|
import os |
|
import copy |
|
|
|
import numpy as np |
|
from numpy.testing import (assert_equal, assert_almost_equal, |
|
assert_, assert_allclose, assert_array_equal) |
|
import pytest |
|
from pytest import raises as assert_raises |
|
|
|
import scipy.spatial._qhull as qhull |
|
from scipy.spatial import cKDTree as KDTree |
|
from scipy.spatial import Voronoi |
|
|
|
import itertools |
|
|
|
def sorted_tuple(x): |
|
return tuple(sorted(x)) |
|
|
|
|
|
def assert_unordered_tuple_list_equal(a, b, tpl=tuple): |
|
if isinstance(a, np.ndarray): |
|
a = a.tolist() |
|
if isinstance(b, np.ndarray): |
|
b = b.tolist() |
|
a = list(map(tpl, a)) |
|
a.sort() |
|
b = list(map(tpl, b)) |
|
b.sort() |
|
assert_equal(a, b) |
|
|
|
|
|
np.random.seed(1234) |
|
|
|
points = [(0,0), (0,1), (1,0), (1,1), (0.5, 0.5), (0.5, 1.5)] |
|
|
|
pathological_data_1 = np.array([ |
|
[-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79], |
|
[-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36], |
|
[-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57], |
|
[-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57], |
|
[-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79], |
|
[-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14], |
|
[-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57], |
|
[-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79], |
|
[-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14], |
|
[0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0], |
|
[0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14], |
|
[0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79], |
|
[0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57], |
|
[1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14], |
|
[1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79], |
|
[1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57], |
|
[2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57], |
|
[2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36], |
|
[3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79], |
|
[3.14,1.57], [3.14,2.36], [3.14,3.14], |
|
]) |
|
|
|
pathological_data_2 = np.array([ |
|
[-1, -1], [-1, 0], [-1, 1], |
|
[0, -1], [0, 0], [0, 1], |
|
[1, -1 - np.finfo(np.float64).eps], [1, 0], [1, 1], |
|
]) |
|
|
|
bug_2850_chunks = [np.random.rand(10, 2), |
|
np.array([[0,0], [0,1], [1,0], [1,1]]) |
|
] |
|
|
|
|
|
bug_2850_chunks_2 = (bug_2850_chunks + |
|
[np.random.rand(10, 2), |
|
0.25 + np.array([[0,0], [0,1], [1,0], [1,1]])]) |
|
|
|
DATASETS = { |
|
'some-points': np.asarray(points), |
|
'random-2d': np.random.rand(30, 2), |
|
'random-3d': np.random.rand(30, 3), |
|
'random-4d': np.random.rand(30, 4), |
|
'random-5d': np.random.rand(30, 5), |
|
'random-6d': np.random.rand(10, 6), |
|
'random-7d': np.random.rand(10, 7), |
|
'random-8d': np.random.rand(10, 8), |
|
'pathological-1': pathological_data_1, |
|
'pathological-2': pathological_data_2 |
|
} |
|
|
|
INCREMENTAL_DATASETS = { |
|
'bug-2850': (bug_2850_chunks, None), |
|
'bug-2850-2': (bug_2850_chunks_2, None), |
|
} |
|
|
|
|
|
def _add_inc_data(name, chunksize): |
|
""" |
|
Generate incremental datasets from basic data sets |
|
""" |
|
points = DATASETS[name] |
|
ndim = points.shape[1] |
|
|
|
opts = None |
|
nmin = ndim + 2 |
|
|
|
if name == 'some-points': |
|
|
|
opts = 'QJ Pp' |
|
elif name == 'pathological-1': |
|
|
|
nmin = 12 |
|
|
|
chunks = [points[:nmin]] |
|
for j in range(nmin, len(points), chunksize): |
|
chunks.append(points[j:j+chunksize]) |
|
|
|
new_name = "%s-chunk-%d" % (name, chunksize) |
|
assert new_name not in INCREMENTAL_DATASETS |
|
INCREMENTAL_DATASETS[new_name] = (chunks, opts) |
|
|
|
|
|
for name in DATASETS: |
|
for chunksize in 1, 4, 16: |
|
_add_inc_data(name, chunksize) |
|
|
|
|
|
class Test_Qhull: |
|
def test_swapping(self): |
|
|
|
|
|
x = qhull._Qhull(b'v', |
|
np.array([[0,0],[0,1],[1,0],[1,1.],[0.5,0.5]]), |
|
b'Qz') |
|
xd = copy.deepcopy(x.get_voronoi_diagram()) |
|
|
|
y = qhull._Qhull(b'v', |
|
np.array([[0,0],[0,1],[1,0],[1,2.]]), |
|
b'Qz') |
|
yd = copy.deepcopy(y.get_voronoi_diagram()) |
|
|
|
