|
""" |
|
This module contains loss classes suitable for fitting. |
|
|
|
It is not part of the public API. |
|
Specific losses are used for regression, binary classification or multiclass |
|
classification. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numbers |
|
|
|
import numpy as np |
|
from scipy.special import xlogy |
|
|
|
from ..utils import check_scalar |
|
from ..utils.stats import _weighted_percentile |
|
from ._loss import ( |
|
CyAbsoluteError, |
|
CyExponentialLoss, |
|
CyHalfBinomialLoss, |
|
CyHalfGammaLoss, |
|
CyHalfMultinomialLoss, |
|
CyHalfPoissonLoss, |
|
CyHalfSquaredError, |
|
CyHalfTweedieLoss, |
|
CyHalfTweedieLossIdentity, |
|
CyHuberLoss, |
|
CyPinballLoss, |
|
) |
|
from .link import ( |
|
HalfLogitLink, |
|
IdentityLink, |
|
Interval, |
|
LogitLink, |
|
LogLink, |
|
MultinomialLogit, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseLoss: |
|
"""Base class for a loss function of 1-dimensional targets. |
|
|
|
Conventions: |
|
|
|
- y_true.shape = sample_weight.shape = (n_samples,) |
|
- y_pred.shape = raw_prediction.shape = (n_samples,) |
|
- If is_multiclass is true (multiclass classification), then |
|
y_pred.shape = raw_prediction.shape = (n_samples, n_classes) |
|
Note that this corresponds to the return value of decision_function. |
|
|
|
y_true, y_pred, sample_weight and raw_prediction must either be all float64 |
|
or all float32. |
|
gradient and hessian must be either both float64 or both float32. |
|
|
|
Note that y_pred = link.inverse(raw_prediction). |
|
|
|
Specific loss classes can inherit specific link classes to satisfy |
|
BaseLink's abstractmethods. |
|
|
|
Parameters |
|
---------- |
|
sample_weight : {None, ndarray} |
|
If sample_weight is None, the hessian might be constant. |
|
n_classes : {None, int} |
|
The number of classes for classification, else None. |
|
|
|
Attributes |
|
---------- |
|
closs: CyLossFunction |
|
link : BaseLink |
|
interval_y_true : Interval |
|
Valid interval for y_true |
|
interval_y_pred : Interval |
|
Valid Interval for y_pred |
|
differentiable : bool |
|
Indicates whether or not loss function is differentiable in |
|
raw_prediction everywhere. |
|
need_update_leaves_values : bool |
|
Indicates whether decision trees in gradient boosting need to uptade |
|
leave values after having been fit to the (negative) gradients. |
|
approx_hessian : bool |
|
Indicates whether the hessian is approximated or exact. If, |
|
approximated, it should be larger or equal to the exact one. |
|
constant_hessian : bool |
|
Indicates whether the hessian is one for this loss. |
|
is_multiclass : bool |
|
Indicates whether n_classes > 2 is allowed. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
differentiable = True |
|
need_update_leaves_values = False |
|
is_multiclass = False |
|
|
|
def __init__(self, closs, link, n_classes=None): |
|
self.closs = closs |
|
self.link = link |
|
self.approx_hessian = False |
|
self.constant_hessian = False |
|
self.n_classes = n_classes |
|
self.interval_y_true = Interval(-np.inf, np.inf, False, False) |
|
self.interval_y_pred = self.link.interval_y_pred |
|
|
|
def in_y_true_range(self, y): |
|
"""Return True if y is in the valid range of y_true. |
|
|
|
Parameters |
|
---------- |
|
y : ndarray |
|
""" |
|
return self.interval_y_true.includes(y) |
|
|
|
def in_y_pred_range(self, y): |
|
"""Return True if y is in the valid range of y_pred. |
|
|
|
Parameters |
|
---------- |
|
y : ndarray |
|
""" |
|
return self.interval_y_pred.includes(y) |
|
|
|
def loss( |
|
self, |
|
y_true, |
|
raw_prediction, |
|
sample_weight=None, |
|
loss_out=None, |
|
n_threads=1, |
|
): |
|
"""Compute the pointwise loss value for each input. |
|
|
|
Parameters |
|
---------- |
|
y_true : C-contiguous array of shape (n_samples,) |
|
Observed, true target values. |
|
raw_prediction : C-contiguous array of shape (n_samples,) or array of \ |
|
shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
sample_weight : None or C-contiguous array of shape (n_samples,) |
|
Sample weights. |
|
loss_out : None or C-contiguous array of shape (n_samples,) |
|
A location into which the result is stored. If None, a new array |
|
might be created. |
|
n_threads : int, default=1 |
|
Might use openmp thread parallelism. |
|
|
|
Returns |
|
------- |
|
loss : array of shape (n_samples,) |
|
Element-wise loss function. |
|
""" |
