b.toarray())
# sparse-dense
res = arr_a.dot(arr_b.toarray())
assert_equal(res, exp)
res = arr_a.dot(list(arr_b.toarray()))
assert_equal(res, exp)
# sparse-sparse
res = arr_a.dot(arr_b)
assert_equal(res.toarray(), exp)
tensordot_shapes_and_axes = [
((4,6), (6,7), ([1], [0])),
((3,2,4,7), (7,), ([3], [0])),
((5,), (6,3,5,2), ([0], [2])),
((4,5,7,6), (3,2,6,4), ([0, 3], [3, 2])),
((2,8,7), (4,5,7,8,2), ([0, 1, 2], [4, 3, 2])),
((4,5,3,2,6), (3,2,6,7,8), 3),
((4,5,7), (7,3,7), 1),
((2,3,4), (2,3,4), ([0, 1, 2], [0, 1, 2])),
]
@pytest.mark.parametrize(('a_shape', 'b_shape', 'axes'), tensordot_shapes_and_axes)
def test_tensordot(a_shape, b_shape, axes):
rng = np.random.default_rng(23409823)
arr_a = random_array(a_shape, density=0.6, random_state=rng, dtype=int)
arr_b = random_array(b_shape, density=0.6, random_state=rng, dtype=int)
exp = np.tensordot(arr_a.toarray(), arr_b.toarray(), axes=axes)
# sparse-dense
res = arr_a.tensordot(arr_b.toarray(), axes=axes)
assert_equal(res, exp)
res = arr_a.tensordot(list(arr_b.toarray()), axes=axes)
assert_equal(res, exp)
# sparse-sparse
res = arr_a.tensordot(arr_b, axes=axes)
if type(res) is coo_array:
assert_equal(res.toarray(), exp)
else:
assert_equal(res, exp)
def test_tensordot_with_invalid_args():
rng = np.random.default_rng(23409823)
arr_a = random_array((3,4,5), density=0.6, random_state=rng, dtype=int)
arr_b = random_array((3,4,6), density=0.6, random_state=rng, dtype=int)
axes = ([2], [2]) # sizes of 2nd axes of both shapes do not match
with pytest.raises(ValueError, match="sizes of the corresponding axes must match"):
arr_a.tensordot(arr_b, axes=axes)
arr_a = random_array((5,4,2,3,7), density=0.6, random_state=rng, dtype=int)
arr_b = random_array((4,6,3,2), density=0.6, random_state=rng, dtype=int)
axes = ([2,0,1], [1,3]) # lists have different lengths
with pytest.raises(ValueError, match="axes lists/tuples must be of the"
" same length"):
arr_a.tensordot(arr_b, axes=axes)
@pytest.mark.parametrize(('actual_shape', 'broadcast_shape'),
[((1,3,5,4), (2,3,5,4)), ((2,1,5,4), (6,2,3,5,4)),
((1,1,7,8,9), (4,5,6,7,8,9)), ((1,3), (4,5,3)),
((7,8,1), (7,8,5)), ((3,1), (3,4)), ((1,), (5,)),
((1,1,1), (4,5,6)), ((1,3,1,5,4), (8,2,3,9,5,4)),])
def test_broadcast_to(actual_shape, broadcast_shape):
rng = np.random.default_rng(23409823)
arr = random_array(actual_shape, density=0.6, random_state=rng, dtype=int)
res = arr._broadcast_to(broadcast_shape)
exp = np.broadcast_to(arr.toarray(), broadcast_shape)
assert_equal(res.toarray(), exp)
@pytest.mark.parametrize(('shape'), [(4,5,6,7,8), (6,4),
(5,9,3,2), (9,5,2,3,4),])
def test_block_diag(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, random_state=rng, dtype=int)
den_x = sp_x.toarray()
# converting n-d numpy array to an array of slices of 2-D matrices,
# to pass as argument into scipy.linalg.block_diag
num_slices = int(np.prod(den_x.shape[:-2]))
reshaped_array = den_x.reshape((num_slices,) + den_x.shape[-2:])
matrices = [reshaped_array[i, :, :] for i in range(num_slices)]
exp = block_diag(*matrices)
res = _block_diag(sp_x)
assert_equal(res.toarray(), exp)
@pytest.mark.parametrize(('shape'), [(4,5,6,7,8), (6,4),
(5,9,3,2), (9,5,2,3,4),])
def test_extract_block_diag(shape):
rng = np.random.default_rng(23409823)
sp_x = random_array(shape, density=0.6, random_state=rng, dtype=int)
res = _extract_block_diag(_block_diag(sp_x), shape)
assert_equal(res.toarray(), sp_x.toarray())