xd2 = copy.deepcopy(x.get_voronoi_diagram()) |
|
x.close() |
|
yd2 = copy.deepcopy(y.get_voronoi_diagram()) |
|
y.close() |
|
|
|
assert_raises(RuntimeError, x.get_voronoi_diagram) |
|
assert_raises(RuntimeError, y.get_voronoi_diagram) |
|
|
|
assert_allclose(xd[0], xd2[0]) |
|
assert_unordered_tuple_list_equal(xd[1], xd2[1], tpl=sorted_tuple) |
|
assert_unordered_tuple_list_equal(xd[2], xd2[2], tpl=sorted_tuple) |
|
assert_unordered_tuple_list_equal(xd[3], xd2[3], tpl=sorted_tuple) |
|
assert_array_equal(xd[4], xd2[4]) |
|
|
|
assert_allclose(yd[0], yd2[0]) |
|
assert_unordered_tuple_list_equal(yd[1], yd2[1], tpl=sorted_tuple) |
|
assert_unordered_tuple_list_equal(yd[2], yd2[2], tpl=sorted_tuple) |
|
assert_unordered_tuple_list_equal(yd[3], yd2[3], tpl=sorted_tuple) |
|
assert_array_equal(yd[4], yd2[4]) |
|
|
|
x.close() |
|
assert_raises(RuntimeError, x.get_voronoi_diagram) |
|
y.close() |
|
assert_raises(RuntimeError, y.get_voronoi_diagram) |
|
|
|
def test_issue_8051(self): |
|
points = np.array( |
|
[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],[2, 0], [2, 1], [2, 2]] |
|
) |
|
Voronoi(points) |
|
|
|
|
|
class TestUtilities: |
|
""" |
|
Check that utility functions work. |
|
|
|
""" |
|
|
|
def test_find_simplex(self): |
|
|
|
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) |
|
tri = qhull.Delaunay(points) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]]) |
|
|
|
for p in [(0.25, 0.25, 1), |
|
(0.75, 0.75, 0), |
|
(0.3, 0.2, 1)]: |
|
i = tri.find_simplex(p[:2]) |
|
assert_equal(i, p[2], err_msg=f'{p!r}') |
|
j = qhull.tsearch(tri, p[:2]) |
|
assert_equal(i, j) |
|
|
|
def test_plane_distance(self): |
|
|
|
|
|
x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127), |
|
(0.99440079, 0.45182168)], dtype=np.float64) |
|
p = np.array([0.99966555, 0.15685619], dtype=np.float64) |
|
|
|
tri = qhull.Delaunay(x) |
|
|
|
z = tri.lift_points(x) |
|
pz = tri.lift_points(p) |
|
|
|
dist = tri.plane_distance(p) |
|
|
|
for j, v in enumerate(tri.simplices): |
|
x1 = z[v[0]] |
|
x2 = z[v[1]] |
|
x3 = z[v[2]] |
|
|
|
n = np.cross(x1 - x3, x2 - x3) |
|
n /= np.sqrt(np.dot(n, n)) |
|
n *= -np.sign(n[2]) |
|
|
|
d = np.dot(n, pz - x3) |
|
|
|
assert_almost_equal(dist[j], d) |
|
|
|
def test_convex_hull(self): |
|
|
|
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) |
|
tri = qhull.Delaunay(points) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert_equal(tri.convex_hull, [[3, 2], [1, 2], [1, 0], [3, 0]]) |
|
|
|
def test_volume_area(self): |
|
|
|
points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), |
|
(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)]) |
|
hull = qhull.ConvexHull(points) |
|
|
|
assert_allclose(hull.volume, 1., rtol=1e-14, |
|
err_msg="Volume of cube is incorrect") |
|
assert_allclose(hull.area, 6., rtol=1e-14, |
|
err_msg="Area of cube is incorrect") |
|
|
|
def test_random_volume_area(self): |
|
|
|
|
|
points = np.array([(0.362568364506, 0.472712355305, 0.347003084477), |
|
(0.733731893414, 0.634480295684, 0.950513180209), |
|
(0.511239955611, 0.876839441267, 0.418047827863), |
|
(0.0765906233393, 0.527373281342, 0.6509863541), |
|
(0.146694972056, 0.596725793348, 0.894860986685), |
|
(0.513808585741, 0.069576205858, 0.530890338876), |
|
(0.512343805118, 0.663537132612, 0.037689295973), |
|
(0.47282965018, 0.462176697655, 0.14061843691), |
|
(0.240584597123, 0.778660020591, 0.722913476339), |
|
(0.951271745935, 0.967000673944, 0.890661319684)]) |
|
|
|
hull = qhull.ConvexHull(points) |
|
assert_allclose(hull.volume, 0.14562013, rtol=1e-07, |
|
err_msg="Volume of random polyhedron is incorrect") |
|
assert_allclose(hull.area, 1.6670425, rtol=1e-07, |
|
err_msg="Area of random polyhedron is incorrect") |
|
|
|
def test_incremental_volume_area_random_input(self): |
|
"""Test that incremental mode gives the same volume/area as |
|
non-incremental mode and incremental mode with restart""" |
|
nr_points = 20 |
|
dim = 3 |
|
points = np.random.random((nr_points, dim)) |
|
inc_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True) |
|
inc_restart_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True) |
|