|
if loss_out is None: |
|
loss_out = np.empty_like(y_true) |
|
|
|
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1: |
|
raw_prediction = raw_prediction.squeeze(1) |
|
|
|
self.closs.loss( |
|
y_true=y_true, |
|
raw_prediction=raw_prediction, |
|
sample_weight=sample_weight, |
|
loss_out=loss_out, |
|
n_threads=n_threads, |
|
) |
|
return loss_out |
|
|
|
def loss_gradient( |
|
self, |
|
y_true, |
|
raw_prediction, |
|
sample_weight=None, |
|
loss_out=None, |
|
gradient_out=None, |
|
n_threads=1, |
|
): |
|
"""Compute loss and gradient w.r.t. raw_prediction for each input. |
|
|
|
Parameters |
|
---------- |
|
y_true : C-contiguous array of shape (n_samples,) |
|
Observed, true target values. |
|
raw_prediction : C-contiguous array of shape (n_samples,) or array of \ |
|
shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
sample_weight : None or C-contiguous array of shape (n_samples,) |
|
Sample weights. |
|
loss_out : None or C-contiguous array of shape (n_samples,) |
|
A location into which the loss is stored. If None, a new array |
|
might be created. |
|
gradient_out : None or C-contiguous array of shape (n_samples,) or array \ |
|
of shape (n_samples, n_classes) |
|
A location into which the gradient is stored. If None, a new array |
|
might be created. |
|
n_threads : int, default=1 |
|
Might use openmp thread parallelism. |
|
|
|
Returns |
|
------- |
|
loss : array of shape (n_samples,) |
|
Element-wise loss function. |
|
|
|
gradient : array of shape (n_samples,) or (n_samples, n_classes) |
|
Element-wise gradients. |
|
""" |
|
if loss_out is None: |
|
if gradient_out is None: |
|
loss_out = np.empty_like(y_true) |
|
gradient_out = np.empty_like(raw_prediction) |
|
else: |
|
loss_out = np.empty_like(y_true, dtype=gradient_out.dtype) |
|
elif gradient_out is None: |
|
gradient_out = np.empty_like(raw_prediction, dtype=loss_out.dtype) |
|
|
|
|
|
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1: |
|
raw_prediction = raw_prediction.squeeze(1) |
|
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1: |
|
gradient_out = gradient_out.squeeze(1) |
|
|
|
self.closs.loss_gradient( |
|
y_true=y_true, |
|
raw_prediction=raw_prediction, |
|
sample_weight=sample_weight, |
|
loss_out=loss_out, |
|
gradient_out=gradient_out, |
|
n_threads=n_threads, |
|
) |
|
return loss_out, gradient_out |
|
|
|
def gradient( |
|
self, |
|
y_true, |
|
raw_prediction, |
|
sample_weight=None, |
|
gradient_out=None, |
|
n_threads=1, |
|
): |
|
"""Compute gradient of loss w.r.t raw_prediction for each input. |
|
|
|
Parameters |
|
---------- |
|
y_true : C-contiguous array of shape (n_samples,) |
|
Observed, true target values. |
|
raw_prediction : C-contiguous array of shape (n_samples,) or array of \ |
|
shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
sample_weight : None or C-contiguous array of shape (n_samples,) |
|
Sample weights. |
|
gradient_out : None or C-contiguous array of shape (n_samples,) or array \ |
|
of shape (n_samples, n_classes) |
|
A location into which the result is stored. If None, a new array |
|
might be created. |
|
n_threads : int, default=1 |
|
Might use openmp thread parallelism. |
|
|
|
Returns |
|
------- |
|
gradient : array of shape (n_samples,) or (n_samples, n_classes) |
|
Element-wise gradients. |
|
""" |
|
if gradient_out is None: |
|
gradient_out = np.empty_like(raw_prediction) |
|
|
|
|
|
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1: |
|
raw_prediction = raw_prediction.squeeze(1) |
|
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1: |
|
gradient_out = gradient_out.squeeze(1) |
|
|
|
self.closs.gradient( |
|
y_true=y_true, |
|
raw_prediction=raw_prediction, |
|
sample_weight=sample_weight, |
|
gradient_out=gradient_out, |
|
n_threads=n_threads, |
|
) |
|
return gradient_out |
|
|
|
def gradient_hessian( |
|
self, |
|
y_true, |
|
raw_prediction, |
|
sample_weight=None, |
|
gradient_out=None, |
|
hessian_out=None, |
|
n_threads=1, |
|
): |
|
"""Compute gradient and hessian of loss w.r.t raw_prediction. |
|
|
|
Parameters |
|
---------- |
|
y_true : C-contiguous array of shape (n_samples,) |
|
Observed, true target values. |
|
raw_prediction : C-contiguous array of shape (n_samples,) or array of \ |
|
shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
sample_weight : None or C-contiguous array of shape (n_samples,) |
|
Sample weights. |
