|
import numpy as np |
|
from numpy.testing import assert_array_almost_equal, assert_, assert_array_equal |
|
from scipy.sparse import csr_matrix, csc_matrix, csr_array, csc_array, hstack |
|
from scipy import sparse |
|
import pytest |
|
|
|
|
|
def _check_csr_rowslice(i, sl, X, Xcsr): |
|
np_slice = X[i, sl] |
|
csr_slice = Xcsr[i, sl] |
|
assert_array_almost_equal(np_slice, csr_slice.toarray()[0]) |
|
assert_(type(csr_slice) is csr_matrix) |
|
|
|
|
|
def test_csr_rowslice(): |
|
N = 10 |
|
np.random.seed(0) |
|
X = np.random.random((N, N)) |
|
X[X > 0.7] = 0 |
|
Xcsr = csr_matrix(X) |
|
|
|
slices = [slice(None, None, None), |
|
slice(None, None, -1), |
|
slice(1, -2, 2), |
|
slice(-2, 1, -2)] |
|
|
|
for i in range(N): |
|
for sl in slices: |
|
_check_csr_rowslice(i, sl, X, Xcsr) |
|
|
|
|
|
def test_csr_getrow(): |
|
N = 10 |
|
np.random.seed(0) |
|
X = np.random.random((N, N)) |
|
X[X > 0.7] = 0 |
|
Xcsr = csr_matrix(X) |
|
|
|
for i in range(N): |
|
arr_row = X[i:i + 1, :] |
|
csr_row = Xcsr.getrow(i) |
|
|
|
assert_array_almost_equal(arr_row, csr_row.toarray()) |
|
assert_(type(csr_row) is csr_matrix) |
|
|
|
|
|
def test_csr_getcol(): |
|
N = 10 |
|
np.random.seed(0) |
|
X = np.random.random((N, N)) |
|
X[X > 0.7] = 0 |
|
Xcsr = csr_matrix(X) |
|
|
|
for i in range(N): |
|
arr_col = X[:, i:i + 1] |
|
csr_col = Xcsr.getcol(i) |
|
|
|
assert_array_almost_equal(arr_col, csr_col.toarray()) |
|
assert_(type(csr_col) is csr_matrix) |
|
|
|
@pytest.mark.parametrize("matrix_input, axis, expected_shape", |
|
[(csr_matrix([[1, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 2, 3, 0]]), |
|
0, (0, 4)), |
|
(csr_matrix([[1, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 2, 3, 0]]), |
|
1, (3, 0)), |
|
(csr_matrix([[1, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 2, 3, 0]]), |
|
'both', (0, 0)), |
|
(csr_matrix([[0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 0], |
|
[0, 0, 2, 3, 0]]), |
|
0, (0, 5))]) |
|
def test_csr_empty_slices(matrix_input, axis, expected_shape): |
|
|
|
slice_1 = matrix_input.toarray().shape[0] - 1 |
|
slice_2 = slice_1 |
|
slice_3 = slice_2 - 1 |
|
|
|
if axis == 0: |
|
actual_shape_1 = matrix_input[slice_1:slice_2, :].toarray().shape |
|
actual_shape_2 = matrix_input[slice_1:slice_3, :].toarray().shape |
|
elif axis == 1: |
|
actual_shape_1 = matrix_input[:, slice_1:slice_2].toarray().shape |
|
actual_shape_2 = matrix_input[:, slice_1:slice_3].toarray().shape |
|
elif axis == 'both': |
|
actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].toarray().shape |
|
actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].toarray().shape |
|
|
|
assert actual_shape_1 == expected_shape |
|
assert actual_shape_1 == actual_shape_2 |
|
|
|
|
|
def test_csr_bool_indexing(): |
|
data = csr_matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) |
|
list_indices1 = [False, True, False] |
|
array_indices1 = np.array(list_indices1) |
|
list_indices2 = [[False, True, False], [False, True, False], [False, True, False]] |
|
array_indices2 = np.array(list_indices2) |
|
list_indices3 = ([False, True, False], [False, True, False]) |
|
array_indices3 = (np.array(list_indices3[0]), np.array(list_indices3[1])) |
|
slice_list1 = data[list_indices1].toarray() |
|
slice_array1 = data[array_indices1].toarray() |
|
slice_list2 = data[list_indices2] |
|
slice_array2 = data[array_indices2] |
|
slice_list3 = data[list_indices3] |
|