for i in range(dim+1, nr_points): |
|
hull = qhull.ConvexHull(points[:i+1, :]) |
|
inc_hull.add_points(points[i:i+1, :]) |
|
inc_restart_hull.add_points(points[i:i+1, :], restart=True) |
|
assert_allclose(hull.volume, inc_hull.volume, rtol=1e-7) |
|
assert_allclose(hull.volume, inc_restart_hull.volume, rtol=1e-7) |
|
assert_allclose(hull.area, inc_hull.area, rtol=1e-7) |
|
assert_allclose(hull.area, inc_restart_hull.area, rtol=1e-7) |
|
|
|
def _check_barycentric_transforms(self, tri, err_msg="", |
|
unit_cube=False, |
|
unit_cube_tol=0): |
|
"""Check that a triangulation has reasonable barycentric transforms""" |
|
vertices = tri.points[tri.simplices] |
|
sc = 1/(tri.ndim + 1.0) |
|
centroids = vertices.sum(axis=1) * sc |
|
|
|
|
|
|
|
|
|
def barycentric_transform(tr, x): |
|
r = tr[:,-1,:] |
|
Tinv = tr[:,:-1,:] |
|
return np.einsum('ijk,ik->ij', Tinv, x - r) |
|
|
|
eps = np.finfo(float).eps |
|
|
|
c = barycentric_transform(tri.transform, centroids) |
|
with np.errstate(invalid="ignore"): |
|
ok = np.isnan(c).all(axis=1) | (abs(c - sc)/sc < 0.1).all(axis=1) |
|
|
|
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") |
|
|
|
|
|
q = vertices[:,:-1,:] - vertices[:,-1,None,:] |
|
volume = np.array([np.linalg.det(q[k,:,:]) |
|
for k in range(tri.nsimplex)]) |
|
ok = np.isfinite(tri.transform[:,0,0]) | (volume < np.sqrt(eps)) |
|
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") |
|
|
|
|
|
|
|
j = tri.find_simplex(centroids) |
|
ok = (j != -1) | np.isnan(tri.transform[:,0,0]) |
|
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") |
|
|
|
if unit_cube: |
|
|
|
at_boundary = (centroids <= unit_cube_tol).any(axis=1) |
|
at_boundary |= (centroids >= 1 - unit_cube_tol).any(axis=1) |
|
|
|
ok = (j != -1) | at_boundary |
|
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") |
|
|
|
@pytest.mark.fail_slow(10) |
|
def test_degenerate_barycentric_transforms(self): |
|
|
|
|
|
data = np.load(os.path.join(os.path.dirname(__file__), 'data', |
|
'degenerate_pointset.npz')) |
|
points = data['c'] |
|
data.close() |
|
|
|
tri = qhull.Delaunay(points) |
|
|
|
|
|
bad_count = np.isnan(tri.transform[:,0,0]).sum() |
|
assert_(bad_count < 23, bad_count) |
|
|
|
|
|
self._check_barycentric_transforms(tri) |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.fail_slow(20) |
|
|
|
def test_more_barycentric_transforms(self): |
|
|
|
|
|
eps = np.finfo(float).eps |
|
|
|
npoints = {2: 70, 3: 11, 4: 5, 5: 3} |
|
|
|
for ndim in range(2, 6): |
|
|
|
x = np.linspace(0, 1, npoints[ndim]) |
|
grid = np.c_[ |
|
list(map(np.ravel, np.broadcast_arrays(*np.ix_(*([x]*ndim))))) |
|
].T |
|
|
|
err_msg = "ndim=%d" % ndim |
|
|
|
|
|
tri = qhull.Delaunay(grid) |
|
self._check_barycentric_transforms(tri, err_msg=err_msg, |
|
unit_cube=True) |
|
|
|
|
|
np.random.seed(1234) |
|
m = (np.random.rand(grid.shape[0]) < 0.2) |
|
grid[m,:] += 2*eps*(np.random.rand(*grid[m,:].shape) - 0.5) |
|
|
|
tri = qhull.Delaunay(grid) |
|
self._check_barycentric_transforms(tri, err_msg=err_msg, |
|
unit_cube=True, |
|
unit_cube_tol=2*eps) |
|
|
|
|
|
tri = qhull.Delaunay(np.r_[grid, grid]) |
|
self._check_barycentric_transforms(tri, err_msg=err_msg, |
|
unit_cube=True, |
|
unit_cube_tol=2*eps) |
|
|
|
|
|
class TestVertexNeighborVertices: |
|
def _check(self, tri): |
|
expected = [set() for j in range(tri.points.shape[0])] |
|
for s in tri.simplices: |
|
for a in s: |
|
for b in s: |
|
if a != b: |
|
expected[a].add(b) |
|
|
|
indptr, indices = tri.vertex_neighbor_vertices |
|
|
|
got = [set(map(int, indices[indptr[j]:indptr[j+1]])) |
|
for j in range(tri.points.shape[0])] |
|
|
|
assert_equal(got, expected, err_msg=f"{got!r} != {expected!r}") |
|
|
|
def test_triangle(self): |
|
points = np.array([(0,0), (0,1), (1,0)], dtype=np.float64) |
|
tri = qhull.Delaunay(points) |
|
self._check(tri) |
|
|
|
def test_rectangle(self): |
|
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) |
|
tri = qhull.Delaunay(points) |
|
self._check(tri) |
|
|
|
def test_complicated(self): |
|
points = np.array([(0,0), (0,1), (1,1), (1,0), |
|
(0.5, 0.5), (0.9, 0.5)], dtype=np.float64) |
|
tri = qhull.Delaunay(points) |
|