|
gradient_out : None or C-contiguous array of shape (n_samples,) or array \ |
|
of shape (n_samples, n_classes) |
|
A location into which the gradient is stored. If None, a new array |
|
might be created. |
|
hessian_out : None or C-contiguous array of shape (n_samples,) or array \ |
|
of shape (n_samples, n_classes) |
|
A location into which the hessian is stored. If None, a new array |
|
might be created. |
|
n_threads : int, default=1 |
|
Might use openmp thread parallelism. |
|
|
|
Returns |
|
------- |
|
gradient : arrays of shape (n_samples,) or (n_samples, n_classes) |
|
Element-wise gradients. |
|
|
|
hessian : arrays of shape (n_samples,) or (n_samples, n_classes) |
|
Element-wise hessians. |
|
""" |
|
if gradient_out is None: |
|
if hessian_out is None: |
|
gradient_out = np.empty_like(raw_prediction) |
|
hessian_out = np.empty_like(raw_prediction) |
|
else: |
|
gradient_out = np.empty_like(hessian_out) |
|
elif hessian_out is None: |
|
hessian_out = np.empty_like(gradient_out) |
|
|
|
|
|
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1: |
|
raw_prediction = raw_prediction.squeeze(1) |
|
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1: |
|
gradient_out = gradient_out.squeeze(1) |
|
if hessian_out.ndim == 2 and hessian_out.shape[1] == 1: |
|
hessian_out = hessian_out.squeeze(1) |
|
|
|
self.closs.gradient_hessian( |
|
y_true=y_true, |
|
raw_prediction=raw_prediction, |
|
sample_weight=sample_weight, |
|
gradient_out=gradient_out, |
|
hessian_out=hessian_out, |
|
n_threads=n_threads, |
|
) |
|
return gradient_out, hessian_out |
|
|
|
def __call__(self, y_true, raw_prediction, sample_weight=None, n_threads=1): |
|
"""Compute the weighted average loss. |
|
|
|
Parameters |
|
---------- |
|
y_true : C-contiguous array of shape (n_samples,) |
|
Observed, true target values. |
|
raw_prediction : C-contiguous array of shape (n_samples,) or array of \ |
|
shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
sample_weight : None or C-contiguous array of shape (n_samples,) |
|
Sample weights. |
|
n_threads : int, default=1 |
|
Might use openmp thread parallelism. |
|
|
|
Returns |
|
------- |
|
loss : float |
|
Mean or averaged loss function. |
|
""" |
|
return np.average( |
|
self.loss( |
|
y_true=y_true, |
|
raw_prediction=raw_prediction, |
|
sample_weight=None, |
|
loss_out=None, |
|
n_threads=n_threads, |
|
), |
|
weights=sample_weight, |
|
) |
|
|
|
def fit_intercept_only(self, y_true, sample_weight=None): |
|
"""Compute raw_prediction of an intercept-only model. |
|
|
|
This can be used as initial estimates of predictions, i.e. before the |
|
first iteration in fit. |
|
|
|
Parameters |
|
---------- |
|
y_true : array-like of shape (n_samples,) |
|
Observed, true target values. |
|
sample_weight : None or array of shape (n_samples,) |
|
Sample weights. |
|
|
|
Returns |
|
------- |
|
raw_prediction : numpy scalar or array of shape (n_classes,) |
|
Raw predictions of an intercept-only model. |
|
""" |
|
|
|
|
|
y_pred = np.average(y_true, weights=sample_weight, axis=0) |
|
eps = 10 * np.finfo(y_pred.dtype).eps |
|
|
|
if self.interval_y_pred.low == -np.inf: |
|
a_min = None |
|
elif self.interval_y_pred.low_inclusive: |
|
a_min = self.interval_y_pred.low |
|
else: |
|
a_min = self.interval_y_pred.low + eps |
|
|
|
if self.interval_y_pred.high == np.inf: |
|
a_max = None |
|
elif self.interval_y_pred.high_inclusive: |
|
a_max = self.interval_y_pred.high |
|
else: |
|
a_max = self.interval_y_pred.high - eps |
|
|
|
if a_min is None and a_max is None: |
|
return self.link.link(y_pred) |
|
else: |
|
return self.link.link(np.clip(y_pred, a_min, a_max)) |
|
|
|
def constant_to_optimal_zero(self, y_true, sample_weight=None): |
|
"""Calculate term dropped in loss. |
|
|
|
With this term added, the loss of perfect predictions is zero. |
|
""" |
|
return np.zeros_like(y_true) |
|
|
|
def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"): |
|
"""Initialize arrays for gradients and hessians. |
|
|
|
Unless hessians are constant, arrays are initialized with undefined values. |
|
|
|
Parameters |
|
---------- |
|
n_samples : int |
|
The number of samples, usually passed to `fit()`. |
|
dtype : {np.float64, np.float32}, default=np.float64 |
|
The dtype of the arrays gradient and hessian. |
|
order : {'C', 'F'}, default='F' |
|
Order of the arrays gradient and hessian. The default 'F' makes the arrays |
