|
"""Spectral biclustering algorithms.""" |
|
|
|
|
|
|
|
|
|
from abc import ABCMeta, abstractmethod |
|
from numbers import Integral |
|
|
|
import numpy as np |
|
from scipy.linalg import norm |
|
from scipy.sparse import dia_matrix, issparse |
|
from scipy.sparse.linalg import eigsh, svds |
|
|
|
from ..base import BaseEstimator, BiclusterMixin, _fit_context |
|
from ..utils import check_random_state, check_scalar |
|
from ..utils._param_validation import Interval, StrOptions |
|
from ..utils.extmath import make_nonnegative, randomized_svd, safe_sparse_dot |
|
from ..utils.validation import assert_all_finite, validate_data |
|
from ._kmeans import KMeans, MiniBatchKMeans |
|
|
|
__all__ = ["SpectralCoclustering", "SpectralBiclustering"] |
|
|
|
|
|
def _scale_normalize(X): |
|
"""Normalize ``X`` by scaling rows and columns independently. |
|
|
|
Returns the normalized matrix and the row and column scaling |
|
factors. |
|
""" |
|
X = make_nonnegative(X) |
|
row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() |
|
col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() |
|
row_diag = np.where(np.isnan(row_diag), 0, row_diag) |
|
col_diag = np.where(np.isnan(col_diag), 0, col_diag) |
|
if issparse(X): |
|
n_rows, n_cols = X.shape |
|
r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) |
|
c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) |
|
an = r * X * c |
|
else: |
|
an = row_diag[:, np.newaxis] * X * col_diag |
|
return an, row_diag, col_diag |
|
|
|
|
|
def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): |
|
"""Normalize rows and columns of ``X`` simultaneously so that all |
|
rows sum to one constant and all columns sum to a different |
|
constant. |
|
""" |
|
|
|
|
|
X = make_nonnegative(X) |
|
X_scaled = X |
|
for _ in range(max_iter): |
|
X_new, _, _ = _scale_normalize(X_scaled) |
|
if issparse(X): |
|
dist = norm(X_scaled.data - X.data) |
|
else: |
|
dist = norm(X_scaled - X_new) |
|
X_scaled = X_new |
|
if dist is not None and dist < tol: |
|
break |
|
return X_scaled |
|
|
|
|
|
def _log_normalize(X): |
|
"""Normalize ``X`` according to Kluger's log-interactions scheme.""" |
|
X = make_nonnegative(X, min_value=1) |
|
if issparse(X): |
|
raise ValueError( |
|
"Cannot compute log of a sparse matrix," |
|
" because log(x) diverges to -infinity as x" |
|
" goes to 0." |
|
) |
|
L = np.log(X) |
|
row_avg = L.mean(axis=1)[:, np.newaxis] |
|
col_avg = L.mean(axis=0) |
|
avg = L.mean() |
|
return L - row_avg - col_avg + avg |
|
|
|
|
|
class BaseSpectral(BiclusterMixin, BaseEstimator, metaclass=ABCMeta): |
|
"""Base class for spectral biclustering.""" |
|
|
|
_parameter_constraints: dict = { |
|
"svd_method": [StrOptions({"randomized", "arpack"})], |
|
"n_svd_vecs": [Interval(Integral, 0, None, closed="left"), None], |
|
"mini_batch": ["boolean"], |
|
"init": [StrOptions({"k-means++", "random"}), np.ndarray], |
|
"n_init": [Interval(Integral, 1, None, closed="left")], |
|
"random_state": ["random_state"], |
|
} |
|
|
|
@abstractmethod |
|
def __init__( |
|
self, |
|
n_clusters=3, |
|
svd_method="randomized", |
|
n_svd_vecs=None, |
|
mini_batch=False, |
|
init="k-means++", |
|
n_init=10, |
|
random_state=None, |
|
): |
|
self.n_clusters = n_clusters |
|
self.svd_method = svd_method |
|
self.n_svd_vecs = n_svd_vecs |
|
self.mini_batch = mini_batch |
|
self.init = init |
|
self.n_init = n_init |
|
self.random_state = random_state |
|
|
|
@abstractmethod |
|
def _check_parameters(self, n_samples): |
|
"""Validate parameters depending on the input data.""" |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def fit(self, X, y=None): |
|
"""Create a biclustering for X. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training data. |
|
|
|
y : Ignored |
|
Not used, present for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
self : object |
|
SpectralBiclustering instance. |
|
""" |
|