self._check(tri) |
|
|
|
|
|
class TestDelaunay: |
|
""" |
|
Check that triangulation works. |
|
|
|
""" |
|
def test_masked_array_fails(self): |
|
masked_array = np.ma.masked_all(1) |
|
assert_raises(ValueError, qhull.Delaunay, masked_array) |
|
|
|
def test_array_with_nans_fails(self): |
|
points_with_nan = np.array([(0,0), (0,1), (1,1), (1,np.nan)], dtype=np.float64) |
|
assert_raises(ValueError, qhull.Delaunay, points_with_nan) |
|
|
|
def test_nd_simplex(self): |
|
|
|
for nd in range(2, 8): |
|
points = np.zeros((nd+1, nd)) |
|
for j in range(nd): |
|
points[j,j] = 1.0 |
|
points[-1,:] = 1.0 |
|
|
|
tri = qhull.Delaunay(points) |
|
|
|
tri.simplices.sort() |
|
|
|
assert_equal(tri.simplices, np.arange(nd+1, dtype=int)[None, :]) |
|
assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:]) |
|
|
|
def test_2d_square(self): |
|
|
|
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) |
|
tri = qhull.Delaunay(points) |
|
|
|
assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]]) |
|
assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]]) |
|
|
|
def test_duplicate_points(self): |
|
x = np.array([0, 1, 0, 1], dtype=np.float64) |
|
y = np.array([0, 0, 1, 1], dtype=np.float64) |
|
|
|
xp = np.r_[x, x] |
|
yp = np.r_[y, y] |
|
|
|
|
|
qhull.Delaunay(np.c_[x, y]) |
|
qhull.Delaunay(np.c_[xp, yp]) |
|
|
|
def test_pathological(self): |
|
|
|
points = DATASETS['pathological-1'] |
|
tri = qhull.Delaunay(points) |
|
assert_equal(tri.points[tri.simplices].max(), points.max()) |
|
assert_equal(tri.points[tri.simplices].min(), points.min()) |
|
|
|
points = DATASETS['pathological-2'] |
|
tri = qhull.Delaunay(points) |
|
assert_equal(tri.points[tri.simplices].max(), points.max()) |
|
assert_equal(tri.points[tri.simplices].min(), points.min()) |
|
|
|
def test_joggle(self): |
|
|
|
|
|
|
|
points = np.random.rand(10, 2) |
|
points = np.r_[points, points] |
|
|
|
tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp") |
|
assert_array_equal(np.unique(tri.simplices.ravel()), |
|
np.arange(len(points))) |
|
|
|
def test_coplanar(self): |
|
|
|
points = np.random.rand(10, 2) |
|
points = np.r_[points, points] |
|
|
|
tri = qhull.Delaunay(points) |
|
|
|
assert_(len(np.unique(tri.simplices.ravel())) == len(points)//2) |
|
assert_(len(tri.coplanar) == len(points)//2) |
|
|
|
assert_(len(np.unique(tri.coplanar[:,2])) == len(points)//2) |
|
|
|
assert_(np.all(tri.vertex_to_simplex >= 0)) |
|
|
|
def test_furthest_site(self): |
|
points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)] |
|
tri = qhull.Delaunay(points, furthest_site=True) |
|
|
|
expected = np.array([(1, 4, 0), (4, 2, 0)]) |
|
assert_array_equal(tri.simplices, expected) |
|
|
|
@pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS)) |
|
def test_incremental(self, name): |
|
|
|
|
|
chunks, opts = INCREMENTAL_DATASETS[name] |
|
points = np.concatenate(chunks, axis=0) |
|
|
|
obj = qhull.Delaunay(chunks[0], incremental=True, |
|
qhull_options=opts) |
|
for chunk in chunks[1:]: |
|
obj.add_points(chunk) |
|
|
|
obj2 = qhull.Delaunay(points) |
|
|
|
obj3 = qhull.Delaunay(chunks[0], incremental=True, |
|
qhull_options=opts) |
|
if len(chunks) > 1: |
|
obj3.add_points(np.concatenate(chunks[1:], axis=0), |
|
restart=True) |
|
|
|
|
|
if name.startswith('pathological'): |
|
|
|
|
|
|
|
assert_array_equal(np.unique(obj.simplices.ravel()), |
|
np.arange(points.shape[0])) |
|
assert_array_equal(np.unique(obj2.simplices.ravel()), |
|
np.arange(points.shape[0])) |
|
else: |
|
assert_unordered_tuple_list_equal(obj.simplices, obj2.simplices, |
|
tpl=sorted_tuple) |
|
|
|
assert_unordered_tuple_list_equal(obj2.simplices, obj3.simplices, |
|
tpl=sorted_tuple) |
|
|
|
|
|
def assert_hulls_equal(points, facets_1, facets_2): |
|
|
|
|
|
|
|
facets_1 = set(map(sorted_tuple, facets_1)) |
|
facets_2 = set(map(sorted_tuple, facets_2)) |
|
|
|
if facets_1 != facets_2 and points.shape[1] == 2: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eps = 1000 * np.finfo(float).eps |
|
|
|
for a, b in facets_1: |
|
for ap, bp in facets_2: |
|
t = points[bp] - points[ap] |
|
t /= np.linalg.norm(t) |
|
n = np.array([-t[1], t[0]]) |