|
contiguous along samples. |
|
|
|
Returns |
|
------- |
|
gradient : C-contiguous array of shape (n_samples,) or array of shape \ |
|
(n_samples, n_classes) |
|
Empty array (allocated but not initialized) to be used as argument |
|
gradient_out. |
|
hessian : C-contiguous array of shape (n_samples,), array of shape |
|
(n_samples, n_classes) or shape (1,) |
|
Empty (allocated but not initialized) array to be used as argument |
|
hessian_out. |
|
If constant_hessian is True (e.g. `HalfSquaredError`), the array is |
|
initialized to ``1``. |
|
""" |
|
if dtype not in (np.float32, np.float64): |
|
raise ValueError( |
|
"Valid options for 'dtype' are np.float32 and np.float64. " |
|
f"Got dtype={dtype} instead." |
|
) |
|
|
|
if self.is_multiclass: |
|
shape = (n_samples, self.n_classes) |
|
else: |
|
shape = (n_samples,) |
|
gradient = np.empty(shape=shape, dtype=dtype, order=order) |
|
|
|
if self.constant_hessian: |
|
|
|
|
|
|
|
|
|
hessian = np.ones(shape=(1,), dtype=dtype) |
|
else: |
|
hessian = np.empty(shape=shape, dtype=dtype, order=order) |
|
|
|
return gradient, hessian |
|
|
|
|
|
|
|
|
|
|
|
|
|
class HalfSquaredError(BaseLoss): |
|
"""Half squared error with identity link, for regression. |
|
|
|
Domain: |
|
y_true and y_pred all real numbers |
|
|
|
Link: |
|
y_pred = raw_prediction |
|
|
|
For a given sample x_i, half squared error is defined as:: |
|
|
|
loss(x_i) = 0.5 * (y_true_i - raw_prediction_i)**2 |
|
|
|
The factor of 0.5 simplifies the computation of gradients and results in a |
|
unit hessian (and is consistent with what is done in LightGBM). It is also |
|
half the Normal distribution deviance. |
|
""" |
|
|
|
def __init__(self, sample_weight=None): |
|
super().__init__(closs=CyHalfSquaredError(), link=IdentityLink()) |
|
self.constant_hessian = sample_weight is None |
|
|
|
|
|
class AbsoluteError(BaseLoss): |
|
"""Absolute error with identity link, for regression. |
|
|
|
Domain: |
|
y_true and y_pred all real numbers |
|
|
|
Link: |
|
y_pred = raw_prediction |
|
|
|
For a given sample x_i, the absolute error is defined as:: |
|
|
|
loss(x_i) = |y_true_i - raw_prediction_i| |
|
|
|
Note that the exact hessian = 0 almost everywhere (except at one point, therefore |
|
differentiable = False). Optimization routines like in HGBT, however, need a |
|
hessian > 0. Therefore, we assign 1. |
|
""" |
|
|
|
differentiable = False |
|
need_update_leaves_values = True |
|
|
|
def __init__(self, sample_weight=None): |
|
super().__init__(closs=CyAbsoluteError(), link=IdentityLink()) |
|
self.approx_hessian = True |
|
self.constant_hessian = sample_weight is None |
|
|
|
def fit_intercept_only(self, y_true, sample_weight=None): |
|
"""Compute raw_prediction of an intercept-only model. |
|
|
|
This is the weighted median of the target, i.e. over the samples |
|
axis=0. |
|
""" |
|
if sample_weight is None: |
|
return np.median(y_true, axis=0) |
|
else: |
|
return _weighted_percentile(y_true, sample_weight, 50) |
|
|
|
|
|
class PinballLoss(BaseLoss): |
|
"""Quantile loss aka pinball loss, for regression. |
|
|
|
Domain: |
|
y_true and y_pred all real numbers |
|
quantile in (0, 1) |
|
|
|
Link: |
|
y_pred = raw_prediction |
|
|
|
For a given sample x_i, the pinball loss is defined as:: |
|
|
|
loss(x_i) = rho_{quantile}(y_true_i - raw_prediction_i) |
|
|
|
rho_{quantile}(u) = u * (quantile - 1_{u<0}) |
|
= -u *(1 - quantile) if u < 0 |
|
u * quantile if u >= 0 |
|
|
|
Note: 2 * PinballLoss(quantile=0.5) equals AbsoluteError(). |
|
|
|
Note that the exact hessian = 0 almost everywhere (except at one point, therefore |
|
differentiable = False). Optimization routines like in HGBT, however, need a |
|
hessian > 0. Therefore, we assign 1. |
|
|
|
Additional Attributes |
|
--------------------- |
|
quantile : float |
|
The quantile level of the quantile to be estimated. Must be in range (0, 1). |
|
""" |
|
|
|
differentiable = False |
|
need_update_leaves_values = True |
|
|
|
def __init__(self, sample_weight=None, quantile=0.5): |
|
check_scalar( |
|
quantile, |
|
"quantile", |
|
target_type=numbers.Real, |
|
min_val=0, |
|
max_val=1, |
|
include_boundaries="neither", |
|
) |
|
super().__init__( |
|
closs=CyPinballLoss(quantile=float(quantile)), |
|
link=IdentityLink(), |
|
) |
|
self.approx_hessian = True |
|
self.constant_hessian = sample_weight is None |
|
|
|