X = validate_data(self, X, accept_sparse="csr", dtype=np.float64) |
|
self._check_parameters(X.shape[0]) |
|
self._fit(X) |
|
return self |
|
|
|
def _svd(self, array, n_components, n_discard): |
|
"""Returns first `n_components` left and right singular |
|
vectors u and v, discarding the first `n_discard`. |
|
""" |
|
if self.svd_method == "randomized": |
|
kwargs = {} |
|
if self.n_svd_vecs is not None: |
|
kwargs["n_oversamples"] = self.n_svd_vecs |
|
u, _, vt = randomized_svd( |
|
array, n_components, random_state=self.random_state, **kwargs |
|
) |
|
|
|
elif self.svd_method == "arpack": |
|
u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) |
|
if np.any(np.isnan(vt)): |
|
|
|
|
|
|
|
A = safe_sparse_dot(array.T, array) |
|
random_state = check_random_state(self.random_state) |
|
|
|
v0 = random_state.uniform(-1, 1, A.shape[0]) |
|
_, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0) |
|
vt = v.T |
|
if np.any(np.isnan(u)): |
|
A = safe_sparse_dot(array, array.T) |
|
random_state = check_random_state(self.random_state) |
|
|
|
v0 = random_state.uniform(-1, 1, A.shape[0]) |
|
_, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0) |
|
|
|
assert_all_finite(u) |
|
assert_all_finite(vt) |
|
u = u[:, n_discard:] |
|
vt = vt[n_discard:] |
|
return u, vt.T |
|
|
|
def _k_means(self, data, n_clusters): |
|
if self.mini_batch: |
|
model = MiniBatchKMeans( |
|
n_clusters, |
|
init=self.init, |
|
n_init=self.n_init, |
|
random_state=self.random_state, |
|
) |
|
else: |
|
model = KMeans( |
|
n_clusters, |
|
init=self.init, |
|
n_init=self.n_init, |
|
random_state=self.random_state, |
|
) |
|
model.fit(data) |
|
centroid = model.cluster_centers_ |
|
labels = model.labels_ |
|
return centroid, labels |
|
|
|
def __sklearn_tags__(self): |
|
tags = super().__sklearn_tags__() |
|
tags.input_tags.sparse = True |
|
return tags |
|
|
|
|
|
class SpectralCoclustering(BaseSpectral): |
|
"""Spectral Co-Clustering algorithm (Dhillon, 2001). |
|
|
|
Clusters rows and columns of an array `X` to solve the relaxed |
|
normalized cut of the bipartite graph created from `X` as follows: |
|
the edge between row vertex `i` and column vertex `j` has weight |
|
`X[i, j]`. |
|
|
|
The resulting bicluster structure is block-diagonal, since each |
|
row and each column belongs to exactly one bicluster. |
|
|
|
Supports sparse matrices, as long as they are nonnegative. |
|
|
|
Read more in the :ref:`User Guide <spectral_coclustering>`. |
|
|
|
Parameters |
|
---------- |
|
n_clusters : int, default=3 |
|
The number of biclusters to find. |
|
|
|
svd_method : {'randomized', 'arpack'}, default='randomized' |
|
Selects the algorithm for finding singular vectors. May be |
|
'randomized' or 'arpack'. If 'randomized', use |
|
:func:`sklearn.utils.extmath.randomized_svd`, which may be faster |
|
for large matrices. If 'arpack', use |
|
:func:`scipy.sparse.linalg.svds`, which is more accurate, but |
|
possibly slower in some cases. |
|
|
|
n_svd_vecs : int, default=None |
|
Number of vectors to use in calculating the SVD. Corresponds |
|
to `ncv` when `svd_method=arpack` and `n_oversamples` when |
|
`svd_method` is 'randomized`. |
|
|
|
mini_batch : bool, default=False |
|
Whether to use mini-batch k-means, which is faster but may get |
|
different results. |
|
|
|
init : {'k-means++', 'random'}, or ndarray of shape \ |
|
(n_clusters, n_features), default='k-means++' |
|
Method for initialization of k-means algorithm; defaults to |
|
'k-means++'. |
|
|
|
n_init : int, default=10 |
|
Number of random initializations that are tried with the |
|
k-means algorithm. |
|
|
|
If mini-batch k-means is used, the best initialization is |
|
chosen and the algorithm runs once. Otherwise, the algorithm |
|
is run for each initialization and the best solution chosen. |
|
|
|
random_state : int, RandomState instance, default=None |
|
Used for randomizing the singular value decomposition and the k-means |
|