|
|
|
|
|
|
|
c1 = np.dot(n, points[b] - points[ap]) |
|
c2 = np.dot(n, points[a] - points[ap]) |
|
if not np.allclose(np.dot(c1, n), 0): |
|
continue |
|
if not np.allclose(np.dot(c2, n), 0): |
|
continue |
|
|
|
|
|
c1 = np.dot(t, points[a] - points[ap]) |
|
c2 = np.dot(t, points[b] - points[ap]) |
|
c3 = np.dot(t, points[bp] - points[ap]) |
|
if c1 < -eps or c1 > c3 + eps: |
|
continue |
|
if c2 < -eps or c2 > c3 + eps: |
|
continue |
|
|
|
|
|
break |
|
else: |
|
raise AssertionError("comparison fails") |
|
|
|
|
|
return |
|
|
|
assert_equal(facets_1, facets_2) |
|
|
|
|
|
class TestConvexHull: |
|
def test_masked_array_fails(self): |
|
masked_array = np.ma.masked_all(1) |
|
assert_raises(ValueError, qhull.ConvexHull, masked_array) |
|
|
|
def test_array_with_nans_fails(self): |
|
points_with_nan = np.array([(0,0), (1,1), (2,np.nan)], dtype=np.float64) |
|
assert_raises(ValueError, qhull.ConvexHull, points_with_nan) |
|
|
|
@pytest.mark.parametrize("name", sorted(DATASETS)) |
|
def test_hull_consistency_tri(self, name): |
|
|
|
|
|
points = DATASETS[name] |
|
|
|
tri = qhull.Delaunay(points) |
|
hull = qhull.ConvexHull(points) |
|
|
|
assert_hulls_equal(points, tri.convex_hull, hull.simplices) |
|
|
|
|
|
if points.shape[1] == 2: |
|
assert_equal(np.unique(hull.simplices), np.sort(hull.vertices)) |
|
else: |
|
assert_equal(np.unique(hull.simplices), hull.vertices) |
|
|
|
@pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS)) |
|
def test_incremental(self, name): |
|
|
|
chunks, _ = INCREMENTAL_DATASETS[name] |
|
points = np.concatenate(chunks, axis=0) |
|
|
|
obj = qhull.ConvexHull(chunks[0], incremental=True) |
|
for chunk in chunks[1:]: |
|
obj.add_points(chunk) |
|
|
|
obj2 = qhull.ConvexHull(points) |
|
|
|
obj3 = qhull.ConvexHull(chunks[0], incremental=True) |
|
if len(chunks) > 1: |
|
obj3.add_points(np.concatenate(chunks[1:], axis=0), |
|
restart=True) |
|
|
|
|
|
assert_hulls_equal(points, obj.simplices, obj2.simplices) |
|
assert_hulls_equal(points, obj.simplices, obj3.simplices) |
|
|
|
def test_vertices_2d(self): |
|
|
|
np.random.seed(1234) |
|
points = np.random.rand(30, 2) |
|
|
|
hull = qhull.ConvexHull(points) |
|
assert_equal(np.unique(hull.simplices), np.sort(hull.vertices)) |
|
|
|
|
|
x, y = hull.points[hull.vertices].T |
|
angle = np.arctan2(y - y.mean(), x - x.mean()) |
|
assert_(np.all(np.diff(np.unwrap(angle)) > 0)) |
|
|
|
def test_volume_area(self): |
|
|
|
points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), |
|
(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)]) |
|
tri = qhull.ConvexHull(points) |
|
|
|
assert_allclose(tri.volume, 1., rtol=1e-14) |
|
assert_allclose(tri.area, 6., rtol=1e-14) |
|
|
|
@pytest.mark.parametrize("incremental", [False, True]) |
|
def test_good2d(self, incremental): |
|
|
|
points = np.array([[0.2, 0.2], |
|
[0.2, 0.4], |
|
[0.4, 0.4], |
|
[0.4, 0.2], |
|
[0.3, 0.6]]) |
|
hull = qhull.ConvexHull(points=points, |
|
incremental=incremental, |
|
qhull_options='QG4') |
|
expected = np.array([False, True, False, False], dtype=bool) |
|
actual = hull.good |
|
assert_equal(actual, expected) |
|
|
|
@pytest.mark.parametrize("visibility", [ |
|
"QG4", |
|
"QG-4", |
|
]) |
|
@pytest.mark.parametrize("new_gen, expected", [ |
|
|
|
|
|
(np.array([[0.3, 0.7]]), |
|
np.array([False, False, False, False, False], dtype=bool)), |
|
|
|
|
|
|
|
(np.array([[0.3, -0.7]]), |
|
np.array([False, True, False, False, False], dtype=bool)), |
|
|
|
|
|
|
|
(np.array([[0.3, 0.41]]), |
|
np.array([False, False, False, True, True], dtype=bool)), |
|
|
|
|
|
|
|
|
|
|
|
(np.array([[0.5, 0.6], [0.6, 0.6]]), |
|
np.array([False, False, True, False, False], dtype=bool)), |
|
|
|
|
|
|
|
|
|
|
|
|
|
(np.array([[0.3, 0.6 + 1e-16]]), |
|
np.array([False, False, False, False, False], dtype=bool)), |
|
]) |
|
def test_good2d_incremental_changes(self, new_gen, expected, |
|
visibility): |
|
|
|
|
|
points = np.array([[0.2, 0.2], |
|
[0.2, 0.4], |
|
[0.4, 0.4], |
|
[0.4, 0.2], |
|
[0.3, 0.6]]) |
|
hull = qhull.ConvexHull(points=points, |
|
incremental=True, |
|
qhull_options=visibility) |
|
hull.add_points(new_gen) |