def fit_intercept_only(self, y_true, sample_weight=None): |
|
"""Compute raw_prediction of an intercept-only model. |
|
|
|
This is the weighted median of the target, i.e. over the samples |
|
axis=0. |
|
""" |
|
if sample_weight is None: |
|
return np.percentile(y_true, 100 * self.closs.quantile, axis=0) |
|
else: |
|
return _weighted_percentile( |
|
y_true, sample_weight, 100 * self.closs.quantile |
|
) |
|
|
|
|
|
class HuberLoss(BaseLoss): |
|
"""Huber loss, for regression. |
|
|
|
Domain: |
|
y_true and y_pred all real numbers |
|
quantile in (0, 1) |
|
|
|
Link: |
|
y_pred = raw_prediction |
|
|
|
For a given sample x_i, the Huber loss is defined as:: |
|
|
|
loss(x_i) = 1/2 * abserr**2 if abserr <= delta |
|
delta * (abserr - delta/2) if abserr > delta |
|
|
|
abserr = |y_true_i - raw_prediction_i| |
|
delta = quantile(abserr, self.quantile) |
|
|
|
Note: HuberLoss(quantile=1) equals HalfSquaredError and HuberLoss(quantile=0) |
|
equals delta * (AbsoluteError() - delta/2). |
|
|
|
Additional Attributes |
|
--------------------- |
|
quantile : float |
|
The quantile level which defines the breaking point `delta` to distinguish |
|
between absolute error and squared error. Must be in range (0, 1). |
|
|
|
Reference |
|
--------- |
|
.. [1] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient |
|
boosting machine <10.1214/aos/1013203451>`. |
|
Annals of Statistics, 29, 1189-1232. |
|
""" |
|
|
|
differentiable = False |
|
need_update_leaves_values = True |
|
|
|
def __init__(self, sample_weight=None, quantile=0.9, delta=0.5): |
|
check_scalar( |
|
quantile, |
|
"quantile", |
|
target_type=numbers.Real, |
|
min_val=0, |
|
max_val=1, |
|
include_boundaries="neither", |
|
) |
|
self.quantile = quantile |
|
super().__init__( |
|
closs=CyHuberLoss(delta=float(delta)), |
|
link=IdentityLink(), |
|
) |
|
self.approx_hessian = True |
|
self.constant_hessian = False |
|
|
|
def fit_intercept_only(self, y_true, sample_weight=None): |
|
"""Compute raw_prediction of an intercept-only model. |
|
|
|
This is the weighted median of the target, i.e. over the samples |
|
axis=0. |
|
""" |
|
|
|
|
|
|
|
|
|
if sample_weight is None: |
|
median = np.percentile(y_true, 50, axis=0) |
|
else: |
|
median = _weighted_percentile(y_true, sample_weight, 50) |
|
diff = y_true - median |
|
term = np.sign(diff) * np.minimum(self.closs.delta, np.abs(diff)) |
|
return median + np.average(term, weights=sample_weight) |
|
|
|
|
|
class HalfPoissonLoss(BaseLoss): |
|
"""Half Poisson deviance loss with log-link, for regression. |
|
|
|
Domain: |
|
y_true in non-negative real numbers |
|
y_pred in positive real numbers |
|
|
|
Link: |
|
y_pred = exp(raw_prediction) |
|
|
|
For a given sample x_i, half the Poisson deviance is defined as:: |
|
|
|
loss(x_i) = y_true_i * log(y_true_i/exp(raw_prediction_i)) |
|
- y_true_i + exp(raw_prediction_i) |
|
|
|
Half the Poisson deviance is actually the negative log-likelihood up to |
|
constant terms (not involving raw_prediction) and simplifies the |
|
computation of the gradients. |
|
We also skip the constant term `y_true_i * log(y_true_i) - y_true_i`. |
|
""" |
|
|
|
def __init__(self, sample_weight=None): |
|
super().__init__(closs=CyHalfPoissonLoss(), link=LogLink()) |
|
self.interval_y_true = Interval(0, np.inf, True, False) |
|
|
|
def constant_to_optimal_zero(self, y_true, sample_weight=None): |
|
term = xlogy(y_true, y_true) - y_true |
|
if sample_weight is not None: |
|
term *= sample_weight |
|
return term |
|
|
|
|
|
class HalfGammaLoss(BaseLoss): |
|
"""Half Gamma deviance loss with log-link, for regression. |
|
|
|
Domain: |
|
y_true and y_pred in positive real numbers |
|
|
|
Link: |
|
y_pred = exp(raw_prediction) |
|
|
|
For a given sample x_i, half Gamma deviance loss is defined as:: |
|
|
|
loss(x_i) = log(exp(raw_prediction_i)/y_true_i) |
|
+ y_true/exp(raw_prediction_i) - 1 |
|
|
|
Half the Gamma deviance is actually proportional to the negative log- |
|
likelihood up to constant terms (not involving raw_prediction) and |
|
simplifies the computation of the gradients. |
|
We also skip the constant term `-log(y_true_i) - 1`. |
|
""" |
|
|
|
def __init__(self, sample_weight=None): |
|
super().__init__(closs=CyHalfGammaLoss(), link=LogLink()) |
|
self.interval_y_true = Interval(0, np.inf, False, False) |
|
|
|
def constant_to_optimal_zero(self, y_true, sample_weight=None): |
