|
"""Testing for Spectral Biclustering methods""" |
|
|
|
import numpy as np |
|
import pytest |
|
from scipy.sparse import issparse |
|
|
|
from sklearn.base import BaseEstimator, BiclusterMixin |
|
from sklearn.cluster import SpectralBiclustering, SpectralCoclustering |
|
from sklearn.cluster._bicluster import ( |
|
_bistochastic_normalize, |
|
_log_normalize, |
|
_scale_normalize, |
|
) |
|
from sklearn.datasets import make_biclusters, make_checkerboard |
|
from sklearn.metrics import consensus_score, v_measure_score |
|
from sklearn.model_selection import ParameterGrid |
|
from sklearn.utils._testing import ( |
|
assert_almost_equal, |
|
assert_array_almost_equal, |
|
assert_array_equal, |
|
) |
|
from sklearn.utils.fixes import CSR_CONTAINERS |
|
|
|
|
|
class MockBiclustering(BiclusterMixin, BaseEstimator): |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def get_indices(self, i): |
|
|
|
return ( |
|
np.where([True, True, False, False, True])[0], |
|
np.where([False, False, True, True])[0], |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_get_submatrix(csr_container): |
|
data = np.arange(20).reshape(5, 4) |
|
model = MockBiclustering() |
|
|
|
for X in (data, csr_container(data), data.tolist()): |
|
submatrix = model.get_submatrix(0, X) |
|
if issparse(submatrix): |
|
submatrix = submatrix.toarray() |
|
assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) |
|
submatrix[:] = -1 |
|
if issparse(X): |
|
X = X.toarray() |
|
assert np.all(X != -1) |
|
|
|
|
|
def _test_shape_indices(model): |
|
|
|
for i in range(model.n_clusters): |
|
m, n = model.get_shape(i) |
|
i_ind, j_ind = model.get_indices(i) |
|
assert len(i_ind) == m |
|
assert len(j_ind) == n |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_spectral_coclustering(global_random_seed, csr_container): |
|
|
|
param_grid = { |
|
"svd_method": ["randomized", "arpack"], |
|
"n_svd_vecs": [None, 20], |
|
"mini_batch": [False, True], |
|
"init": ["k-means++"], |
|
"n_init": [10], |
|
} |
|
S, rows, cols = make_biclusters( |
|
(30, 30), 3, noise=0.1, random_state=global_random_seed |
|
) |
|
S -= S.min() |
|
S = np.where(S < 1, 0, S) |
|
for mat in (S, csr_container(S)): |
|
for kwargs in ParameterGrid(param_grid): |
|
model = SpectralCoclustering( |
|
n_clusters=3, random_state=global_random_seed, **kwargs |
|
) |
|
model.fit(mat) |
|
|
|
assert model.rows_.shape == (3, 30) |
|
assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) |
|
assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) |
|
assert consensus_score(model.biclusters_, (rows, cols)) == 1 |
|
|
|
_test_shape_indices(model) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_spectral_biclustering(global_random_seed, csr_container): |
|
|
|
S, rows, cols = make_checkerboard( |
|
(30, 30), 3, noise=0.5, random_state=global_random_seed |
|
) |
|
|
|
non_default_params = { |
|
"method": ["scale", "log"], |
|
"svd_method": ["arpack"], |
|
"n_svd_vecs": [20], |
|
"mini_batch": [True], |
|
} |
|
|
|
for mat in (S, csr_container(S)): |
|
for param_name, param_values in non_default_params.items(): |
|
for param_value in param_values: |
|
model = SpectralBiclustering( |
|
n_clusters=3, |
|
n_init=3, |
|
init="k-means++", |
|
random_state=global_random_seed, |
|
) |
|
model.set_params(**dict([(param_name, param_value)])) |
|
|
|
if issparse(mat) and model.get_params().get("method") == "log": |
|
|
|
with pytest.raises(ValueError): |
|
model.fit(mat) |
|
continue |
|
else: |
|
model.fit(mat) |
|
|
|
assert model.rows_.shape == (9, 30) |
|
assert model.columns_.shape == (9, 30) |
|
assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) |
|
assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) |
|
assert consensus_score(model.biclusters_, (rows, cols)) == 1 |
|
|
|
_test_shape_indices(model) |
|
|
|
|
|
def _do_scale_test(scaled): |
|
"""Check that rows sum to one constant, and columns to another.""" |
|
row_sum = scaled.sum(axis=1) |