initialization. Use an int to make the randomness deterministic. |
|
See :term:`Glossary <random_state>`. |
|
|
|
Attributes |
|
---------- |
|
rows_ : array-like of shape (n_row_clusters, n_rows) |
|
Results of the clustering. `rows[i, r]` is True if |
|
cluster `i` contains row `r`. Available only after calling ``fit``. |
|
|
|
columns_ : array-like of shape (n_column_clusters, n_columns) |
|
Results of the clustering, like `rows`. |
|
|
|
row_labels_ : array-like of shape (n_rows,) |
|
The bicluster label of each row. |
|
|
|
column_labels_ : array-like of shape (n_cols,) |
|
The bicluster label of each column. |
|
|
|
biclusters_ : tuple of two ndarrays |
|
The tuple contains the `rows_` and `columns_` arrays. |
|
|
|
n_features_in_ : int |
|
Number of features seen during :term:`fit`. |
|
|
|
.. versionadded:: 0.24 |
|
|
|
feature_names_in_ : ndarray of shape (`n_features_in_`,) |
|
Names of features seen during :term:`fit`. Defined only when `X` |
|
has feature names that are all strings. |
|
|
|
.. versionadded:: 1.0 |
|
|
|
See Also |
|
-------- |
|
SpectralBiclustering : Partitions rows and columns under the assumption |
|
that the data has an underlying checkerboard structure. |
|
|
|
References |
|
---------- |
|
* :doi:`Dhillon, Inderjit S, 2001. Co-clustering documents and words using |
|
bipartite spectral graph partitioning. |
|
<10.1145/502512.502550>` |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.cluster import SpectralCoclustering |
|
>>> import numpy as np |
|
>>> X = np.array([[1, 1], [2, 1], [1, 0], |
|
... [4, 7], [3, 5], [3, 6]]) |
|
>>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X) |
|
>>> clustering.row_labels_ #doctest: +SKIP |
|
array([0, 1, 1, 0, 0, 0], dtype=int32) |
|
>>> clustering.column_labels_ #doctest: +SKIP |
|
array([0, 0], dtype=int32) |
|
>>> clustering |
|
SpectralCoclustering(n_clusters=2, random_state=0) |
|
""" |
|
|
|
_parameter_constraints: dict = { |
|
**BaseSpectral._parameter_constraints, |
|
"n_clusters": [Interval(Integral, 1, None, closed="left")], |
|
} |
|
|
|
def __init__( |
|
self, |
|
n_clusters=3, |
|
*, |
|
svd_method="randomized", |
|
n_svd_vecs=None, |
|
mini_batch=False, |
|
init="k-means++", |
|
n_init=10, |
|
random_state=None, |
|
): |
|
super().__init__( |
|
n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, random_state |
|
) |
|
|
|
def _check_parameters(self, n_samples): |
|
if self.n_clusters > n_samples: |
|
raise ValueError( |
|
f"n_clusters should be <= n_samples={n_samples}. Got" |
|
f" {self.n_clusters} instead." |
|
) |
|
|
|
def _fit(self, X): |
|
normalized_data, row_diag, col_diag = _scale_normalize(X) |
|
n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) |
|
u, v = self._svd(normalized_data, n_sv, n_discard=1) |
|
z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) |
|
|
|
_, labels = self._k_means(z, self.n_clusters) |
|
|
|
n_rows = X.shape[0] |
|
self.row_labels_ = labels[:n_rows] |
|
self.column_labels_ = labels[n_rows:] |
|
|
|
self.rows_ = np.vstack([self.row_labels_ == c for c in range(self.n_clusters)]) |
|
self.columns_ = np.vstack( |
|
[self.column_labels_ == c for c in range(self.n_clusters)] |
|
) |
|
|
|
|
|
class SpectralBiclustering(BaseSpectral): |
|
"""Spectral biclustering (Kluger, 2003). |
|
|
|
Partitions rows and columns under the assumption that the data has |
|
an underlying checkerboard structure. For instance, if there are |
|
two row partitions and three column partitions, each row will |
|
belong to three biclusters, and each column will belong to two |
|
biclusters. The outer product of the corresponding row and column |
|
label vectors gives this checkerboard structure. |
|
|
|
Read more in the :ref:`User Guide <spectral_biclustering>`. |
|
|
|
Parameters |
|
---------- |
|
n_clusters : int or tuple (n_row_clusters, n_column_clusters), default=3 |
|
The number of row and column clusters in the checkerboard |
|