|
term = -np.log(y_true) - 1 |
|
if sample_weight is not None: |
|
term *= sample_weight |
|
return term |
|
|
|
|
|
class HalfTweedieLoss(BaseLoss): |
|
"""Half Tweedie deviance loss with log-link, for regression. |
|
|
|
Domain: |
|
y_true in real numbers for power <= 0 |
|
y_true in non-negative real numbers for 0 < power < 2 |
|
y_true in positive real numbers for 2 <= power |
|
y_pred in positive real numbers |
|
power in real numbers |
|
|
|
Link: |
|
y_pred = exp(raw_prediction) |
|
|
|
For a given sample x_i, half Tweedie deviance loss with p=power is defined |
|
as:: |
|
|
|
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p) |
|
- y_true_i * exp(raw_prediction_i)**(1-p) / (1-p) |
|
+ exp(raw_prediction_i)**(2-p) / (2-p) |
|
|
|
Taking the limits for p=0, 1, 2 gives HalfSquaredError with a log link, |
|
HalfPoissonLoss and HalfGammaLoss. |
|
|
|
We also skip constant terms, but those are different for p=0, 1, 2. |
|
Therefore, the loss is not continuous in `power`. |
|
|
|
Note furthermore that although no Tweedie distribution exists for |
|
0 < power < 1, it still gives a strictly consistent scoring function for |
|
the expectation. |
|
""" |
|
|
|
def __init__(self, sample_weight=None, power=1.5): |
|
super().__init__( |
|
closs=CyHalfTweedieLoss(power=float(power)), |
|
link=LogLink(), |
|
) |
|
if self.closs.power <= 0: |
|
self.interval_y_true = Interval(-np.inf, np.inf, False, False) |
|
elif self.closs.power < 2: |
|
self.interval_y_true = Interval(0, np.inf, True, False) |
|
else: |
|
self.interval_y_true = Interval(0, np.inf, False, False) |
|
|
|
def constant_to_optimal_zero(self, y_true, sample_weight=None): |
|
if self.closs.power == 0: |
|
return HalfSquaredError().constant_to_optimal_zero( |
|
y_true=y_true, sample_weight=sample_weight |
|
) |
|
elif self.closs.power == 1: |
|
return HalfPoissonLoss().constant_to_optimal_zero( |
|
y_true=y_true, sample_weight=sample_weight |
|
) |
|
elif self.closs.power == 2: |
|
return HalfGammaLoss().constant_to_optimal_zero( |
|
y_true=y_true, sample_weight=sample_weight |
|
) |
|
else: |
|
p = self.closs.power |
|
term = np.power(np.maximum(y_true, 0), 2 - p) / (1 - p) / (2 - p) |
|
if sample_weight is not None: |
|
term *= sample_weight |
|
return term |
|
|
|
|
|
class HalfTweedieLossIdentity(BaseLoss): |
|
"""Half Tweedie deviance loss with identity link, for regression. |
|
|
|
Domain: |
|
y_true in real numbers for power <= 0 |
|
y_true in non-negative real numbers for 0 < power < 2 |
|
y_true in positive real numbers for 2 <= power |
|
y_pred in positive real numbers for power != 0 |
|
y_pred in real numbers for power = 0 |
|
power in real numbers |
|
|
|
Link: |
|
y_pred = raw_prediction |
|
|
|
For a given sample x_i, half Tweedie deviance loss with p=power is defined |
|
as:: |
|
|
|
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p) |
|
- y_true_i * raw_prediction_i**(1-p) / (1-p) |
|
+ raw_prediction_i**(2-p) / (2-p) |
|
|
|
Note that the minimum value of this loss is 0. |
|
|
|
Note furthermore that although no Tweedie distribution exists for |
|
0 < power < 1, it still gives a strictly consistent scoring function for |
|
the expectation. |
|
""" |
|
|
|
def __init__(self, sample_weight=None, power=1.5): |
|
super().__init__( |
|
closs=CyHalfTweedieLossIdentity(power=float(power)), |
|
link=IdentityLink(), |
|
) |
|
if self.closs.power <= 0: |
|
self.interval_y_true = Interval(-np.inf, np.inf, False, False) |
|
elif self.closs.power < 2: |
|
self.interval_y_true = Interval(0, np.inf, True, False) |
|
else: |
|
self.interval_y_true = Interval(0, np.inf, False, False) |
|
|
|
if self.closs.power == 0: |
|
self.interval_y_pred = Interval(-np.inf, np.inf, False, False) |
|
else: |
|
self.interval_y_pred = Interval(0, np.inf, False, False) |
|
|
|
|
|
class HalfBinomialLoss(BaseLoss): |
|
"""Half Binomial deviance loss with logit link, for binary classification. |
|
|
|
This is also know as binary cross entropy, log-loss and logistic loss. |
|
|
|
Domain: |
|
y_true in [0, 1], i.e. regression on the unit interval |
|
y_pred in (0, 1), i.e. boundaries excluded |
|
|
|
Link: |
|
y_pred = expit(raw_prediction) |
|
|
|
For a given sample x_i, half Binomial deviance is defined as the negative |
|
log-likelihood of the Binomial/Bernoulli distribution and can be expressed |
|
as:: |
|
|
|
loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i |
|
|
|
See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman, |
|
section 4.4.1 (about logistic regression). |
|
|
|
Note that the formulation works for classification, y = {0, 1}, as well as |
|
logistic regression, y = [0, 1]. |
|
If you add `constant_to_optimal_zero` to the loss, you get half the |
|
Bernoulli/binomial deviance. |
|
|
|
More details: Inserting the predicted probability y_pred = expit(raw_prediction) |
|
in the loss gives the well known:: |
|
|
|
loss(x_i) = - y_true_i * log(y_pred_i) - (1 - y_true_i) * log(1 - y_pred_i) |
|
""" |
|
|
|
def __init__(self, sample_weight=None): |
|
super().__init__( |
|
closs=CyHalfBinomialLoss(), |
|
link=LogitLink(), |
|
n_classes=2, |
|
) |
|
self.interval_y_true = Interval(0, 1, True, True) |
|
|
|
def constant_to_optimal_zero(self, y_true, sample_weight=None): |
|
|
|
term = xlogy(y_true, y_true) + xlogy(1 - y_true, 1 - y_true) |
|
if sample_weight is not None: |
|
term *= sample_weight |
|
return term |
|
|
|
def predict_proba(self, raw_prediction): |
|
"""Predict probabilities. |
|
|
|
Parameters |
|
---------- |
|
raw_prediction : array of shape (n_samples,) or (n_samples, 1) |
|
Raw prediction values (in link space). |
|
|
|
Returns |
|
------- |
|
proba : array of shape (n_samples, 2) |
|
Element-wise class probabilities. |
|
""" |
|
|
|
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1: |
|
raw_prediction = raw_prediction.squeeze(1) |
|
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype) |
|
proba[:, 1] = self.link.inverse(raw_prediction) |
|
proba[:, 0] = 1 - proba[:, 1] |
|
return proba |
|
|
|
|
|
class HalfMultinomialLoss(BaseLoss): |
|
"""Categorical cross-entropy loss, for multiclass classification. |
|
|
|
Domain: |
|
y_true in {0, 1, 2, 3, .., n_classes - 1} |
|
y_pred has n_classes elements, each element in (0, 1) |
|
|
|
Link: |
|
y_pred = softmax(raw_prediction) |
|
|
|
Note: We assume y_true to be already label encoded. The inverse link is |
|
softmax. But the full link function is the symmetric multinomial logit |
|
function. |
|
|
|
For a given sample x_i, the categorical cross-entropy loss is defined as |
|
the negative log-likelihood of the multinomial distribution, it |
|
generalizes the binary cross-entropy to more than 2 classes:: |
|
|
|
loss_i = log(sum(exp(raw_pred_{i, k}), k=0..n_classes-1)) |
|
- sum(y_true_{i, k} * raw_pred_{i, k}, k=0..n_classes-1) |
|
|
|
See [1]. |
|
|
|
Note that for the hessian, we calculate only the diagonal part in the |
|
classes: If the full hessian for classes k and l and sample i is H_i_k_l, |
|
we calculate H_i_k_k, i.e. k=l. |
|
|
|
Reference |
|
--------- |
|
.. [1] :arxiv:`Simon, Noah, J. Friedman and T. Hastie. |
|
"A Blockwise Descent Algorithm for Group-penalized Multiresponse and |
|
Multinomial Regression". |
|
<1311.6529>` |
|
""" |
|
|
|
is_multiclass = True |
|
|
|
def __init__(self, sample_weight=None, n_classes=3): |
|
super().__init__( |
|
closs=CyHalfMultinomialLoss(), |
|
link=MultinomialLogit(), |
|
n_classes=n_classes, |
|
) |
|
self.interval_y_true = Interval(0, np.inf, True, False) |
|
self.interval_y_pred = Interval(0, 1, False, False) |
|
|
|
def in_y_true_range(self, y): |
|
"""Return True if y is in the valid range of y_true. |
|
|
|
Parameters |
|
---------- |
|
y : ndarray |
|
""" |
|
return self.interval_y_true.includes(y) and np.all(y.astype(int) == y) |
|
|
|
def fit_intercept_only(self, y_true, sample_weight=None): |
|
"""Compute raw_prediction of an intercept-only model. |
|
|
|
This is the softmax of the weighted average of the target, i.e. over |
|
the samples axis=0. |
|
""" |
|
out = np.zeros(self.n_classes, dtype=y_true.dtype) |
|
eps = np.finfo(y_true.dtype).eps |
|
for k in range(self.n_classes): |
|
out[k] = np.average(y_true == k, weights=sample_weight, axis=0) |
|
out[k] = np.clip(out[k], eps, 1 - eps) |
|
return self.link.link(out[None, :]).reshape(-1) |
|
|
|
def predict_proba(self, raw_prediction): |
|
"""Predict probabilities. |
|
|
|
Parameters |
|
---------- |
|
raw_prediction : array of shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
|
|
Returns |
|
------- |
|
proba : array of shape (n_samples, n_classes) |
|
Element-wise class probabilities. |
|
""" |
|
return self.link.inverse(raw_prediction) |
|
|
|
def gradient_proba( |
|
self, |
|
y_true, |
|
raw_prediction, |
|
sample_weight=None, |