|
actual = hull.good |
|
if '-' in visibility: |
|
expected = np.invert(expected) |
|
assert_equal(actual, expected) |
|
|
|
@pytest.mark.parametrize("incremental", [False, True]) |
|
def test_good2d_no_option(self, incremental): |
|
|
|
|
|
points = np.array([[0.2, 0.2], |
|
[0.2, 0.4], |
|
[0.4, 0.4], |
|
[0.4, 0.2], |
|
[0.3, 0.6]]) |
|
hull = qhull.ConvexHull(points=points, |
|
incremental=incremental) |
|
actual = hull.good |
|
assert actual is None |
|
|
|
if incremental: |
|
hull.add_points(np.zeros((1, 2))) |
|
actual = hull.good |
|
assert actual is None |
|
|
|
@pytest.mark.parametrize("incremental", [False, True]) |
|
def test_good2d_inside(self, incremental): |
|
|
|
|
|
|
|
points = np.array([[0.2, 0.2], |
|
[0.2, 0.4], |
|
[0.4, 0.4], |
|
[0.4, 0.2], |
|
[0.3, 0.3]]) |
|
hull = qhull.ConvexHull(points=points, |
|
incremental=incremental, |
|
qhull_options='QG4') |
|
expected = np.array([False, False, False, False], dtype=bool) |
|
actual = hull.good |
|
assert_equal(actual, expected) |
|
|
|
@pytest.mark.parametrize("incremental", [False, True]) |
|
def test_good3d(self, incremental): |
|
|
|
|
|
points = np.array([[0.0, 0.0, 0.0], |
|
[0.90029516, -0.39187448, 0.18948093], |
|
[0.48676420, -0.72627633, 0.48536925], |
|
[0.57651530, -0.81179274, -0.09285832], |
|
[0.67846893, -0.71119562, 0.18406710]]) |
|
hull = qhull.ConvexHull(points=points, |
|
incremental=incremental, |
|
qhull_options='QG0') |
|
expected = np.array([True, False, False, False], dtype=bool) |
|
assert_equal(hull.good, expected) |
|
|
|
class TestVoronoi: |
|
|
|
@pytest.mark.parametrize("qhull_opts, extra_pts", [ |
|
|
|
|
|
("Qbb Qc Qz", 1), |
|
("Qbb Qc", 0), |
|
]) |
|
@pytest.mark.parametrize("n_pts", [50, 100]) |
|
@pytest.mark.parametrize("ndim", [2, 3]) |
|
def test_point_region_structure(self, |
|
qhull_opts, |
|
n_pts, |
|
extra_pts, |
|
ndim): |
|
|
|
rng = np.random.default_rng(7790) |
|
points = rng.random((n_pts, ndim)) |
|
vor = Voronoi(points, qhull_options=qhull_opts) |
|
pt_region = vor.point_region |
|
assert pt_region.max() == n_pts - 1 + extra_pts |
|
assert pt_region.size == len(vor.regions) - extra_pts |
|
assert len(vor.regions) == n_pts + extra_pts |
|
assert vor.points.shape[0] == n_pts |
|
|
|
|
|
|
|
|
|
|
|
if extra_pts: |
|
sublens = [len(x) for x in vor.regions] |
|
|
|
|
|
assert sublens.count(0) == 1 |
|
assert sublens.index(0) not in pt_region |
|
|
|
def test_masked_array_fails(self): |
|
masked_array = np.ma.masked_all(1) |
|
assert_raises(ValueError, qhull.Voronoi, masked_array) |
|
|
|
def test_simple(self): |
|
|
|
points = [(0, 0), (0, 1), (0, 2), |
|
(1, 0), (1, 1), (1, 2), |
|
(2, 0), (2, 1), (2, 2)] |
|
|
|
|
|
output = """ |
|
2 |
|
5 10 1 |
|
-10.101 -10.101 |
|
0.5 0.5 |
|
0.5 1.5 |
|
1.5 0.5 |
|
1.5 1.5 |
|
2 0 1 |
|
3 2 0 1 |
|
2 0 2 |
|
3 3 0 1 |
|
4 1 2 4 3 |
|
3 4 0 2 |
|
2 0 3 |
|
3 4 0 3 |
|
2 0 4 |
|
0 |
|
12 |
|
4 0 3 0 1 |
|
4 0 1 0 1 |
|
4 1 4 1 2 |
|
4 1 2 0 2 |
|
4 2 5 0 2 |
|
4 3 4 1 3 |
|
4 3 6 0 3 |
|
4 4 5 2 4 |
|
4 4 7 3 4 |
|
4 5 8 0 4 |
|
4 6 7 0 3 |
|
4 7 8 0 4 |
|
""" |
|
self._compare_qvoronoi(points, output) |
|
|
|
def _compare_qvoronoi(self, points, output, **kw): |
|
"""Compare to output from 'qvoronoi o Fv < data' to Voronoi()""" |
|
|
|
|
|
output = [list(map(float, x.split())) for x in output.strip().splitlines()] |
|
nvertex = int(output[1][0]) |
|
vertices = list(map(tuple, output[3:2+nvertex])) |
|
nregion = int(output[1][1]) |
|
regions = [[int(y)-1 for y in x[1:]] |
|
for x in output[2+nvertex:2+nvertex+nregion]] |
|
ridge_points = [[int(y) for y in x[1:3]] |
|
for x in output[3+nvertex+nregion:]] |
|
ridge_vertices = [[int(y)-1 for y in x[3:]] |
|
for x in output[3+nvertex+nregion:]] |
|
|
|
|
|
vor = qhull.Voronoi(points, **kw) |
|
|
|
def sorttuple(x): |
|
return tuple(sorted(x)) |
|
|
|
assert_allclose(vor.vertices, vertices) |
|
assert_equal(set(map(tuple, vor.regions)), |
|
set(map(tuple, regions))) |
|
|
|
p1 = list(zip(list(map(sorttuple, ridge_points)), |
|
list(map(sorttuple, ridge_vertices)))) |
|
p2 = list(zip(list(map(sorttuple, vor.ridge_points.tolist())), |
|
list(map(sorttuple, vor.ridge_vertices)))) |