structure. |
|
|
|
method : {'bistochastic', 'scale', 'log'}, default='bistochastic' |
|
Method of normalizing and converting singular vectors into |
|
biclusters. May be one of 'scale', 'bistochastic', or 'log'. |
|
The authors recommend using 'log'. If the data is sparse, |
|
however, log normalization will not work, which is why the |
|
default is 'bistochastic'. |
|
|
|
.. warning:: |
|
if `method='log'`, the data must not be sparse. |
|
|
|
n_components : int, default=6 |
|
Number of singular vectors to check. |
|
|
|
n_best : int, default=3 |
|
Number of best singular vectors to which to project the data |
|
for clustering. |
|
|
|
svd_method : {'randomized', 'arpack'}, default='randomized' |
|
Selects the algorithm for finding singular vectors. May be |
|
'randomized' or 'arpack'. If 'randomized', uses |
|
:func:`~sklearn.utils.extmath.randomized_svd`, which may be faster |
|
for large matrices. If 'arpack', uses |
|
`scipy.sparse.linalg.svds`, which is more accurate, but |
|
possibly slower in some cases. |
|
|
|
n_svd_vecs : int, default=None |
|
Number of vectors to use in calculating the SVD. Corresponds |
|
to `ncv` when `svd_method=arpack` and `n_oversamples` when |
|
`svd_method` is 'randomized`. |
|
|
|
mini_batch : bool, default=False |
|
Whether to use mini-batch k-means, which is faster but may get |
|
different results. |
|
|
|
init : {'k-means++', 'random'} or ndarray of shape (n_clusters, n_features), \ |
|
default='k-means++' |
|
Method for initialization of k-means algorithm; defaults to |
|
'k-means++'. |
|
|
|
n_init : int, default=10 |
|
Number of random initializations that are tried with the |
|
k-means algorithm. |
|
|
|
If mini-batch k-means is used, the best initialization is |
|
chosen and the algorithm runs once. Otherwise, the algorithm |
|
is run for each initialization and the best solution chosen. |
|
|
|
random_state : int, RandomState instance, default=None |
|
Used for randomizing the singular value decomposition and the k-means |
|
initialization. Use an int to make the randomness deterministic. |
|
See :term:`Glossary <random_state>`. |
|
|
|
Attributes |
|
---------- |
|
rows_ : array-like of shape (n_row_clusters, n_rows) |
|
Results of the clustering. `rows[i, r]` is True if |
|
cluster `i` contains row `r`. Available only after calling ``fit``. |
|
|
|
columns_ : array-like of shape (n_column_clusters, n_columns) |
|
Results of the clustering, like `rows`. |
|
|
|
row_labels_ : array-like of shape (n_rows,) |
|
Row partition labels. |
|
|
|
column_labels_ : array-like of shape (n_cols,) |
|
Column partition labels. |
|
|
|
biclusters_ : tuple of two ndarrays |
|
The tuple contains the `rows_` and `columns_` arrays. |
|
|
|
n_features_in_ : int |
|
Number of features seen during :term:`fit`. |
|
|
|
.. versionadded:: 0.24 |
|
|
|
feature_names_in_ : ndarray of shape (`n_features_in_`,) |
|
Names of features seen during :term:`fit`. Defined only when `X` |
|
has feature names that are all strings. |
|
|
|
.. versionadded:: 1.0 |
|
|
|
See Also |
|
-------- |
|
SpectralCoclustering : Spectral Co-Clustering algorithm (Dhillon, 2001). |
|
|
|
References |
|
---------- |
|
|
|
* :doi:`Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray |
|
data: coclustering genes and conditions. |
|
<10.1101/gr.648603>` |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.cluster import SpectralBiclustering |
|
>>> import numpy as np |
|
>>> X = np.array([[1, 1], [2, 1], [1, 0], |
|
... [4, 7], [3, 5], [3, 6]]) |
|
>>> clustering = SpectralBiclustering(n_clusters=2, random_state=0).fit(X) |
|
>>> clustering.row_labels_ |
|
array([1, 1, 1, 0, 0, 0], dtype=int32) |
|
>>> clustering.column_labels_ |
|
array([1, 0], dtype=int32) |
|
>>> clustering |
|
SpectralBiclustering(n_clusters=2, random_state=0) |
|
|
|
For a more detailed example, see |
|
:ref:`sphx_glr_auto_examples_bicluster_plot_spectral_biclustering.py` |