|
gradient_out=None, |
|
proba_out=None, |
|
n_threads=1, |
|
): |
|
"""Compute gradient and class probabilities fow raw_prediction. |
|
|
|
Parameters |
|
---------- |
|
y_true : C-contiguous array of shape (n_samples,) |
|
Observed, true target values. |
|
raw_prediction : array of shape (n_samples, n_classes) |
|
Raw prediction values (in link space). |
|
sample_weight : None or C-contiguous array of shape (n_samples,) |
|
Sample weights. |
|
gradient_out : None or array of shape (n_samples, n_classes) |
|
A location into which the gradient is stored. If None, a new array |
|
might be created. |
|
proba_out : None or array of shape (n_samples, n_classes) |
|
A location into which the class probabilities are stored. If None, |
|
a new array might be created. |
|
n_threads : int, default=1 |
|
Might use openmp thread parallelism. |
|
|
|
Returns |
|
------- |
|
gradient : array of shape (n_samples, n_classes) |
|
Element-wise gradients. |
|
|
|
proba : array of shape (n_samples, n_classes) |
|
Element-wise class probabilities. |
|
""" |
|
if gradient_out is None: |
|
if proba_out is None: |
|
gradient_out = np.empty_like(raw_prediction) |
|
proba_out = np.empty_like(raw_prediction) |
|
else: |
|
gradient_out = np.empty_like(proba_out) |
|
elif proba_out is None: |
|
proba_out = np.empty_like(gradient_out) |
|
|
|
self.closs.gradient_proba( |
|
y_true=y_true, |
|
raw_prediction=raw_prediction, |
|
sample_weight=sample_weight, |
|
gradient_out=gradient_out, |
|
proba_out=proba_out, |
|
n_threads=n_threads, |
|
) |
|
return gradient_out, proba_out |
|
|
|
|
|
class ExponentialLoss(BaseLoss): |
|
"""Exponential loss with (half) logit link, for binary classification. |
|
|
|
This is also know as boosting loss. |
|
|
|
Domain: |
|
y_true in [0, 1], i.e. regression on the unit interval |
|
y_pred in (0, 1), i.e. boundaries excluded |
|
|
|
Link: |
|
y_pred = expit(2 * raw_prediction) |
|
|
|
For a given sample x_i, the exponential loss is defined as:: |
|
|
|
loss(x_i) = y_true_i * exp(-raw_pred_i)) + (1 - y_true_i) * exp(raw_pred_i) |
|
|
|
See: |
|
- J. Friedman, T. Hastie, R. Tibshirani. |
|
"Additive logistic regression: a statistical view of boosting (With discussion |
|
and a rejoinder by the authors)." Ann. Statist. 28 (2) 337 - 407, April 2000. |
|
https://doi.org/10.1214/aos/1016218223 |
|
- A. Buja, W. Stuetzle, Y. Shen. (2005). |
|
"Loss Functions for Binary Class Probability Estimation and Classification: |
|
Structure and Applications." |
|
|
|
Note that the formulation works for classification, y = {0, 1}, as well as |
|
"exponential logistic" regression, y = [0, 1]. |
|
Note that this is a proper scoring rule, but without it's canonical link. |
|
|
|
More details: Inserting the predicted probability |
|
y_pred = expit(2 * raw_prediction) in the loss gives:: |
|
|
|
loss(x_i) = y_true_i * sqrt((1 - y_pred_i) / y_pred_i) |
|
+ (1 - y_true_i) * sqrt(y_pred_i / (1 - y_pred_i)) |
|
""" |
|
|
|
def __init__(self, sample_weight=None): |
|
super().__init__( |
|
closs=CyExponentialLoss(), |
|
link=HalfLogitLink(), |
|
n_classes=2, |
|
) |
|
self.interval_y_true = Interval(0, 1, True, True) |
|
|
|
def constant_to_optimal_zero(self, y_true, sample_weight=None): |
|
|
|
term = -2 * np.sqrt(y_true * (1 - y_true)) |
|
if sample_weight is not None: |
|
term *= sample_weight |
|
return term |
|
|
|
def predict_proba(self, raw_prediction): |
|
"""Predict probabilities. |
|
|
|
Parameters |
|
---------- |
|
raw_prediction : array of shape (n_samples,) or (n_samples, 1) |
|
Raw prediction values (in link space). |
|
|
|
Returns |
|
------- |
|
proba : array of shape (n_samples, 2) |
|
Element-wise class probabilities. |
|
""" |
|
|
|
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1: |
|
raw_prediction = raw_prediction.squeeze(1) |
|
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype) |
|
proba[:, 1] = self.link.inverse(raw_prediction) |
|
proba[:, 0] = 1 - proba[:, 1] |
|
return proba |
|
|
|
|
|
_LOSSES = { |
|
"squared_error": HalfSquaredError, |
|
"absolute_error": AbsoluteError, |
|
"pinball_loss": PinballLoss, |
|
"huber_loss": HuberLoss, |
|
"poisson_loss": HalfPoissonLoss, |
|
"gamma_loss": HalfGammaLoss, |
|
"tweedie_loss": HalfTweedieLoss, |
|
"binomial_loss": HalfBinomialLoss, |
|
"multinomial_loss": HalfMultinomialLoss, |
|
"exponential_loss": ExponentialLoss, |
|
} |
|
|