|
col_sum = scaled.sum(axis=0) |
|
if issparse(scaled): |
|
row_sum = np.asarray(row_sum).squeeze() |
|
col_sum = np.asarray(col_sum).squeeze() |
|
assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) |
|
assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) |
|
|
|
|
|
def _do_bistochastic_test(scaled): |
|
"""Check that rows and columns sum to the same constant.""" |
|
_do_scale_test(scaled) |
|
assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_scale_normalize(global_random_seed, csr_container): |
|
generator = np.random.RandomState(global_random_seed) |
|
X = generator.rand(100, 100) |
|
for mat in (X, csr_container(X)): |
|
scaled, _, _ = _scale_normalize(mat) |
|
_do_scale_test(scaled) |
|
if issparse(mat): |
|
assert issparse(scaled) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_bistochastic_normalize(global_random_seed, csr_container): |
|
generator = np.random.RandomState(global_random_seed) |
|
X = generator.rand(100, 100) |
|
for mat in (X, csr_container(X)): |
|
scaled = _bistochastic_normalize(mat) |
|
_do_bistochastic_test(scaled) |
|
if issparse(mat): |
|
assert issparse(scaled) |
|
|
|
|
|
def test_log_normalize(global_random_seed): |
|
|
|
|
|
generator = np.random.RandomState(global_random_seed) |
|
mat = generator.rand(100, 100) |
|
scaled = _log_normalize(mat) + 1 |
|
_do_bistochastic_test(scaled) |
|
|
|
|
|
def test_fit_best_piecewise(global_random_seed): |
|
model = SpectralBiclustering(random_state=global_random_seed) |
|
vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) |
|
best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) |
|
assert_array_equal(best, vectors[:2]) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_project_and_cluster(global_random_seed, csr_container): |
|
model = SpectralBiclustering(random_state=global_random_seed) |
|
data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) |
|
vectors = np.array([[1, 0], [0, 1], [0, 0]]) |
|
for mat in (data, csr_container(data)): |
|
labels = model._project_and_cluster(mat, vectors, n_clusters=2) |
|
assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0) |
|
|
|
|
|
def test_perfect_checkerboard(global_random_seed): |
|
|
|
model = SpectralBiclustering( |
|
3, svd_method="arpack", random_state=global_random_seed |
|
) |
|
|
|
S, rows, cols = make_checkerboard( |
|
(30, 30), 3, noise=0, random_state=global_random_seed |
|
) |
|
model.fit(S) |
|
assert consensus_score(model.biclusters_, (rows, cols)) == 1 |
|
|
|
S, rows, cols = make_checkerboard( |
|
(40, 30), 3, noise=0, random_state=global_random_seed |
|
) |
|
model.fit(S) |
|
assert consensus_score(model.biclusters_, (rows, cols)) == 1 |
|
|
|
S, rows, cols = make_checkerboard( |
|
(30, 40), 3, noise=0, random_state=global_random_seed |
|
) |
|
model.fit(S) |
|
assert consensus_score(model.biclusters_, (rows, cols)) == 1 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"params, type_err, err_msg", |
|
[ |
|
( |
|
{"n_clusters": 6}, |
|
ValueError, |
|
"n_clusters should be <= n_samples=5", |
|
), |
|
( |
|
{"n_clusters": (3, 3, 3)}, |
|
ValueError, |
|
"Incorrect parameter n_clusters", |
|
), |
|
( |
|
{"n_clusters": (3, 6)}, |
|
ValueError, |
|
"Incorrect parameter n_clusters", |
|
), |
|
( |
|
{"n_components": 3, "n_best": 4}, |
|
ValueError, |
|
"n_best=4 must be <= n_components=3", |
|
), |
|
], |
|
) |
|
def test_spectralbiclustering_parameter_validation(params, type_err, err_msg): |
|
"""Check parameters validation in `SpectralBiClustering`""" |
|
data = np.arange(25).reshape((5, 5)) |
|
model = SpectralBiclustering(**params) |
|
with pytest.raises(type_err, match=err_msg): |
|
model.fit(data) |
|
|
|
|
|
@pytest.mark.parametrize("est", (SpectralBiclustering(), SpectralCoclustering())) |
|
def test_n_features_in_(est): |
|
X, _, _ = make_biclusters((3, 3), 3, random_state=0) |
|
|
|
assert not hasattr(est, "n_features_in_") |
|
est.fit(X) |
|
assert est.n_features_in_ == 3 |
|
|