|
p1.sort() |
|
p2.sort() |
|
|
|
assert_equal(p1, p2) |
|
|
|
@pytest.mark.parametrize("name", sorted(DATASETS)) |
|
def test_ridges(self, name): |
|
|
|
|
|
|
|
|
|
points = DATASETS[name] |
|
|
|
tree = KDTree(points) |
|
vor = qhull.Voronoi(points) |
|
|
|
for p, v in vor.ridge_dict.items(): |
|
|
|
if not np.all(np.asarray(v) >= 0): |
|
continue |
|
|
|
ridge_midpoint = vor.vertices[v].mean(axis=0) |
|
d = 1e-6 * (points[p[0]] - ridge_midpoint) |
|
|
|
dist, k = tree.query(ridge_midpoint + d, k=1) |
|
assert_equal(k, p[0]) |
|
|
|
dist, k = tree.query(ridge_midpoint - d, k=1) |
|
assert_equal(k, p[1]) |
|
|
|
def test_furthest_site(self): |
|
points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)] |
|
|
|
|
|
output = """ |
|
2 |
|
3 5 1 |
|
-10.101 -10.101 |
|
0.6000000000000001 0.5 |
|
0.5 0.6000000000000001 |
|
3 0 2 1 |
|
2 0 1 |
|
2 0 2 |
|
0 |
|
3 0 2 1 |
|
5 |
|
4 0 2 0 2 |
|
4 0 4 1 2 |
|
4 0 1 0 1 |
|
4 1 4 0 1 |
|
4 2 4 0 2 |
|
""" |
|
self._compare_qvoronoi(points, output, furthest_site=True) |
|
|
|
def test_furthest_site_flag(self): |
|
points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)] |
|
|
|
vor = Voronoi(points) |
|
assert_equal(vor.furthest_site,False) |
|
vor = Voronoi(points,furthest_site=True) |
|
assert_equal(vor.furthest_site,True) |
|
|
|
@pytest.mark.fail_slow(10) |
|
@pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS)) |
|
def test_incremental(self, name): |
|
|
|
|
|
if INCREMENTAL_DATASETS[name][0][0].shape[1] > 3: |
|
|
|
return |
|
|
|
chunks, opts = INCREMENTAL_DATASETS[name] |
|
points = np.concatenate(chunks, axis=0) |
|
|
|
obj = qhull.Voronoi(chunks[0], incremental=True, |
|
qhull_options=opts) |
|
for chunk in chunks[1:]: |
|
obj.add_points(chunk) |
|
|
|
obj2 = qhull.Voronoi(points) |
|
|
|
obj3 = qhull.Voronoi(chunks[0], incremental=True, |
|
qhull_options=opts) |
|
if len(chunks) > 1: |
|
obj3.add_points(np.concatenate(chunks[1:], axis=0), |
|
restart=True) |
|
|
|
|
|
assert_equal(len(obj.point_region), len(obj2.point_region)) |
|
assert_equal(len(obj.point_region), len(obj3.point_region)) |
|
|
|
|
|
|
|
for objx in obj, obj3: |
|
vertex_map = {-1: -1} |
|
for i, v in enumerate(objx.vertices): |
|
for j, v2 in enumerate(obj2.vertices): |
|
if np.allclose(v, v2): |
|
vertex_map[i] = j |
|
|
|
def remap(x): |
|
if hasattr(x, '__len__'): |
|
return tuple({remap(y) for y in x}) |
|
try: |
|
return vertex_map[x] |
|
except KeyError as e: |
|
message = (f"incremental result has spurious vertex " |
|
f"at {objx.vertices[x]!r}") |
|
raise AssertionError(message) from e |
|
|
|
def simplified(x): |
|
items = set(map(sorted_tuple, x)) |
|
if () in items: |
|
items.remove(()) |
|
items = [x for x in items if len(x) > 1] |
|
items.sort() |
|
return items |
|
|
|
assert_equal( |
|
simplified(remap(objx.regions)), |
|
simplified(obj2.regions) |
|
) |
|
assert_equal( |
|
simplified(remap(objx.ridge_vertices)), |
|
simplified(obj2.ridge_vertices) |
|
) |
|
|
|
|
|
|
|
|
|
class Test_HalfspaceIntersection: |
|
def assert_unordered_allclose(self, arr1, arr2, rtol=1e-7): |
|
"""Check that every line in arr1 is only once in arr2""" |
|
assert_equal(arr1.shape, arr2.shape) |
|
|
|
truths = np.zeros((arr1.shape[0],), dtype=bool) |
|
for l1 in arr1: |
|
indexes = np.nonzero((abs(arr2 - l1) < rtol).all(axis=1))[0] |
|
assert_equal(indexes.shape, (1,)) |
|
truths[indexes[0]] = True |
|
assert_(truths.all()) |
|
|
|
@pytest.mark.parametrize("dt", [np.float64, int]) |
|
def test_cube_halfspace_intersection(self, dt): |
|
halfspaces = np.array([[-1, 0, 0], |
|
[0, -1, 0], |
|
[1, 0, -2], |
|
[0, 1, -2]], dtype=dt) |
|
feasible_point = np.array([1, 1], dtype=dt) |
|
|
|
points = np.array([[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0]]) |
|
|
|
hull = qhull.HalfspaceIntersection(halfspaces, feasible_point) |
|
|
|
assert_allclose(hull.intersections, points) |
|
|
|
def test_self_dual_polytope_intersection(self): |
|
fname = os.path.join(os.path.dirname(__file__), 'data', |
|
'selfdual-4d-polytope.txt') |
|
ineqs = np.genfromtxt(fname) |
|
halfspaces = -np.hstack((ineqs[:, 1:], ineqs[:, :1])) |