slice_array3 = data[array_indices3] |
|
assert (slice_list1 == slice_array1).all() |
|
assert (slice_list2 == slice_array2).all() |
|
assert (slice_list3 == slice_array3).all() |
|
|
|
|
|
def test_csr_hstack_int64(): |
|
""" |
|
Tests if hstack properly promotes to indices and indptr arrays to np.int64 |
|
when using np.int32 during concatenation would result in either array |
|
overflowing. |
|
""" |
|
max_int32 = np.iinfo(np.int32).max |
|
|
|
|
|
data = [1.0] |
|
row = [0] |
|
|
|
max_indices_1 = max_int32 - 1 |
|
max_indices_2 = 3 |
|
|
|
|
|
col_1 = [max_indices_1 - 1] |
|
col_2 = [max_indices_2 - 1] |
|
|
|
X_1 = csr_matrix((data, (row, col_1))) |
|
X_2 = csr_matrix((data, (row, col_2))) |
|
|
|
assert max(max_indices_1 - 1, max_indices_2 - 1) < max_int32 |
|
assert X_1.indices.dtype == X_1.indptr.dtype == np.int32 |
|
assert X_2.indices.dtype == X_2.indptr.dtype == np.int32 |
|
|
|
|
|
|
|
X_hs = hstack([X_1, X_2], format="csr") |
|
|
|
assert X_hs.indices.max() == max_indices_1 + max_indices_2 - 1 |
|
assert max_indices_1 + max_indices_2 - 1 > max_int32 |
|
assert X_hs.indices.dtype == X_hs.indptr.dtype == np.int64 |
|
|
|
|
|
|
|
X_1_empty = csr_matrix(X_1.shape) |
|
X_2_empty = csr_matrix(X_2.shape) |
|
X_hs_empty = hstack([X_1_empty, X_2_empty], format="csr") |
|
|
|
assert X_hs_empty.shape == X_hs.shape |
|
assert X_hs_empty.indices.dtype == np.int64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
col_3 = [max_int32 - max_indices_1 - 1] |
|
X_3 = csr_matrix((data, (row, col_3))) |
|
X_hs_32 = hstack([X_1, X_3], format="csr") |
|
assert X_hs_32.indices.dtype == np.int32 |
|
assert X_hs_32.indices.max() == max_int32 - 1 |
|
|
|
@pytest.mark.parametrize("cls", [csr_matrix, csr_array, csc_matrix, csc_array]) |
|
def test_mixed_index_dtype_int_indexing(cls): |
|
|
|
rng = np.random.default_rng(0) |
|
base_mtx = cls(sparse.random(50, 50, random_state=rng, density=0.1)) |
|
indptr_64bit = base_mtx.copy() |
|
indices_64bit = base_mtx.copy() |
|
indptr_64bit.indptr = base_mtx.indptr.astype(np.int64) |
|
indices_64bit.indices = base_mtx.indices.astype(np.int64) |
|
|
|
for mtx in [base_mtx, indptr_64bit, indices_64bit]: |
|
np.testing.assert_array_equal( |
|
mtx[[1,2], :].toarray(), |
|
base_mtx[[1, 2], :].toarray() |
|
) |
|
np.testing.assert_array_equal( |
|
mtx[:, [1, 2]].toarray(), |
|
base_mtx[:, [1, 2]].toarray() |
|
) |
|
|
|
def test_broadcast_to(): |
|
a = np.array([1, 0, 2]) |
|
b = np.array([3]) |
|
e = np.zeros((0,)) |
|
res_a = csr_array(a)._broadcast_to((2,3)) |
|
res_b = csr_array(b)._broadcast_to((4,)) |
|
res_c = csr_array(b)._broadcast_to((2,4)) |
|
res_d = csr_array(b)._broadcast_to((1,)) |
|
res_e = csr_array(e)._broadcast_to((4,0)) |
|
assert_array_equal(res_a.toarray(), np.broadcast_to(a, (2,3))) |
|
assert_array_equal(res_b.toarray(), np.broadcast_to(b, (4,))) |
|
assert_array_equal(res_c.toarray(), np.broadcast_to(b, (2,4))) |
|
assert_array_equal(res_d.toarray(), np.broadcast_to(b, (1,))) |
|
assert_array_equal(res_e.toarray(), np.broadcast_to(e, (4,0))) |
|
|
|
with pytest.raises(ValueError, match="cannot be broadcast"): |
|
csr_matrix([[1, 2, 0], [3, 0, 1]])._broadcast_to(shape=(2, 1)) |
|
|
|
with pytest.raises(ValueError, match="cannot be broadcast"): |
|
csr_matrix([[0, 1, 2]])._broadcast_to(shape=(3, 2)) |
|
|
|
with pytest.raises(ValueError, match="cannot be broadcast"): |
|
csr_array([0, 1, 2])._broadcast_to(shape=(3, 2)) |
|
|