|
""" |
|
|
|
_parameter_constraints: dict = { |
|
**BaseSpectral._parameter_constraints, |
|
"n_clusters": [Interval(Integral, 1, None, closed="left"), tuple], |
|
"method": [StrOptions({"bistochastic", "scale", "log"})], |
|
"n_components": [Interval(Integral, 1, None, closed="left")], |
|
"n_best": [Interval(Integral, 1, None, closed="left")], |
|
} |
|
|
|
def __init__( |
|
self, |
|
n_clusters=3, |
|
*, |
|
method="bistochastic", |
|
n_components=6, |
|
n_best=3, |
|
svd_method="randomized", |
|
n_svd_vecs=None, |
|
mini_batch=False, |
|
init="k-means++", |
|
n_init=10, |
|
random_state=None, |
|
): |
|
super().__init__( |
|
n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, random_state |
|
) |
|
self.method = method |
|
self.n_components = n_components |
|
self.n_best = n_best |
|
|
|
def _check_parameters(self, n_samples): |
|
if isinstance(self.n_clusters, Integral): |
|
if self.n_clusters > n_samples: |
|
raise ValueError( |
|
f"n_clusters should be <= n_samples={n_samples}. Got" |
|
f" {self.n_clusters} instead." |
|
) |
|
else: |
|
try: |
|
n_row_clusters, n_column_clusters = self.n_clusters |
|
check_scalar( |
|
n_row_clusters, |
|
"n_row_clusters", |
|
target_type=Integral, |
|
min_val=1, |
|
max_val=n_samples, |
|
) |
|
check_scalar( |
|
n_column_clusters, |
|
"n_column_clusters", |
|
target_type=Integral, |
|
min_val=1, |
|
max_val=n_samples, |
|
) |
|
except (ValueError, TypeError) as e: |
|
raise ValueError( |
|
"Incorrect parameter n_clusters has value:" |
|
f" {self.n_clusters}. It should either be a single integer" |
|
" or an iterable with two integers:" |
|
" (n_row_clusters, n_column_clusters)" |
|
" And the values are should be in the" |
|
" range: (1, n_samples)" |
|
) from e |
|
|
|
if self.n_best > self.n_components: |
|
raise ValueError( |
|
f"n_best={self.n_best} must be <= n_components={self.n_components}." |
|
) |
|
|
|
def _fit(self, X): |
|
n_sv = self.n_components |
|
if self.method == "bistochastic": |
|
normalized_data = _bistochastic_normalize(X) |
|
n_sv += 1 |
|
elif self.method == "scale": |
|
normalized_data, _, _ = _scale_normalize(X) |
|
n_sv += 1 |
|
elif self.method == "log": |
|
normalized_data = _log_normalize(X) |
|
n_discard = 0 if self.method == "log" else 1 |
|
u, v = self._svd(normalized_data, n_sv, n_discard) |
|
ut = u.T |
|
vt = v.T |
|
|
|
try: |
|
n_row_clusters, n_col_clusters = self.n_clusters |
|
except TypeError: |
|
n_row_clusters = n_col_clusters = self.n_clusters |
|
|
|
best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) |
|
|
|
best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) |
|
|
|
self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) |
|
|
|
self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) |
|
|
|
self.rows_ = np.vstack( |
|
[ |
|
self.row_labels_ == label |
|
for label in range(n_row_clusters) |
|
for _ in range(n_col_clusters) |
|
] |
|
) |
|
self.columns_ = np.vstack( |
|
[ |
|
self.column_labels_ == label |
|
for _ in range(n_row_clusters) |
|
for label in range(n_col_clusters) |
|
] |
|
) |
|
|
|
def _fit_best_piecewise(self, vectors, n_best, n_clusters): |
|
"""Find the ``n_best`` vectors that are best approximated by piecewise |
|
constant vectors. |
|
|
|
The piecewise vectors are found by k-means; the best is chosen |
|
according to Euclidean distance. |
|
|
|
""" |
|
|
|
def make_piecewise(v): |
|
centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) |
|
return centroid[labels].ravel() |
|
|
|
piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) |
|
dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) |
|
result = vectors[np.argsort(dists)[:n_best]] |
|
return result |
|
|
|
def _project_and_cluster(self, data, vectors, n_clusters): |
|
"""Project ``data`` to ``vectors`` and cluster the result.""" |
|
projected = safe_sparse_dot(data, vectors) |
|
_, labels = self._k_means(projected, n_clusters) |
|
return labels |
|
|