"""Methods and algorithms to robustly estimate covariance. | |
They estimate the covariance of features at given sets of points, as well as the | |
precision matrix defined as the inverse of the covariance. Covariance estimation is | |
closely related to the theory of Gaussian graphical models. | |
""" | |
# Authors: The scikit-learn developers | |
# SPDX-License-Identifier: BSD-3-Clause | |
from ._elliptic_envelope import EllipticEnvelope | |
from ._empirical_covariance import ( | |
EmpiricalCovariance, | |
empirical_covariance, | |
log_likelihood, | |
) | |
from ._graph_lasso import GraphicalLasso, GraphicalLassoCV, graphical_lasso | |
from ._robust_covariance import MinCovDet, fast_mcd | |
from ._shrunk_covariance import ( | |
OAS, | |
LedoitWolf, | |
ShrunkCovariance, | |
ledoit_wolf, | |
ledoit_wolf_shrinkage, | |
oas, | |
shrunk_covariance, | |
) | |
__all__ = [ | |
"EllipticEnvelope", | |
"EmpiricalCovariance", | |
"GraphicalLasso", | |
"GraphicalLassoCV", | |
"LedoitWolf", | |
"MinCovDet", | |
"OAS", | |
"ShrunkCovariance", | |
"empirical_covariance", | |
"fast_mcd", | |
"graphical_lasso", | |
"ledoit_wolf", | |
"ledoit_wolf_shrinkage", | |
"log_likelihood", | |
"oas", | |
"shrunk_covariance", | |
] | |