|
|
|
feas_point = np.array([0., 0., 0., 0.]) |
|
hs = qhull.HalfspaceIntersection(halfspaces, feas_point) |
|
|
|
assert_equal(hs.intersections.shape, (24, 4)) |
|
|
|
assert_almost_equal(hs.dual_volume, 32.0) |
|
assert_equal(len(hs.dual_facets), 24) |
|
for facet in hs.dual_facets: |
|
assert_equal(len(facet), 6) |
|
|
|
dists = halfspaces[:, -1] + halfspaces[:, :-1].dot(feas_point) |
|
self.assert_unordered_allclose((halfspaces[:, :-1].T/dists).T, hs.dual_points) |
|
|
|
points = itertools.permutations([0., 0., 0.5, -0.5]) |
|
for point in points: |
|
assert_equal(np.sum((hs.intersections == point).all(axis=1)), 1) |
|
|
|
def test_wrong_feasible_point(self): |
|
halfspaces = np.array([[-1.0, 0.0, 0.0], |
|
[0.0, -1.0, 0.0], |
|
[1.0, 0.0, -1.0], |
|
[0.0, 1.0, -1.0]]) |
|
feasible_point = np.array([0.5, 0.5, 0.5]) |
|
|
|
assert_raises(ValueError, |
|
qhull.HalfspaceIntersection, halfspaces, feasible_point) |
|
feasible_point = np.array([[0.5], [0.5]]) |
|
|
|
assert_raises(ValueError, |
|
qhull.HalfspaceIntersection, halfspaces, feasible_point) |
|
feasible_point = np.array([[0.5, 0.5]]) |
|
|
|
assert_raises(ValueError, |
|
qhull.HalfspaceIntersection, halfspaces, feasible_point) |
|
|
|
feasible_point = np.array([-0.5, -0.5]) |
|
|
|
assert_raises(qhull.QhullError, |
|
qhull.HalfspaceIntersection, halfspaces, feasible_point) |
|
|
|
def test_incremental(self): |
|
|
|
halfspaces = np.array([[0., 0., -1., -0.5], |
|
[0., -1., 0., -0.5], |
|
[-1., 0., 0., -0.5], |
|
[1., 0., 0., -0.5], |
|
[0., 1., 0., -0.5], |
|
[0., 0., 1., -0.5]]) |
|
|
|
extra_normals = np.array([[1., 1., 1.], |
|
[1., 1., -1.], |
|
[1., -1., 1.], |
|
[1, -1., -1.]]) |
|
offsets = np.array([[-1.]]*8) |
|
extra_halfspaces = np.hstack((np.vstack((extra_normals, -extra_normals)), |
|
offsets)) |
|
|
|
feas_point = np.array([0., 0., 0.]) |
|
|
|
inc_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True) |
|
|
|
inc_res_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, |
|
incremental=True) |
|
|
|
for i, ehs in enumerate(extra_halfspaces): |
|
inc_hs.add_halfspaces(ehs[np.newaxis, :]) |
|
|
|
inc_res_hs.add_halfspaces(ehs[np.newaxis, :], restart=True) |
|
|
|
total = np.vstack((halfspaces, extra_halfspaces[:i+1, :])) |
|
|
|
hs = qhull.HalfspaceIntersection(total, feas_point) |
|
|
|
assert_allclose(inc_hs.halfspaces, inc_res_hs.halfspaces) |
|
assert_allclose(inc_hs.halfspaces, hs.halfspaces) |
|
|
|
|
|
assert_allclose(hs.intersections, inc_res_hs.intersections) |
|
|
|
self.assert_unordered_allclose(inc_hs.intersections, hs.intersections) |
|
|
|
inc_hs.close() |
|
|
|
def test_cube(self): |
|
|
|
halfspaces = np.array([[-1., 0., 0., 0.], |
|
[1., 0., 0., -1.], |
|
[0., -1., 0., 0.], |
|
[0., 1., 0., -1.], |
|
[0., 0., -1., 0.], |
|
[0., 0., 1., -1.]]) |
|
point = np.array([0.5, 0.5, 0.5]) |
|
|
|
hs = qhull.HalfspaceIntersection(halfspaces, point) |
|
|
|
|
|
qhalf_points = np.array([ |
|
[-2, 0, 0], |
|
[2, 0, 0], |
|
[0, -2, 0], |
|
[0, 2, 0], |
|
[0, 0, -2], |
|
[0, 0, 2]]) |
|
qhalf_facets = [ |
|
[2, 4, 0], |
|
[4, 2, 1], |
|
[5, 2, 0], |
|
[2, 5, 1], |
|
[3, 4, 1], |
|
[4, 3, 0], |
|
[5, 3, 1], |
|
[3, 5, 0]] |
|
|
|
assert len(qhalf_facets) == len(hs.dual_facets) |
|
for a, b in zip(qhalf_facets, hs.dual_facets): |
|
assert set(a) == set(b) |
|
|
|
assert_allclose(hs.dual_points, qhalf_points) |
|
|
|
|
|
@pytest.mark.parametrize("diagram_type", [Voronoi, qhull.Delaunay]) |
|
def test_gh_20623(diagram_type): |
|
rng = np.random.default_rng(123) |
|
invalid_data = rng.random((4, 10, 3)) |
|
with pytest.raises(ValueError, match="dimensions"): |
|
diagram_type(invalid_data) |
|
|
|
|
|
def test_gh_21286(): |
|
generators = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]]) |
|
tri = qhull.Delaunay(generators) |
|
|
|
with pytest.raises(IndexError): |
|
tri.find_simplex(1) |
|
with pytest.raises(IndexError): |
|
|
|
|
|
tri.find_simplex(tri) |
|
|
|
|
|
def test_find_simplex_ndim_err(): |
|
generators = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]]) |
|
tri = qhull.Delaunay(generators) |
|
with pytest.raises(ValueError): |
|
tri.find_simplex([2, 2, 2]) |
|
|